November 2019

UGRA

Molly Wick

Undergraduate Research Assistant

Molly Wick is a fourth year Human Development and Family Sciences major at the University of Texas at Austin. Her research interests include gerontology

Read more about Molly Wick
FP Varodayan, MA Minnig, MS Steinman, CS Oleata, MW Riley, V Sabino, and M Roberto. “PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress..” Neuropharmacology, 168, Pp. 107752. Publisher's Version Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors.
J Suárez, S Khom, F Alén, LA Natividad, FP Varodayan, RR Patel, D Kirson, R Arco, A Ballesta, M Bajo, L Rubio, and R Martin-Fardon. “Cessation of fluoxetine treatment increases alcohol seeking during relapse and dysregulates endocannabinoid and glutamatergic signaling in the central amygdala..” Addict Biology, 25, Pp. e12813. Publisher's Version Abstract
Administration of selective serotonin reuptake inhibitors (SSRIs), typically used as antidepressants, induces long-lasting behavioral changes associated with alcohol use disorder (AUD). However, the contribution of SSRI (fluoxetine)-induced alterations in neurobiological processes underlying alcohol relapse such as endocannabinoid and glutamate signaling in the central amygdala (CeA) remains largely unknown. We utilized an integrative approach to study the effects of repeated fluoxetine administration during abstinence on ethanol drinking. Gene expression and biochemical and electrophysiological studies explored the hypothesis that dysregulation in glutamatergic and endocannabinoid mechanisms in the CeA underlie the susceptibility to alcohol relapse. Cessation of daily treatment with fluoxetine (10 mg/kg) during abstinence resulted in a marked increase in ethanol seeking during re-exposure periods. The increase in ethanol self-administration was associated with (a) reductions in levels of the endocannabinoids N-arachidonoylethanolomine and 2-arachidonoylglycerol in the CeA, (b) increased amygdalar gene expression of cannabinoid type-1 receptor (CB1), N-acyl phosphatidylethanolamine phospholipase D (Nape-pld), fatty acid amid hydrolase (Faah), (c) decreased amygdalar gene expression of ionotropic AMPA (GluA2 and GluA4) and metabotropic (mGlu3) glutamate receptors, and (d) increased glutamatergic receptor function. Overall, our data suggest that the administration of the antidepressant fluoxetine during abstinence dysregulates endocannabinoid signaling and glutamatergic receptor function in the amygdala, facts that likely facilitate alcohol drinking behavior during relapse.

BACKGROUND:

Alcohol use disorders (AUDs) are influenced by complex interactions between the genetics of the individual and their environment. We have previously identified hundreds of polygenic genetic variants between the selectively bred high- and low-alcohol drinking (HAD and LAD) rat lines. Here, we report allele-specific expression (ASE) differences, between the HAD2 and LAD2 rat lines.

METHODS:

The HAD2 and LAD2 rats, which have been sequenced, were reciprocally crossed to generate 10 litters of F1 progeny. For 5 of these litters, the sire was HAD2, and for the other 5 litters, the sire was a LAD2. From these 10 litters, 2 males and 2 females were picked from each F1 litter (N = 40 total). The F1 pups were divided, balancing for sex and direction of cross, into an alcohol (15%) versus a water control group. Alcohol drinking started in the middle of adolescence (~postnatal day 35) and lasted 9 weeks. At the end of these treatments, rats were euthanized, the nucleus accumbens was dissected, and RNA was processed for RNA-sequencing and ASE analyses.

RESULTS:

Analyses revealed that adolescent ethanol (EtOH) drinking, individual EtOH drinking levels, parentage, and sex-of-animal affected ASEs of about 300 genes. The identified genes included those associated with EtOH metabolism (e.g., Aldh2); neuromodulatory function (e.g., Cckbr, Slc6a7, and Slc1a1); ion channel activity (e.g., Kcnc3); and other synaptic and epigenetic functions.

CONCLUSIONS:

These data indicate that EtOH drinking differentially amplified paternal versus maternal allelic contribution to the transcriptome. We hypothesize that this was due, at least in part, to EtOH-induced changes in cis-regulation of polymorphisms previously identified between the HAD2 and LAD2 rat lines. This report highlights the complexity of gene-by-environment interactions mediating a genetic predisposition for, and/or the active development of, AUDs.

