Publications

2010
Hitoshi Morikawa and Richard A. Morrisett. “Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs.” International Review of Neurobiology, 91, Pp. 235–288. Abstract
The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience.
D. Nicole Riherd Methner and R. Dayne Mayfield. “Ethanol alters endosomal recycling of human dopamine transporters.” The Journal of Biological Chemistry, 285, 14, Pp. 10310–10317. Abstract
Dynamic membrane trafficking of the monoamine dopamine transporter (DAT) regulates dopaminergic signaling. Various intrinsic and pharmacological modulators can alter this trafficking. Previously we have shown ethanol potentiates in vitro DAT function and increases surface expression. However, the mechanism underlying these changes is unclear. In the present study, we found ethanol directly regulates DAT function by altering endosomal recycling of the transporter. We defined ethanol action on transporter regulation by [(3)H]DA uptake functional analysis combined with biochemical and immunological assays in stably expressing DAT HEK-293 cells. Short-term ethanol exposure potentiated DAT function in a concentration-, but not time-dependent manner. This potentiation was accompanied by a parallel increase in DAT surface expression. Ethanol had no effect on function or surface localization of the ethanol-insensitive mutant (G130T DAT), suggesting a trafficking-dependent mechanism in mediating the ethanol sensitivity of the transporter. The ethanol-induced increase in DAT surface expression occurred without altering the overall size of DAT endosomal recycling pools. We found ethanol increased the DAT membrane insertion rate while having no effect on internalization of the transporter. Ethanol had no effect on the surface expression or trafficking of the endogenously expressing transferrin receptor, suggesting ethanol does not have a nonspecific effect on endosomal recycling. These results define a novel trafficking mechanism by which ethanol regulates DAT function.
Robert F. Leeman, Markus Heilig, Christopher L. Cunningham, David N. Stephens, Theodora Duka, and Stephanie S. O'Malley. “Ethanol consumption: how should we measure it? Achieving consilience between human and animal phenotypes.” Addiction Biology, 15, 2, Pp. 109–124. Abstract
There is only modest overlap in the most common alcohol consumption phenotypes measured in animal studies and those typically studied in humans. To address this issue, we identified a number of alcohol consumption phenotypes of importance to the field that have potential for consilience between human and animal models. These phenotypes can be broken down into three categories: (1) abstinence/the decision to drink or abstain; (2) the actual amount of alcohol consumed; and (3) heavy drinking. A number of suggestions for human and animal researchers are made in order to address these phenotypes and enhance consilience. Laboratory studies of the decision to drink or to abstain are needed in both human and animal research. In human laboratory studies, heavy or binge drinking that meets cut-offs used in epidemiological and clinical studies should be reported. Greater attention to patterns of drinking over time is needed in both animal and human studies. Individual differences pertaining to all consumption phenotypes should be addressed in animal research. Lastly, improved biomarkers need to be developed in future research for use with both humans and animals. Greater precision in estimating blood alcohol levels in the field, together with consistent measurement of breath/blood alcohol levels in human laboratory and animal studies, provides one means of achieving greater consilience of alcohol consumption phenotypes.
Ovidiu D. Iancu, Priscila Darakjian, Nicole AR Walter, Barry Malmanger, Denesa Oberbeck, John Belknap, Shannon McWeeney, and Robert Hitzemann. “Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse.” BMC Genomics, 11, Pp. 585. Publisher's Version Abstract
The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture \textgreater 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA).
