

March 26, 2020

COVID-19 Healthcare Demand Projections: Austin, Texas

Remy Pasco*, Xutong Wang*, Michaela Petty, Dr. Zhanwei Du, Dr. Spencer J. Fox, Dr. Michael Pignone, Dr. Clay Johnston, Dr. Lauren Ancel Meyers

CORRESPONDING AUTHOR

Lauren Ancel Meyers The University of Texas at Austin laurenmeyers@gmail.com

*CONTRIBUTED EQUALLY

COVID-19 Healthcare Demand Projections: Austin, Texas

Presented to the city of Austin on March 24, 2020

Remy Pasco*, Xutong Wang*, Michaela Petty, Dr. Zhanwei Du, Dr. Spencer J. Fox, Dr. Michael Pignone, Dr. Clay Johnston, Dr. Lauren Ancel Meyers

Corresponding author: Lauren Ancel Meyers The University of Texas at Austin laurenmeyers@gmail.com

Overview

To support planning by the city of Austin, we analyzed the Austin-Round Rock module of our *US COVID-19 Pandemic Model* to project the number of hospitalizations under four different social distancing scenarios. Note that the results presented herein are based on multiple assumptions about the transmission rate and age-specific severity of COVID-19. There is still much we do not understand about the transmission dynamics of this virus, including the extent of asymptomatic infection and transmission. We update our model inputs on a daily basis, as our understanding of the virus improves. These results do not represent the full range of uncertainty. Rather, they are meant to serve as <u>plausible scenarios</u> for gauging the likely impacts of social distancing measures in the Austin-Round Rock Metropolitan Area.

We are posting these results prior to peer review to provide intuition for both policy makers and the public regarding both the immediate threat of COVID-19 and the extent to which early social distancing measures can mitigate that threat. Our projections indicate that without extensive social distancing measures, the emerging outbreak will quickly surpass healthcare capacity in the region. Although these analyses are specific to the Austin-Round Rock metropolitan area, we expect that the impacts of the mitigation strategies will be qualitatively similar for cities throughout the US.

COVID-19 projections for the five-county Austin-Round Rock MSA with school closures and social distancing

We used our *US COVID-19 Pandemic Model* to simulate COVID-19 epidemics in the Austin-Round Rock Metropolitan Area through mid-August, 2020, assuming the following initial conditions and key parameters:

- Starting condition: March 23, 2020 with 84 infected adults and 18 infected children
- Epidemic doubling time: 4 days
- Reproduction number: 2.2
- Average incubation period: 7.1 days
- Proportion of cases asymptomatic: 17.9%

All other model parameters, including age-specific hospitalization and fatality rates are provided in <u>Appendix 1</u>. The full structure and the <u>Texas component</u> of the US COVID-19 Pandemic Model are described in <u>Appendix 2</u>.

Table 1 and Figures 1-4 summarize results of COVID-19 simulations for the Austin-Round Rock MSA. Each simulation began on March 23 with 102 infectious COVID-19 cases and ended on August 17, 2020. The model structure and parameters are described in <u>Appendix 1</u> and <u>Appendix 2</u>, below.

Table 1. Estimated cumulative COVID-19 cases, hospitalizations, ICU cases, casesrequiring mechanical ventilatory therapy, and deaths for the Austin-Round Rock MCAfrom March 23 through August 17, 2020. The values are medians across 100 stochasticsimulations based on the parameters given in Appendix 1.

Outcomes	No measures	School closure	School closure + 50% social distancing	School closure + 75% social distancing	School closure + 90% social distancing
Cases	1,765,147	1,758,960	1,562,949	689,107	132,415
Hospitalizations	87,501	86,069	61,388	18,056	3,254
ICU	14,659	14,419	10,307	3,040	548
Ventilators	9,773	9,613	6,871	2,026	365
Deaths	10,908	10,542	6,317	1,472	267

Figure 1. Projected COVID-19 cases in the Austin-Round Rock MSA under school closures from March 23 to August 17, 2020 coupled with different degrees of social distancing. The red line projects COVID-19 transmission assuming no interventions. The blue lines show increasing levels of social distancing interventions, from light to dark: school closures plus social distancing interventions that reduce non-household contacts by either 50%, 75% or 90%. Lines and shading indicate the median value and interquartile range across 100 stochastic simulations.

