Thin Film Growth and Analysis

April Hersey
August 15, 2007
Outline

- Background
- Purpose of experiments
- What I did in the lab
- Surface Science Chamber
 - X-ray Photoelectron Spectroscopy
 - Temperature Programmed Desorption
- Chemical Vapor Deposition
- Reflections on the lab
Background

- Computer speed increases with number of transistors per chip
- Transistor size must decrease to fit more transistors on each chip
- Metal interconnects on chips tend to diffuse into transistors; these layers must be separated with diffusion barrier
- Diffusion barrier must be made from more stable material
Purpose

- To find a better diffusion barrier material
- Should have the following properties:
 - prevents diffusion between device layers
 - non-reactive with neighboring device components
 - can be deposited at a low temperature
 - is sufficiently uniform
What I Did in the Lab

- Learned purpose for experiments
- Took data from the surface science chamber using the XPS and TPD processes
- Grew films inside the CVD chamber
- Cut silicon dioxide squares for the CVD chamber
Surface Science Chamber

- Ultra-high vacuum (UHV) chamber
- Cryogenic and diffusion pumps
- Sample manipulator
- Liquid nitrogen sample cooling
- Resistive heating
- Computer and software
X-ray Photoelectron Spectroscopy (XPS)

- X-ray photons sent toward substrate to knock electrons out of their shells (photoelectric effect)
- Electrons are emitted at certain energy levels, depending on what element they came from
- Binding energy is measured to determine what elements are present on surface of substrate

```
electron emission due to the photoelectric effect
```

```
X-rays (photons)
```

```
surface atoms  e-
```
X-ray Photoelectron Spectroscopy (XPS)

Photo-Emitted Electrons (< 1.5 kV) escape only from the very top surface (70 - 110Å) of the sample.

Focused Beam of X-rays (1.5 kV)

Samples are usually solid because XPS requires ultra-high vacuum (<10^-8 torr)

SiO₂ / Si° Sample

Si (2p) XPS signals from a Silicon Wafer

Electron Energy Analyzer (0-1.5kV) (measures kinetic energy of electrons)

Electron Detector (counts the electrons)
X-ray Photoelectron Spectroscopy (XPS)

Ru₃(CO)₁₀(3,5-(CF₃)₂-C₃N₂H₅)

T = 350 °C
T = 300 °C
Temperature Programmed Desorption (TPD)

- Substrate is heated at 7 K/s
- Determines:
 - What temperature molecules desorb from the surface
 - Whether the molecules remain intact or break into fragments

Td = 273 K
Surface Science Chamber

- XPS to make sure surface is clean before experiment
- Sample is moved into dosing position and held at 140 K
- Precursor is released into the chamber for a set period of time
- XPS to determine:
 - the different elements present in the precursor
 - the ratio of those elements in relation to each other
 - how those elements are bonded to one another
- TPD
- XPS to determine how much precursor remains on the surface after TPD
Surface Science Chamber

- Data shows what molecules from the precursor adsorb onto the surface and at what temperature they desorb from the surface.
- Results may determine whether the precursor could be used to grow a film in the CVD chamber.
Chemical Vapor Deposition (CVD)

- Horizontal tube furnace
- Gas lines
- Mass flow controller
- Mechanical pump
- Saturator
- Heating tape
Chemical Vapor Deposition (CVD)

- Substrate, a square of silicon dioxide, is placed in a sample boat and slid into the tube furnace.
- Furnace is set to a certain temperature.
- Pressure is maintained at 0.300 Torr.
- Saturator containing the precursor is heated to a certain temperature; gas lines are heated 10 °C higher than the saturator.
- Precursor is transported to the furnace by argon gas and adsorbs onto the surface of the substrate.
- After set growth period, sample is allowed to cool inside the chamber.
Chemical Vapor Deposition (CVD)

Analysis can suggest:
- Whether a film of precursor can be grown at the set temperature
- Whether precursor and/or reaction products adsorbed onto the substrate
- Uniformity of the film
- Whether the precursor could be used as an effective diffusion barrier
Reflections on the lab

- Less strict lab safety
- Equipment oddities
- Wait time during experiments
- Intriguing subject matter
Thank You

- Alex Demkov
- Dr. John Ekerdt/Ekerdt Group
- Kelly Thom, mentor