Vez Repunte-Canonigo, Lena D. van der Stap, Jihuan Chen, Valentina Sabino, Ulrich Wagner, Eric P. Zorrilla, Gunter Schumann, Amanda J. Roberts, and Pietro Paolo Sanna. “Genome-wide gene expression analysis identifies K-ras as a regulator of alcohol intake.” Brain research, 1339, Pp. 1–10. Publisher's Version Abstract
Adaptations in the anterior cingulate cortex (ACC) have been implicated in alcohol and drug addiction. To identify genes that may contribute to excessive drinking, here we performed microarray analyses in laser microdissected rat ACC after a single or repeated administration of an intoxicating dose of alcohol (3g/kg). Expression of the small G protein K-ras was reduced following both single and repeated alcohol administration. We also observed that voluntary alcohol intake in K-ras heterozygous null mice (K-ras+/−) did not increased after withdrawal from repeated cycles of intermittent ethanol vapor exposure, unlike in their wild-type littermates. To identify K-ras regulated pathways, we then profiled gene expression in the ACC of K-ras+/−, heterozygous null mice for the K-ras negative regulator Nf1 (Nf1+/−) and wild-type mice following repeated administration of an intoxicating dose of alcohol. Pathway analysis showed that alcohol differentially affected various pathways in a K-ras dependent manner – some of which previously shown to be regulated by alcohol - including the insulin/PI3K pathway, the NF-kB, the phosphodiesterases (PDEs) pathway, the Jak/Stat and the adipokine signaling pathways. Altogether, the data implicate K-ras-regulated pathways in the regulation of excessive alcohol drinking after a history of dependence.
Simranjit Kaur and Andrey E. Ryabinin. “Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotor urocortin-containing neurons.” Alcoholism, Clinical and Experimental Research, 34, 9, Pp. 1525–1534. Abstract
BACKGROUND: The current therapies for alcohol abuse disorders are not effective in all patients, and continued development of pharmacotherapies is needed. One approach that has generated recent interest is the antagonism of ghrelin receptors. Ghrelin is a gut-derived peptide important in energy homeostasis and regulation of hunger. Recent studies have implicated ghrelin in alcoholism, showing altered plasma ghrelin levels in alcoholic patients as well as reduced intakes of alcohol in ghrelin receptor knockout mice and in mice treated with ghrelin receptor antagonists. The aim of this study was to determine the neuroanatomical locus/loci of the effect of ghrelin receptor antagonism on alcohol consumption using the ghrelin receptor antagonist, D-Lys3-GHRP-6. METHODS: In Experiment 1, male C57BL/6J mice were injected with saline 3 hours into the dark cycle and allowed access to 15% (v/v) ethanol or water for 2 hours in a 2-bottle choice experiment. On test day, the mice were injected with either saline or 400 nmol of the ghrelin receptor antagonist, D-Lys3-GHRP-6, and allowed to drink 15% ethanol or water for 4 hours. The preference for alcohol and alcohol intake were determined. In Experiment 2, the same procedure was followed as in Experiment 1 but mice were only allowed access to a single bottle of 20% ethanol (v/v), and alcohol intake was determined. Blood ethanol levels were analyzed, and immunohistochemistry for c-Fos was carried out to investigate changes in neural activity. To further elucidate the mechanism by which D-Lys3-GHRP-6 affects alcohol intake, in Experiment 3, the effect of D-Lys3-GHRP-6 on the neural activation induced by intraperitoneal ethanol was investigated. For the c-Fos studies, brain regions containing ghrelin receptors were analyzed, i.e. the perioculomotor urocortin population of neurons (pIIIu), the ventral tegmental area (VTA), and the arcuate nucleus (Arc). In Experiment 4, to test if blood ethanol concentrations were affected by D-Lys3-GHRP-6, blood samples were taken at 2 time-points after D-Lys3-GHRP-6 pretreatment and systemic ethanol administration. RESULTS: In Experiment 1, D-Lys3-GHRP-6 reduced preference to alcohol and in a follow-up experiment (Experiment 2) also dramatically reduced alcohol intake when compared to saline-treated mice. The resulting blood ethanol concentrations were lower in mice treated with the ghrelin receptor antagonist. Immunohistochemistry for c-Fos showed fewer immunopositive cells in the pIIIu of the antagonist-treated mice but no difference was seen in the VTA or Arc. In Experiment 3, D-Lys3-GHRP-6 reduced the induction of c-Fos by intraperitoneal ethanol in the pIIIu but had no effect in the VTA. In the Arc, there was a significant increase in the number of c-Fos immunopositive cells after D-Lys3-GHRP-6 administration, but the antagonist had no effect on ethanol-induced expression of c-Fos. D-Lys3-GHRP-6-pretreatment also did not affect the blood ethanol concentrations observed after a systemic injection of ethanol when compared to saline-pretreated mice (Experiment 4). CONCLUSIONS: These findings indicate that the action of ghrelin on the regulation of alcohol consumption may occur via the pIIIu.
