Publications by Year: 2016

2016
Hendrickson, Dean A. 2016. “Prologo.” La Trucha Dorada Mexicana, 1st ed., v–vii. México: Arturo Ruiz Luna and Francisco García de León, v–vii. Publisher's Version
Lundberg, John G., Dean A. Hendrickson, Kyle R. Luckenbill, and Arce H Mariangeles. 2016. “Satan's skeleton revealed: a tomographic and comparative osteology of Satan eurystomus, the subterranean Widemouth Blindcat (Siluriformes, Ictaluridae).” Proceedings of the Academy of Natural Sciences of Philadelphia, 117–173. Publisher's VersionAbstract
. The Widemouth Blindcat, Satan eurystomus Hubbs and Bailey 1947, was the second of four stygobitic species of Ictaluridae discovered in the subterranean waters of southern Texas and northeastern Mexico. The skeletal anatomy of Satan has been scarcely known from a few, dated radiographs. Using additional radiographs and high resolution CT-datasets for two well-ossified specimens, we applied high-resolution X-ray computed tomography (HRXCT) to visualize, illustrate and describe the bony skeleton of Satan. We also provide an online archive of still and animated tomographic images of the skeletal anatomy of this little-known species. The skeleton and soft anatomy of Satan are distinctive. Twelve skeletal autapomorphies are described that singularly distinguish Satan within Ictaluridae and, probably in combination, from all other catfishes. Some of these are reductive losses or simplifications of skull bones (e.g. loss of one infraorbital bone; reduced ornamentation of the pterotic bone) and joint complexity (e.g. simple overlapping frontal-lateral ethmoid articulation; loosely ligamentous interopercle-posterior ceratohyal joint). Some of the autapomorphies are anatomically and perhaps developmentally complex (e.g. a novel series of three midline joints closing a middle span of the posterior cranial fontanel; a deeply excavated temporal fossa and an unusually enlarged interhyal bone). The tiny dorsal-fin spinelet (first lepidotrich) of Satan has a novel peaked and twisted shape. Ten apparent and exclusive synapomorphies within Ictaluridae gathered from this and previous studies suggest that Satan and Pylodictis are closest relatives. Most of these are functionally related to prey detection and suction feeding: fusion of the symphyseal mandibular sensory pores and increase in the number of preoperculo-mandibular canal pores; depressed, flattened heads and wide transverse mouths; prominent posterior process of the lateral ethmoid alongside and below the frontal bone margin; vertical and blade-like supraoccipital posterior process; unique arrangement of the parasagittal and occipital muscleattachment crests on the skull roof; large triangular panel of integument within the operculum framed by the opercle, preopercle and interopercle bones; elongated posterior ceratohyal; and, form of the fourth supraneural and loss of its anterior nuchal plate. In contrast, 15 synapomorphies recovered by Arce-H. et al. 2016, are confirmed suggesting that Satan is one of the four stygobitic ictalurids comprising a “Troglobites” subclade within the family: (Trogloglanis, Satan, Prietella phreatophila, P. lundbergi). These features include three stygomorphic and reductive apomorphies that are exclusive within Ictaluridae: loss of fully developed eyes and pigmentation, and simplification of the fifth vertebra and its joint with the Weberian apparatus. Twelve other synapomorphies shown by the Troglobites are also apparent homoplasies of character states shared with various other ictalurids. These include reductive characters such as shortened lateral line canal, reduced infraorbitals and underdeveloped or incomplete ossifications of the pterotic, supraoccipital, hyoid arch bones and transcapular ligament. Also, the Troglobites and various other ictalurids have: an adnate adiposecaudal fin, foreshortened anterior cranial fontanelle, reduced ventral wings of the frontal bone, replacement of bone by cartilage in hypohyal joints; incompletely ossified transcapular ligament, and consolidation of some hypural bones. Completing a full morphological character dataset across the Troglobites has been impeded by incomplete specimen preparations and study of P. lundbergi and to a lesser extent, P. phreatophila and Trogloglanis.