Figure 2. Projected COVID-19 hospitalizations in the Austin-Round Rock MSA under school closures from March 23 to August 17, 2020 coupled with different degrees of social distancing. The red line projects COVID-19 transmission assuming no interventions. The blue lines show increasing levels of social distancing interventions, from light to dark: school closures only or school closures plus social distancing interventions that reduce non-household contacts by either 50%, 75% or 90%. Lines and shading indicate the median value and interquartile range across 100 stochastic simulations. The estimated total daily hospital capacity in the Austin-Round Rock MSA for COVID-19 patients is 4000 beds.

Figure 4. Projected COVID-19 patients requiring mechanical ventilation in the Austin-Round Rock MSA under school closures from March 23 to August 17, 2020 coupled with different degrees of social distancing. The red line projects COVID-19 transmission assuming no interventions. The blue lines show increasing levels of social distancing interventions, from light to dark: school closures only or school closures plus social distancing interventions that reduce non-household contacts by either 50%, 75% or 90%. Lines and shading indicate the median value and interquartile range across 100 stochastic simulations. The estimated total number of ventilators available in the Austin-Round Rock MSA for COVID-19 patients is 750.

Figure 5. Projected cumulative COVID-19 deaths in the Austin-Round Rock MSA under school closures from March 23 to August 17, 2020 coupled with different degrees of social distancing. The red line projects COVID-19 transmission assuming no interventions. The blue lines show increasing levels of social distancing interventions, from light to dark: school closures only or school closures plus social distancing interventions that reduce non-household contacts by either 50%, 75% or 90%. Lines and shading indicate the median value and interquartile range across 100 stochastic simulations.

Appendix 1

Scenario specifications

Table A1.1 Initial conditions, school closures and social distancing policies

Variable	Settings
Initial day of simulation	3/23/2020
Initial infection number in locations	102 symptomatic cases distributed proportional to population in 5-year olds and older
Trigger to close school	3/14/2020
Closure Duration	Until start of 2020-2021 school year (8/17/20)
a: Reduction of non-household contacts (work and other)	Four scenarios: 0%, 50%, 75%, 90%
Age-specific and day-specific contact rates	Home, work, other and school matrices provided in Tables A.3-A.6 Normal weekday = home + work + other + school Normal weekend = home + other Normal weekday holiday = home + other Social distancing weekday = home + (1-a)*(work + other) Social distancing weekend = home + (1-a)*(other) Social distancing weekday holiday = home + (1-a)*(other)

Table A1.2 Model parameters. Values given as five-element vectors are age-stratified with values corresponding to 0-4, 5-17, 18-49, 50-64, 65+ year age groups, respectively.

Parameters Best guess values		Source
R _o	2.2	[1]
δ : doubling time	4 days	[2]

Λ : growth rate	0.1733	$\Lambda = \frac{\ln(2)}{\delta}$	
Serial interval	6.92 days	$\frac{R_0 - 1}{\Lambda}$	
eta : transmission rate	0.02599555	Fitted to obtain specified R_0 given δ	
γ_A : recovery rate on asymptomatic compartment	Equal to γ_Y		
γ_Y : recovery rate on symptomatic non-treated compartment	$\frac{1}{\gamma_Y} \sim \text{Triangular}(21.2, 22.6, 24.4)$	[3]	
au : symptomatic proportion (%)	82.1	[4]	
σ : exposed rate	$\frac{1}{\gamma_Y} \sim \text{Triangular}(21.1, 22.6, 24.4)$	[5]	
<i>P</i> : proportion of pre-symptomatic (%)	12.6	[6]	
ω_E : relative infectiousness of infectious individuals in compartment E	$\omega_E = \frac{\left(\frac{YHR}{\eta} + \frac{1 - YHR}{\gamma_Y}\right)\omega_Y \sigma P}{1 - P}$		
ω_A : relative infectiousness of infectious individuals in compartment I ^A	0.4653	Set to mean of ω_E	
<i>IFR</i> : infected fatality ratio, age specific (%)	Low risk: [0.0016, 0.0049, 0.084, 1.000, 3.371] High risk: [0.0016, 0.0049, 0.084, 1.000, 3.371]	Age adjusted from [3]	