John C. Crabbe, Richard L. Bell, and Cindy L. Ehlers. “Human and laboratory rodent low response to alcohol: is better consilience possible?.” Addiction Biology, 15, 2, Pp. 125–144. Abstract
If people are brought into the laboratory and given alcohol, there are pronounced differences among individuals in many responses to the drug. Some participants in alcohol challenge protocols show a cluster of 'low level of responses to alcohol' determined by observing post-drinking-related changes in subjective, motor and physiological effects at a given dose level. Those individuals characterized as having low level of response (LR) to alcohol have been shown to be at increased risk for a lifetime diagnosis of alcohol dependence (AD), and this relationship between low LR and AD appears to be in part genetic. LR to alcohol is an area where achieving greater consilience between the human and the rodent phenotypes would seem to be highly likely. However, despite extensive data from both human and rodent studies, few attempts have been made to evaluate the human and animal data systematically in order to understand which aspects of LR appear to be most directly comparable across species and thus the most promising for further study. We review four general aspects of LR that could be compared between humans and laboratory animals: (1) behavioral measures of subjective intoxication; (2) body sway; (3) endocrine responses; and (4) stimulant, autonomic and electrophysiological responses. None of these aspects of LR provide completely face-valid direct comparisons across species. Nevertheless, one of the most replicated findings in humans is the low subjective response, but, as it may reflect either aversively valenced and/or positively valenced responses to alcohol as usually assessed, it is unclear which rodent responses are analogous. Stimulated heart rate appears to be consistent in animal and human studies, although at-risk subjects appear to be more rather than less sensitive to alcohol using this measure. The hormone and electrophysiological data offer strong possibilities of understanding the neurobiological mechanisms, but the rodent data in particular are rather sparse and unsystematic. Therefore, we suggest that more effort is still needed to collect data using refined measures designed to be more directly comparable in humans and animals. Additionally, the genetically mediated mechanisms underlying this endophenotype need to be characterized further across species.
Y. A. Blednov, A. R. Ozburn, D. Walker, S. Ahmed, J. K. Belknap, and R. A. Harris. “Hybrid Mice as Genetic Models of High Alcohol Consumption.” Behavior genetics, 40, 1, Pp. 93–110. Publisher's Version Abstract
We showed that F1 hybrid genotypes may provide a broader variety of ethanol drinking phenotypes than the inbred progenitor strains used to create the hybrids (Blednov et al. in Alcohol Clin Exp Res 29:1949–1958–2005). To extend this work, we characterized alcohol consumption as well as intake of other tastants (saccharin, quinine and sodium chloride) in five inbred strains of mice (FVB, SJL, B6, BUB, NZB) and in their reciprocal F1 hybrids with B6 (FVBxB6; B6xFVB; NZBxB6; B6xNZB; BUBxB6; B6xBUB; SJLxB6; B6xSJL). We also compared ethanol intake in these mice for several concentrations before and after two periods of abstinence. F1 hybrid mice derived from the crosses of B6 and FVB and also B6 and SJL drank higher levels of ethanol than their progenitor strains, demonstrating overdominance for two-bottle choice drinking test. The B6 and NZB hybrid showed additivity in two-bottle choice drinking, whereas the hybrid of B6 and BUB demonstrated full or complete dominance. Genealogical origin, as well as non-alcohol taste preferences (sodium chloride), predicted ethanol consumption. Mice derived from the crosses of B6 and FVB showed high sustained alcohol preference and the B6 and NZB hybrids showed reduced alcohol preference after periods of abstinence. These new genetic models offer some advantages over inbred strains because they provide high, sustained, alcohol intake, and should allow mapping of loci important for the genetic architecture of these traits.