Hendrickson, Dean A., Adam E. Cohen, Ben Labay, Gary P. Garrett, Melissa Casarez, and F. Douglas Martin. 2016. “American Eel in Texas – what we do, don’t, and need to, know.” Kerrville, Texas, USA. Publisher's VersionAbstract
American Eel is undoubtedly one of the most studied freshwater fishes of North America. Many recent discoveries have added new insights that re-write important aspects of the “text book” knowledge of the species’ complex life history in ways that could have significant impacts on management. Despite all of this new information, debate about the species’ conservation status continues, and new threats, such as continued habitat loss and major clandestine fisheries driven by extremely high value in the global market, have further complicated management. Though USFWS recently decided that the species does not merit listing as “Endangered,” in 2012 Canada changed that country’s assessment of the species’ status from “Special Concern” (since 2006) to “Threatened” and IUCN upped its classification in 2013 to “Endangered.” Ontario has considered it “Endangered” since 2007. All U.S. Atlantic states vowed to work together to produce, in 1999, the American Eel Benchmark Stock Assessment, which mandated each state conduct standardized monitoring of recruitment and later, mandatory catch and effort monitoring. Given all that activity and data generation, it is remarkable that still so little is known about the populations of the Gulf of Mexico (GOM) and its tributary rivers that making any management decisions in that large, neglected part of the species’ range is virtually impossible. The Fishes of Texas Project team has been collating and improving the limited and scattered data on occurrences of the species in the region and concludes it important to promote a broad scale (Gulf of Mexico) collaborative community effort to acquire and share data and carefully curated specimens and, hopefully, develop a GOM-wide collaborative research and management plan like that implemented by Atlantic states. Here we’ll review the literature and state of knowledge about the species in Texas and GOM, and suggest ways to begin work toward such an effort.
Mayes, Kevin, and Dean A. Hendrickson. 2016. “The Enigmatic Eel – A Metamorphic Journey.” Texas Watersheds: Conservation news from headwaters to coast Spring 2016: 1–2. Publisher's VersionAbstract
The American eel, Anguilla rostrata, is an amazing catadromous (living in fresh water and spawning in the ocean) fish with a remarkable life history involving huge migrations. Immature adults, a.k.a. “yellow eel,” live in freshwater rivers, lakes, and estuaries, feeding on fishes and invertebrates for 5 to 20 years before making a remarkable, long-distance journey to the Atlantic Ocean to spawn in the depths of the Sargasso Sea (by the Bermuda Triangle).
Hendrickson, Dean A, Gary P Garrett, Ben J Labay, Adam E Cohen, and Melissa Casarez. 2016. Year 1 report for ‘Conserving Texas Biodiversity: Status, Trends, and Conservation Planning for Fishes of Greatest Conservation Need’. State Wildlife Grant Program. Austin, Texas, U.S.A.: Texas Parks and Wildlife Department, 1 - 177. Publisher's VersionAbstract
Substantive progress was made on all major Project Activities in this first year:Activity 1. Coordinate and Facilitate Science and Conservation Actions for Conserving Texas Biodiversity - We expanded and strengthened UT-TPWD coordination, transitioning the relationship between these partners into a much more collaborative one than was previously realized. The flow of data between TPWD and the Fishes of Texas Project (supported in part by this project) has become much more bi-directional. Many newly collected TPWD specimens, agency databases, legacy data products and reports, and feedback from resource managers are now beginning to contribute substantively to growth and diversity (now including non-specimen-vouchered records) of data served through the FoTX Project’s websites. Work on cleaning and normalizing of FoTX’s online specimen-vouchered database continued, and the updated FoTX occurrence and distribution data are being actively used. Most recently they were used by this project, together with expert (TPWD, UT and others’) opinions, to develop recommendations on conservation status of native fishes of Texas’ Species of Greatest Conservation Need for TPWD’s consideration in anticipated updates to the Texas Conservation Action Plan. Within two months of this report, a new and substantially larger and improved version of the FoTX website/database and related collection of images, field notes, and ancillary datasets, will be formally announced. Activity 2. Identify Priority Geographic Management Units for Conserving Fishes of Greatest Conservation Need - We used FoTX data in a systematic conservation area prioritization analysis to identify Native Fish Conservation Areas (NFCAs) for large portions of Texas where such comprehensive planning had not been previously carried out. Updated and new FoTX data for all Texas fish Species of Greatest Conservation Need (SGCN) were used in production of newly improved Species Distribution Models for input into this planning process, and the results of the planning exercise have already been integrated by TPWD into management prioritizations of both those species and the resultant NFCAs. Activity 3. Develop Monitoring and Conservation Plans for Native Fish Conservation Areas - Monitoring and conservation plans were delivered to TPWD for all NFCAs identified in Activity 2. Activity 4. Conduct Field-Based Surveys Detailed Biodiversity Assessments (i.e. Bioblitzing), and Citizen-Based Monitoring - Field surveys with detailed biodiversity assessments (“bioblitzes”) and citizen-based monitoring were conducted in three areas selected collaboratively by TPWD and FoTX Project staff from within the identified NFCAs: Nueces River headwaters, Big Cypress Bayou basin, and Village Creek basin. Along with this field effort, FoTX Project staff developed and circulated guidelines and best practices, and provided training for citizen-based monitoring that leverages iNaturalist for capture and reporting of photo-vouchered occurrence records in ways that will help assure scientifically useful data are obtained. All specimens acquired during these field efforts, and from many other routine specimen acquisitions from across the state (1845 total records/jars of specimens), were cataloged in the UT Fish Collection database. From there, these new records will soon be fed into GBIF, VertNet, FishNet2 and other major online data aggregators, including the online Fishes of Texas database.