O'Connell LA, Matthews BJ, Ryan MJ, Hofmann HA.
Characterization of the dopamine system in the brain of the tungara frog, Physalaemus pustulosus. Brain, Behavior and Evolution. 76 (3-4) :211 - 225.
AbstractDopamine is an evolutionarily ancient neurotransmitter that plays an essential role in mediating behavior. In vertebrates, dopamine is central to the mesolimbic reward system, a neural network concerned with the valuation of stimulus salience, and to the nigrostriatal motor system and hypothalamic nuclei involved in the regulation of locomotion and social behavior. In amphibians, dopaminergic neurons have been mapped out in several species, yet the distribution of dopaminoreceptive cells is unknown. The túngara frog, Physalaemus pustulosus, is an excellent model system for the study of neural mechanisms by which valuations of stimuli salience and social decisions are made, especially in the context of mate choice. In order to better understand where dopamine acts to regulate social decisions in this species, we have determined the distribution of putative dopaminergic cells (using tyrosine hydroxylase immunohistochemistry) and cells receptive to dopaminergic signaling (using DARPP-32 immunohistochemistry) throughout the brain of P. pustulosus. The distribution of dopaminergic cells was comparable to other anurans. DARPP-32 immunoreactivity was identified in key brain regions known to modulate social behavior in other vertebrates including the proposed anuran homologues of the mammalian amygdalar complex, nucleus accumbens, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Due to its widespread distribution, DARPP-32 likely also plays many roles in non-limbic brain regions that mediate non-social information processing. These results significantly extend our understanding of the distribution of the dopaminergic system in the anuran brain and beyond.
2010.oconnell.bbe_.pdf O'Connell LA, Fontenot MR, Hofmann HA.
Characterization of the dopaminergic system in the brain of an African cichlid fish, Astatotilapia burtoni. Journal of Comparative Neurology. 519 (1) :75 - 92.
AbstractCatecholamines, such as dopamine, are evolutionarily ancient neurotransmitters that play an essential role in mediating behavior. In vertebrates, dopamine is central to the nigrostriatal motor and mesolimbic reward systems. Despite its importance, the distribution of the dopaminergic system has not been well studied in the teleost brain. The African cichlid fish Astatotilapia burtoni has become an important model system in social neuroscience and lends itself to uncovering how social decisions are implemented in the brain. To understand better where dopamine acts to regulate social behavior in this species, we have determined the distribution of putative dopaminergic cells and fibers (by tyrosine hydroxylase immunohistochemistry) and dopamine receptors (by in situ hybridization for the D(1A) and D(2) dopamine receptor subtypes) throughout the forebrain and part of the mesencephalon of A. burtoni. Tyrosine hydroxylase immunoreactivity was evident in several regions of the fore- and midbrain, in support of putative homologies to tetrapods. Additionally, the D(1A) and D(2) receptors were identified in brain regions known to modulate social behavior in other vertebrates, including the proposed teleost homologues of the mammalian amygdalar complex, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Tyrosine hydroxylase-immunoreactive fibers as well as D(1A) and D(2) receptor expression overlap almost completely in their distribution. These results significantly extend our understanding of the distribution of the dopaminergic system in the teleost brain and suggest a conserved role of dopamine in modulating behavior across vertebrates.
2011.oconnell.jcn_.dopamine.pdf Kline RJ, O'Connell LA, Hofmann HA, Holt JG, Khan IA.
The distribution of an avt v1a receptor in the brain of a sex changing fish, epinephelus adscensionis. Journal of Chemical Neuroanatomy. 42 (1) :72 - 88.
AbstractThe present study describes the distribution of an arginine vasotocin (AVT) V1a receptor (AVTr) throughout the brain of a sex-changing grouper, rock hind Epinephelus adscensionis. The objectives of this study were to describe the AVTr distribution in the brain of rock hind for potential linkages of the AVT hormone system with sex-specific behaviors observed in this species and to examine sex-specific differences that might exist. An antibody was designed for rock hind AVTr against the deduced amino acid sequence for the third intracellular loop. Protein expression, identified with immunohistochemistry showed high concordance with mRNA expression, identified with in situ hybridization. AVTr protein and mRNA expression was widely distributed throughout the brain, indicating that AVT may act as a neuromodulator via this V1a receptor subtype. AVTr protein and mRNA were present in regions associated with behavior, reproduction and spatial learning, as well as sensory functions such as vision, olfaction and lateral line sensory processing. We observed high AVTr expression in granular cell formations in the internal cellular layer of olfactory bulbs, torus longitudinalis, granular layer of the corpus cerebellum, valvula of the cerebellum, nuclei of the lateral and posterior recesses, and granular eminence. High protein and mRNA expression was also observed in the preoptic area, anterior hypothalamus, and habenular nucleus. No obvious sex differences were noted in any region of the rock hind brain. ?? 2011 Elsevier B.V.