Dirk Mayer, Yi-Fen Yen, Yakir S. Levin, James Tropp, Adolf Pfefferbaum, Ralph E. Hurd, and Daniel M. Spielman. “In vivo application of sub-second spiral chemical shift imaging (CSI) to hyperpolarized 13C metabolic imaging: comparison with phase-encoded CSI.” Journal of Magnetic Resonance (San Diego, Calif.: 1997), 204, 2, Pp. 340–345. Abstract
A fast spiral chemical shift imaging (CSI) has been developed to address the challenge of the limited acquisition window in hyperpolarized (13)C metabolic imaging. The sequence exploits the sparsity of the spectra and prior knowledge of resonance frequencies to reduce the measurement time by undersampling the data in the spectral domain. As a consequence, multiple reconstructions are necessary for any given data set as only frequency components within a selected bandwidth are reconstructed "in-focus" while components outside that band are severely blurred ("spectral tomosynthesis"). A variable-flip-angle scheme was used for optimal use of the longitudinal magnetization. The sequence was applied to sub-second metabolic imaging of the rat in vivo after injection of hyperpolarized [1-(13)C]-pyruvate on a clinical 3T MR scanner. The comparison with conventional CSI based on phase encoding showed similar signal-to-noise ratio (SNR) and spatial resolution in metabolic maps for the substrate and its metabolic products lactate, alanine, and bicarbonate, despite a 50-fold reduction in scan time for the spiral CSI acquisition. The presented results demonstrate that dramatic reductions in scan time are feasible in hyperpolarized (13)C metabolic imaging without a penalty in SNR or spatial resolution.
Changhoon Lee, R. Dayne Mayfield, and R. Adron Harris. “Intron 4 containing novel GABAB1 isoforms impair GABAB receptor function.” PloS One, 5, 11, Pp. e14044. Abstract
BACKGROUND: Gamma-aminobutyric acid type B (GABAB) receptors decrease neural activity through G protein signaling. There are two subunits, GABAB1 and GABAB2. Alternative splicing provides GABAB1 with structural and functional diversity. cDNA microarrays showed strong signals from human brain RNA using GABAB1 intron 4 region probes. Therefore, we predicted the existence of novel splice variants. METHODOLOGY/PRINCIPAL FINDINGS: Based on the probe sequence analysis, we proposed two possible splice variants, GABAB1j and GABAB1k. The existence of human GABAB1j was verified by quantitative real-time PCR, and mouse GABAB1j was found from a microarray probe set based on human GABAB1j sequence. GABAB1j open reading frames (ORF) and expression patterns are not conserved across species, and they do not have any important functional domains except sushi domains. Thus, we focused on another possible splice variant, GABAB1k. After obtaining PCR evidence for GABAB1k existence from human, mouse, and rat, it was cloned from human and mouse by PCR along with three additional isoforms, GABAB1l, GABAB1m, and GABAB1n. Their expression levels by quantitative real-time PCR are relatively low in brain although they may be expressed in specific cell types. GABAB1l and GABAB1m inhibit GABAB receptor-induced G protein-activated inwardly rectifying K(+) channel (GIRK) currents at Xenopus oocyte two-electrode voltage clamp system. CONCLUSIONS/SIGNIFICANCE: This study supports previous suggestions that intron 4 of GABAB1 gene is a frequent splicing spot across species. Like GABAB1e, GABAB1l and GABAB1m do not have transmembrane domains but have a dimerization motif. So, they also could be secreted and bind GABAB2 dominantly instead of GABAB1a. However, only GABAB1l and GABAB1m are N- and C-terminal truncated splicing variants and impair receptor function. This suggests that the intron 4 containing N-terminal truncation is necessary for the inhibitory action of the new splice variants.