OD Iancu, A Colville, B Wilmot, R Searles, P Darakjian, C Zheng, S McWeeney, S Kawane, JC Crabbe, P Metten, D Oberbeck, and R Hitzemann. “Gender specific effects of selection for drinking in the dark on the network roles of coding and non-coding RNAs..” Alcohol Clin Exp. Abstract

BACKGROUND:

Transcriptional differences between heterogeneous stock mice and high drinking-in-the-dark selected mouse lines have previously been described based on microarray technology coupled with network-based analysis. The network changes were reproducible in 2 independent selections and largely confined to 2 distinct network modules; in contrast, differential expression appeared more specific to each selected line. This study extends these results by utilizing RNA-Seq technology, allowing evaluation of the relationship between genetic risk and transcription of noncoding RNA (ncRNA); we additionally evaluate sex-specific transcriptional effects of selection.

METHODS:

Naïve mice (N = 24/group and sex) were utilized for gene expression analysis in the ventral striatum; the transcriptome was sequenced with the Illumina HiSeq platform. Differential gene expression and the weighted gene co-expression network analysis were implemented largely as described elsewhere, resulting in the identification of genes that change expression level or (co)variance structure.

RESULTS:

Across both sexes, we detect selection effects on the extracellular matrix and synaptic signaling, although the identity of individual genes varies. A majority of nc RNAs cluster in a single module of relatively low density in both the male and female network. The most strongly differentially expressed transcript in both sexes was Gm22513, a small nuclear RNA with unknown function. Associated with selection, we also found a number of network hubs that change edge strength and connectivity. At the individual gene level, there are many sex-specific effects; however, at the annotation level, results are more concordant.

CONCLUSIONS:

In addition to demonstrating sex-specific effects of selection on the transcriptome, the data point to the involvement of extracellular matrix genes as being associated with the binge drinking phenotype.

The receptor tyrosine kinases (RTKs) are a large family of proteins that transduce extracellular signals to the inside of the cell to ultimately affect important cellular functions such as cell proliferation, survival, apoptosis, differentiation, and migration. They are expressed in the nervous system and can regulate behavior through modulation of neuronal and glial function. As a result, RTKs are implicated in neurodegenerative and psychiatric disorders such as depression and addiction. Evidence has emerged that 5 RTKs (tropomyosin-related kinase B (TrkB), RET proto-oncogene (RET), anaplastic lymphoma kinase (ALK), fibroblast growth factor receptor (FGFR), and epidermal growth factor receptor (EGFR)) modulate alcohol drinking and other behaviors related to alcohol addiction. RTKs are considered highly "druggable" targets and small-molecule inhibitors of RTKs have been developed for the treatment of various conditions, particularly cancer. These kinases are therefore attractive targets for the development of new pharmacotherapies to treat alcohol use disorder (AUD). This review will examine the preclinical evidence describing TrkB, RET, ALK, FGFR, and EGFR modulation of alcohol drinking and other behaviors relevant to alcohol abuse.
M Fritz, AM Klawonn, and NM Zahr. “Neuroimaging in alcohol use disorder: From mouse to man..” J Neurosci, 100, 5, Pp. 1140-1158. Publisher's Version Abstract
This article provides an overview of recent advances in understanding the effects of alcohol use disorders (AUD) on the brain from the perspective of magnetic resonance imaging (MRI) research in preclinical models and clinical studies. As a noninvasive investigational tool permitting assessment of morphological, metabolic, and hemodynamic changes over time, MRI offers insight into the dynamic course of alcoholism beginning with initial exposure through periods of binge drinking and escalation, sobriety, and relapse and has been useful in differential diagnosis of neurological diseases associated with AUD. Structural MRI has revealed acute and chronic effects of alcohol on both white and gray matter volumes. MR Spectroscopy, able to quantify brain metabolites in vivo, has shed light on biochemical alterations associated with alcoholism. Diffusion tensor imaging permits microstructural characterization of white matter fiber tracts. Functional MRI has allowed for elucidation of hemodynamic responses at rest and during task engagement. Positron emission tomography, a non-MRI imaging tool, has led to a deeper understanding of alcohol-induced receptor and neurotransmitter changes during various stages of drinking and abstinence. Together, such in vivo imaging tools have expanded our understanding of the dynamic course of alcoholism including evidence for regional specificity of the effects of AUD, hints at mechanisms underlying the shift from casual to compulsive use of alcohol, and profound recovery with sustained abstinence.

Pages