2011.kline_.jcn_.pdf O'Connell LA, Hofmann HA.
Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Frontiers in Neuroendocrinology. 32 (3) :320 - 335.
AbstractTremendous progress has been made in our understanding of the ultimate and proximate mechanisms underlying social behavior, yet an integrative evolutionary analysis of its underpinnings has been difficult. In this review, we propose that modern genomic approaches can facilitate such studies by integrating four approaches to brain and behavior studies: (1) animals face many challenges and opportunities that are ecologically and socially equivalent across species; (2) they respond with species-specific, yet quantifiable and comparable approach and avoidance behaviors; (3) these behaviors in turn are regulated by gene modules and neurochemical codes; and (4) these behaviors are governed by brain circuits such as the mesolimbic reward system and the social behavior network. For each approach, we discuss genomic and other studies that have shed light on various aspects of social behavior and its underpinnings and suggest promising avenues for future research into the evolution of neuroethological systems. ?? 2010 Elsevier Inc.
2011.oconnell.frontiers.pdf O'Connell LA, Ding JH, Ryan MJ, Hofmann HA.
Neural distribution of the nuclear progesterone receptor in the tungara frog, Physalaemus pustulosus. Journal of Chemical Neuroanatomy [Internet]. 41 (3) :137 - 147.
Publisher's VersionAbstractThe gonadal steroid hormone progesterone plays an important role across all vertebrates in mediating female reproductive physiology and behavior. Many effects of progesterone are mediated by a nuclear progesterone receptor (PR), which is crucial for integration of external signals and internal physiological cues in the brain to produce an appropriate behavioral output. The t??ngara frog, Physalaemus pustulosus, is an excellent model system for the study of mechanisms by which sensory signals, such as auditory communication, are processed within neural circuits where mate choice decisions are made. To establish a framework for studying the neural basis of mate choice and social behavior in this species, we first describe the cytoarchitecture of the brain using Nissl-stained sections. Then, in order to better understand where progesterone acts to regulate social decisions, we determined the distribution of PR protein throughout the brain of P. pustulosus by immunohistochemistry. We found PR immunoreactivity in key brain regions known to modulate the processing of auditory cues and social behavior in other vertebrates. Due to its widespread distribution, PR likely also plays important roles in non-limbic brain regions that mediate non-social information processing. Further, we have colocalized PR with tyrosine hydroxylase, providing a functional context for the role of progesterone in mediating motivation and motor behavior. Our results significantly extend our understanding of hormonal modulation in the anuran brain and support the important role of the nuclear progesterone receptor in modulating female mate choice and receptivity in amphibians and across vertebrates. ?? 2011 Elsevier B.V.
2011.oconnell.jcn_.frogpr.pdf Oldfield RG, Hofmann HA.
Neuropeptide regulation of social behavior in a monogamous cichlid fish. Physiology and Behavior. 102 (3-4) :296 - 303.
AbstractThe nonapeptides arginine vasopressin (AVP; including its non-mammalian homolog arginine vasotocin, AVT) and oxytocin (OT; including its non-mammalian homologs mesotocin, MT, and isotocin, IT) regulate social behavior, including aggression and reproduction, via receptors conserved across vertebrates. In monogamous prairie voles, the vasopressin and oxytocin pathways are crucially important for pair-bond formation, specifically by influencing affiliative behavior toward the mate and aggression toward non-mates. Monogamous social systems are found in diverse taxa. We hypothesized that the AVT/IT pathways are associated with mating behavior in monogamous teleost fishes. We used the monogamous convict cichlid, Amatitlania nigrofasciata, to test this idea. In the first experiment, we treated males with a general nonapeptide receptor antagonist during pair-bond formation. Control males were treated with vehicle. On the first day of treatment we observed a significant reduction in both affiliative behavior toward the potential mate and aggression toward neighbors. However, the antagonist did not prevent the pair-bond from forming and the behavioral effects disappeared on subsequent treatment days. In the second experiment, we administered on three consecutive days the AVP/OT receptor antagonist to males that were in an established pair-bond. In established pairs, male affiliation towards the mate and aggressive behavior towards territorial neighbors were not affected by the antagonist. Our results indicate that the basic social behaviors typically mediated by the AVP/OT pathways may provide the building blocks necessary for monogamous mating behavior. ?? 2010 Elsevier Inc.