Natalie M. Zahr, Richard Luong, Edith V. Sullivan, and Adolf Pfefferbaum. “Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol.” Alcoholism, Clinical and Experimental Research, 34, 11, Pp. 1858–1870. Abstract
BACKGROUND: In rodent and human studies, ethanol (EtOH) exposure is associated with elevated brain levels of the magnetic resonance spectroscopy (MRS) signal representing choline-containing compounds (Cho). One interpretation of elevated brain Cho is that it is a marker of neuroinflammation, and some evidence suggests that EtOH exposure promotes neuroinflammation. This study aimed to determine whether binge EtOH exposure (intragastric 3 g/kg 25% EtOH every 8 hours for 4 days) would induce the expression of certain cytokines in blood, liver, or brain, thereby supporting the neuroinflammation hypothesis of elevated Cho. METHODS: Ten of 18 wild-type male Wistar rats (\textasciitilde322 g at baseline) were exposed to EtOH and attained average blood alcohol levels of \textasciitilde315 mg/dl across 4 days. Blood for cytokine immunoassays was collected at baseline, after 5 doses of EtOH (binge), and immediately preceding euthanasia either 4 or 24 hours after the last dose of EtOH. Blood was additionally assayed for the levels of thiamine and liver enzymes; liver histopathology was performed postmortem; and tissue from liver and 6 brain regions was assayed for the potential induction of 7 cytokines. RESULTS: There were no group effects on the levels of thiamine or its phosphate derivatives, thiamine monophosphate or thiamine diphosphate. ANOVAs of liver enzyme levels indicated that only alkaline phosphatase (ALP) levels were higher in the EtOH group than in control group at binge; ALP elevations, however, are difficult to explain in the absence of changes in the levels of additional liver enzymes. Postmortem liver pathology provided evidence for minimal microvesicular lipidosis and portocentric fibrosis in the EtOH group. Group effects on the levels of the measured cytokines in the blood (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13, and GRO/CXCL1) were not significant. Similarly, postmortem evaluation of liver cytokines did not reveal group effects. Postmortem evaluation of the 7 cytokines in 6 brain regions (anterior cerebellar vermis, cingulate cortex, frontal cortex, hippocampus, hypothalamus, striatum) also failed to identify group effects. CONCLUSIONS: A single 4-day bout of binge EtOH exposure alone was insufficient to induce the expression of 7 cytokines in blood, liver, or 6 brain regions of wild-type Wistar rats. Alternative interpretations for elevations in brain Cho in response to a 4-day binge EtOH treatment are therefore necessary and may include induction of cytokines not measured herein or other noninflammatory mechanisms.
Ralph E. Hurd, Yi-Fen Yen, Dirk Mayer, Albert Chen, David Wilson, Susan Kohler, Robert Bok, Daniel Vigneron, John Kurhanewicz, James Tropp, Daniel Spielman, and Adolf Pfefferbaum. “Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethyl pyruvate.” Magnetic Resonance in Medicine, 63, 5, Pp. 1137–1143. Abstract
Formulation, polarization, and dissolution conditions were developed to obtain a stable hyperpolarized solution of [1-(13)C]-ethyl pyruvate. A maximum tolerated concentration and injection rate were determined, and (13)C spectroscopic imaging was used to compare the uptake of hyperpolarized [1-(13)C]-ethyl pyruvate relative to hyperpolarized [1-(13)C]-pyruvate into anesthetized rat brain. Hyperpolarized [1-(13)C]-ethyl pyruvate and [1-(13)C]-pyruvate metabolic imaging in normal brain is demonstrated and quantified in this feasibility and range-finding study.
Tamara J. Phillips, Cheryl Reed, Sue Burkhart-Kasch, Na Li, Robert Hitzemann, Chia-Hua Yu, Lauren L. Brown, Melinda L. Helms, John C. Crabbe, and John K. Belknap. “A method for mapping intralocus interactions influencing excessive alcohol drinking.” Mammalian Genome: Official Journal of the International Mammalian Genome Society, 21, 1-2, Pp. 39–51. Abstract
Excessive alcohol (ethanol) consumption is the hallmark of alcohol use disorders. The F1 hybrid cross between the C57BL/6J (B6) and FVB/NJ (FVB) inbred mouse strains consumes more ethanol than either progenitor strain. The purpose of this study was to utilize ethanol-drinking data and genetic information to map genes that result in overdominant (or heterotic) ethanol drinking. About 600 B6 x FVB F2 mice, half of each sex, were tested for ethanol intake and preference in a 24-h, two-bottle water versus ethanol choice procedure, with ascending ethanol concentrations. They were then tested for ethanol intake in a Drinking in the Dark (DID) procedure, first when there was no water choice and then when ethanol was offered versus water. DNA samples were obtained and genome-wide QTL analyses were performed to search for single QTLs (both additive and dominance effects) and interactions between pairs of QTLs, or epistasis. On average, F2 mice consumed excessive amounts of ethanol in the 24-h choice procedure, consistent with high levels of consumption seen in the F1 cross. Consumption in the DID procedure was similar or higher than amounts reported previously for the B6 progenitor. QTLs resulting in heightened consumption in heterozygous compared to homozygous animals were found on Chrs 11, 15, and 16 for 24-h choice 30% ethanol consumption, and on Chr 11 for DID. No evidence was found for epistasis between any pair of significant or suggestive QTLs. This indicates that the hybrid overdominance is due to intralocus interactions at the level of individual QTL.
Yuri A. Blednov, Danielle L. Walker, Sangeetha V. Iyer, Gregg Homanics, and Adron R. Harris. “Mice lacking Gad2 show altered behavioral effects of ethanol, flurazepam and gabaxadol.” Addiction Biology, 15, 1, Pp. 45–61. Abstract
Gamma-aminobutyric acid (GABA) is synthesized in brain by two isoforms of glutamic acid decarboxylase (Gad), Gad1 and Gad2. Gad1 provides most of the GABA in brain, but Gad2 can be rapidly activated in times of high GABA demand. Mice lacking Gad2 are viable whereas deletion of Gad1 is lethal. We produced null mutant mice for Gad2 on three different genetic backgrounds: predominantly C57BL/6J and one or two generations of backcrossing to 129S1/SvimJ (129N1, 129N2). We used these mice to determine if actions of alcohol are regulated by synthesis of GABA from this isoform. We also studied behavioral responses to a benzodiazepine (flurazepam) and a GABAA receptor agonist (gabaxadol). Deletion of Gad2 increased ethanol palatability and intake and slightly reduced the severity of ethanol-induced withdrawal, but these effects depended strongly on genetic background. Mutant mice on the 129N2 background showed the above three ethanol behavioral phenotypes, but the C57BL/6J inbred background did not show any of these phenotypes. Effects on ethanol consumption also depended on the test as the mutation did not alter consumption in limited access models. Deletion of Gad2 reduced the effect of flurazepam on motor incoordination and increased the effect of extrasynaptic GABAA receptor agonist gabaxadol without changing the duration of loss of righting reflex produced by these drugs. These results are consistent with earlier proposals that deletion of Gad2 (on 129N2 background) reduces synaptic GABA but also suggest changes in extrasynaptic receptor function.
Yuri A. Blednov, Danielle L. Walker, Sangeetha V. Iyer, Gregg Homanics, and Adron R. Harris. “Mice lacking Gad2 show altered behavioral effects of ethanol, flurazepam and gabaxadol.” Addiction Biology, 15, 1, Pp. 45–61. Abstract
Gamma-aminobutyric acid (GABA) is synthesized in brain by two isoforms of glutamic acid decarboxylase (Gad), Gad1 and Gad2. Gad1 provides most of the GABA in brain, but Gad2 can be rapidly activated in times of high GABA demand. Mice lacking Gad2 are viable whereas deletion of Gad1 is lethal. We produced null mutant mice for Gad2 on three different genetic backgrounds: predominantly C57BL/6J and one or two generations of backcrossing to 129S1/SvimJ (129N1, 129N2). We used these mice to determine if actions of alcohol are regulated by synthesis of GABA from this isoform. We also studied behavioral responses to a benzodiazepine (flurazepam) and a GABAA receptor agonist (gabaxadol). Deletion of Gad2 increased ethanol palatability and intake and slightly reduced the severity of ethanol-induced withdrawal, but these effects depended strongly on genetic background. Mutant mice on the 129N2 background showed the above three ethanol behavioral phenotypes, but the C57BL/6J inbred background did not show any of these phenotypes. Effects on ethanol consumption also depended on the test as the mutation did not alter consumption in limited access models. Deletion of Gad2 reduced the effect of flurazepam on motor incoordination and increased the effect of extrasynaptic GABAA receptor agonist gabaxadol without changing the duration of loss of righting reflex produced by these drugs. These results are consistent with earlier proposals that deletion of Gad2 (on 129N2 background) reduces synaptic GABA but also suggest changes in extrasynaptic receptor function.