2011.oldfield.pb_.pdf Dijkstra PD, Wiegertjes GF, Forlenza M, van der Sluijs I, Hofmann HA, Metcalfe NB, Groothuis TGG.
The role of physiology in the divergence of two incipient cichlid species. Journal of Evolutionary Biology. 24 (12) :2639 - 2652.
AbstractSexual selection on male coloration has been implicated in the evolution of colourful species flocks of East African cichlid fish. During adaptive radiations, animals diverge in multiple phenotypic traits, but the role of physiology has received limited attention. Here, we report how divergence in physiology may contribute to the stable coexistence of two hybridizing incipient species of cichlid fish from Lake Victoria. Males of Pundamilia nyererei (males are red) tend to defeat those of Pundamilia pundamilia (males are blue), yet the two sibling species coexist in nature. It has been suggested that red males bear a physiological cost that might offset their dominance advantage. We tested the hypothesis that the two species differ in oxidative stress levels and immune function and that this difference is correlated with differences in circulating steroid levels. We manipulated the social context and found red males experienced significantly higher oxidative stress levels than blue males, but only in a territorial context when colour and aggression are maximally expressed. Red males exhibited greater aggression levels and lower humoral immune response than blue males, but no detectable difference in steroid levels. Red males appear to trade off increased aggressiveness with physiological costs, contributing to the coexistence of the two species. Correlated divergence in colour, behaviour and physiology might be widespread in the dramatically diverse cichlid radiations in East African lakes and may play a crucial role in the remarkably rapid speciation of these fish.
2011.dijkstra.jeb_.pdf Whitaker KW, Neumeister H, Huffman LS, Kidd CE, Preuss T, Hofmann HA.
Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. Journal of neurophysiology. 106 (1) :127 - 137.
AbstractSocial life affects brain function at all levels, including gene expression, neurochemical balance, and neural circuits. We have previously shown that in the cichlid fish Astatotilapia burtoni brightly colored, socially dominant (DOM) males face a trade-off between reproductive opportunities and increased predation risk. Compared with camouflaged subordinate (SUB) males, DOMs exposed to a loud sound pip display higher startle responsiveness and increased excitability of the Mauthner cell (M-cell) circuit that governs this behavior. Using behavioral tests, intracellular recordings, and single-cell molecular analysis, we show here that serotonin (5-HT) modulates this socially regulated plasticity via the 5-HT receptor subtype 2 (5-HTR(2)). Specifically, SUBs display increased sensitivity to pharmacological manipulation of 5-HTR(2) compared with DOMs in both startle-escape behavior and electrophysiological properties of the M-cell. Immunohistochemistry showed serotonergic varicosities around the M-cells, further suggesting that 5-HT impinges directly onto the startle-escape circuitry. To determine whether the effects of 5-HTR(2) are pre- or postsynaptic, and whether other 5-HTR subtypes are involved, we harvested the mRNA from single M-cells via cytoplasmic aspiration and found that 5-HTR subtypes 5A and 6 are expressed in the M-cell. 5-HTR(2), however, was absent, suggesting that it affects M-cell excitability through a presynaptic mechanism. These results are consistent with a role for 5-HT in modulating startle plasticity and increase our understanding of the neural and molecular basis of a trade-off between reproduction and predation.
2011.whitaker.jn_.pdf O'Connell LA, Hofmann HA.
The Vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. Journal of Comparative Neurology. 519 (18) :3599 - 3639.
AbstractAll animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation. J. Comp. Neurol. 519:3599–3639, 2011. © 2011 Wiley-Liss, Inc.
2011.oconnell.jcn_.sdm_.pdf