Rajesh C. Miranda, Andrzej Z. Pietrzykowski, Yueming Tang, Pratheesh Sathyan, Dayne Mayfield, Ali Keshavarzian, Wayne Sampson, and Dale Hereld. “MicroRNAs: master regulators of ethanol abuse and toxicity?.” Alcoholism, Clinical and Experimental Research, 34, 4, Pp. 575–587. Abstract
Ethanol exerts complex effects on human physiology and health. Ethanol is not only addictive, but it is also a fetal teratogen, an adult neurotoxin, and an etiologic agent in hepatic and cardiovascular disease, inflammation, bone loss, and fracture susceptibility. A large number of genes and signaling mechanisms have been implicated in ethanol's deleterious effects leading to the suggestion that ethanol is a "dirty drug." An important question is, are there cellular "master-switches" that can explain these pleiotropic effects of ethanol? MicroRNAs (miRNAs) have been recently identified as master regulators of the cellular transcriptome and proteome. miRNAs play an increasingly appreciated and crucial role in shaping the differentiation and function of tissues and organs in both health and disease. This critical review discusses new evidence showing that ethanol-sensitive miRNAs are indeed regulatory master-switches. More specifically, miRNAs control the development of tolerance, a crucial component of ethanol addiction. Other drugs of abuse also target some ethanol-sensitive miRNAs suggesting that common biochemical mechanisms underlie addiction. This review also discusses evidence that miRNAs mediate several ethanol pathologies, including disruption of neural stem cell proliferation and differentiation in the exposed fetus, gut leakiness that contributes to endotoxemia and alcoholic liver disease, and possibly also hepatocellular carcinomas and other gastrointestinal cancers. Finally, this review provides a perspective on emerging investigations into potential roles of miRNAs as mediators of ethanol's effects on inflammation and fracture healing, as well as the potential for miRNAs as diagnostic biomarkers and as targets for therapeutic interventions for alcohol-related disorders.
Anita Cservenka, Erika Spangler, Dawn M. Cote, and Andrey E. Ryabinin. “Postnatal developmental profile of urocortin 1 and cocaine- and amphetamine-regulated transcript in the perioculomotor region of C57BL/6J mice.” Brain Research, 1319, Pp. 33–43. Abstract
Urocortin 1 (Ucn 1) is an endogenous corticotropin releasing factor (CRF)-related peptide. Ucn 1 is most highly expressed in the perioculomotor urocortin containing neurons (pIIIu), previously known as the non-preganglionic Edinger-Westphal nucleus (npEW). Various studies indicate that these cells are involved in stress adaptation and the regulation of ethanol (EtOH) intake. However, the developmental trajectory of these neurons remained unexamined. Expression of the cocaine- and amphetamine-regulated transcript (CART), which co-localizes with Ucn 1 in the perioculomotor area (pIII) has been examined prenatally, but not postnatally. The goal of the current study was to characterize the ontogenetic profile of Ucn 1 and CART during postnatal development in C57BL/6J (B6) mice. B6 mice were bred, and brains were collected at postnatal days (PND) 1, 4, 8, 12, 16, 24 and 45. Brightfield immunohistochemical staining for Ucn 1 and CART showed that Ucn 1-immunoreactivity (ir) was absent at PND 1, while CART-ir was already apparent in pIIIu at birth, a finding indicating that although the pIIIu neurons have already migrated to their adult position, Ucn 1 expression is triggered in them at later postnatal stages. Ucn 1-ir gradually increased with age, approaching adult levels at PND 16. This developmental profile was confirmed by double-immunofluorescence, which showed that Ucn 1 was absent in CART-positive cells of pIII at PND 4 and that Ucn 1 and CART are strongly but not completely co-localized in pIII at PND 24. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis confirmed that Ucn 1 mRNA levels are significantly lower at PND 4 and PND 12 than in adult animals. The lack of brain Ucn 1 immunoreactivity at birth and the gradual postnatal increase in Ucn 1 in pIIIu suggests that this peptide plays a greater behavioral role in adulthood than during the early postnatal development of an organism.
Vez Repunte-Canonigo, Fulvia Berton, Pietro Cottone, Anne Reifel-Miller, Amanda J. Roberts, Marisela Morales, Walter Francesconi, and Pietro Paolo Sanna. “A potential role for adiponectin receptor 2 (AdipoR2) in the regulation of alcohol intake.” Brain research, 1339, Pp. 11–17. Publisher's Version Abstract
The anterior cingulate cortex (ACC) has been implicated in alcohol and drug addiction. We recently identified the small G protein K-ras as an alcohol-regulated gene in the ACC by gene expression analysis. We show here that the adiponectin receptor 2 (AdipoR2) was differentially regulated by alcohol in the ACC in a K-ras-dependent manner. Additionally, withdrawal-associated increased drinking was attenuated in AdipoR2 null mice. Intracellular recordings revealed that adiponectin increased the excitability of ACC neurons and that this effect was more pronounced during alcohol withdrawal, suggesting that AdipoR2 signaling may contribute to increased ACC activity. Altogether, the data implicate K-ras-regulated pathways involving AdipoR2 in the cellular and behavioral actions of alcohol that may contribute to overactivity of the ACC during withdrawal and excessive alcohol drinking.
Brittany D. M. Hodges and Christine C. Wu. “Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets.” Journal of Lipid Research, 51, 2, Pp. 262–273. Abstract
Cytoplasmic lipid droplets (CLDs) are cellular structures composed of a neutral lipid core surrounded by a phospholipid monolayer of amphipathic lipids and a variety of proteins. CLDs have classically been regarded as cellular energy storage structures. However, recent proteomic studies reveal that, although many of the proteins found to associate with CLDs are connected to lipid metabolism, storage, and homeostasis, there are also proteins with no obvious connection to the classical function and typically associated with other cellular compartments. Such proteins are termed refugee proteins, and their presence suggests that CLDs may serve an expanded role as a dynamic protein storage site, providing a novel mechanism for the regulation of protein function and transport.
Santiago E. Farias, Kelli G. Kline, Jacek Klepacki, and Christine C. Wu. “Quantitative improvements in peptide recovery at elevated chromatographic temperatures from μLC/MS analyses of brain using SRM mass spectrometry.” Analytical chemistry, 82, 9, Pp. 3435–3440. Publisher's Version Abstract
Elevated chromatographic temperatures are well recognized to provide beneficial analytical effects. Previously, we demonstrated that elevated chromatographic temperature enhances the identification of hydrophobic peptides prepared from enriched membrane samples. Here, we quantitatively assess and compare the recovery of peptide analytes from both simple and complex tryptic peptide matrices using the SRM mass spectrometry. Our study demonstrates that elevated chromatographic temperature results in significant improvements in the magnitude of peptide recovery for both hydrophilic and hydrophobic peptides from both simple and complex peptide matrices. Importantly, the analytical benefits for quantitative measurements in whole mouse brain matrix are demonstrated, suggesting broad utility in the proteomic analyses of complex mammalian tissues. Any improvement in peptide recovery from chromatographic separations translates directly to the apparent sensitivity of downstream mass analysis in μLC-MS/MS based proteomic applications. Therefore, the incorporation of elevated chromatographic temperatures should result in significant improvements in peptide quantification as well as detection and identification.

Pages