<i>h</i> : high-risk proportion, age specific (%)	[8.2825, 14.1121, 16.5298, 32.9912, 47.0568]	CDC
<i>rr</i> : relative risk for high risk people compared to low risk in their age group	10	Assumption
School calendar (2019-2020)	AISD	Published calendar of the Austin Independent School District
Hospitalizati	on Parameters	
γ_H : recovery rate in hospitalized compartment	0.0714286	14-day average from admission to discharge. Assumption
YHR: symptomatic case hospitalization rate (%)	Low risk: [0.0279, 0.0215, 1.3215, 2.8563, 3.3873] High risk: [0.2791, 0.2146, 13.2154, 28.5634, 33.8733]	Age adjusted from [3]
π : rate of symptomatic individuals go to hospital, age-specific	$\pi = \frac{\gamma_Y * YHR}{\eta + (\gamma_Y - \eta)YHR}$	
η : rate from symptom onset to hospitalized	0.01695	5.9 day average from symptom onset to hospital admission [7]
μ : rate from hospitalized to death	0.0892857	11.2 day average from hospital admission to death [8]
<i>HFR</i> : hospitalized fatality ratio, age specific (%)	Low risk: [4, 12.365, 3.122, 10.745, 23.158] High risk: [4, 12.365, 3.122, 10.745, 23.158]	$HFR = \frac{IFR}{YHR(1-\tau)}$ $HFR_l = \frac{HFR}{1+(rr-1)*h}$ $HFR_h = rr*HFR_l$
ν : death rate on hospitalized	Low risk: [0.0390, 0.1208, 0.0304, 0.1049, 0.2269]	$\nu = \frac{\gamma_H HFR}{\mu + (\gamma_H - \mu)HFR}$

individuals, age specific	High risk: [0.0390, 0.1208, 0.0304, 0.1049, 0.2269]	
<i>ICU</i> : proportion hospitalized people in ICU	[0.15, 0.20, 0.15, 0.20, 0.15]	CDC planning scenarios (based on US seasonal flu data)
<i>Vent</i> : proportion of individuals in ICU needing ventilation	$\left[\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right]$	Assumption
<i>d_{ICU}</i> : duration of stay in ICU	10 days	Assumption, set equal to duration of ventilation
d_V : duration of ventilation	10 days	Assumption

 Table A1.3 Home contact matrix.
 Daily number contacts by age group at home.

	0-4y	5-17y	18-49y	50-64y	65y+
0-4y	0.5	0.9	2.0	0.1	0.0
5-17y	0.2	1.7	1.9	0.2	0.0
18-49y	0.2	0.9	1.7	0.2	0.0
50-64y	0.2	0.7	1.2	1.0	0.1
65y+	0.1	0.7	1.0	0.3	0.6

 Table A1.4 School contact matrix.
 Daily number contacts by age group at school.

	r	r	1	r	r
	0-4y	5-17y	18-49y	50-64y	65y+
0-4y	1.0	0.5	0.4	0.1	0.0
5-17y	0.2	3.7	0.9	0.1	0.0
18-49y	0.0	0.7	0.8	0.0	0.0
50-64y	0.1	0.8	0.5	0.1	0.0
65y+	0.0	0.0	0.1	0.0	0.0

	0-4y	5-17y	18-49y	50-64y	65y+
0-4y	0.0	0.0	0.0	0.0	0.0
5-17y	0.0	0.1	0.4	0.0	0.0
18-49y	0.0	0.2	4.5	0.8	0.0
50-64y	0.0	0.1	2.8	0.9	0.0
65y+	0.0	0.0	0.1	0.0	0.0

Table A1.5 Work contact matrix. Daily number contacts by age group at work.

 Table A1.6 Others contact matrix.
 Daily number contacts by age group at other locations.

	0-4y	5-17y	18-49y	50-64y	65y+
0-4y	0.7	0.7	1.8	0.6	0.3
5-17y	0.2	2.6	2.1	0.4	0.2
18-49y	0.1	0.7	3.3	0.6	0.2
50-64y	0.1	0.3	2.2	1.1	0.4
65y+	0.0	0.2	1.3	0.8	0.6

Appendix 2

Model of COVID-19 Transmission in the Austin-Round Rock MSA

The model consists of the following components, with links to data tables:

- Population structure within Austin Round-Rock metropolitan area:
 - Population sizes of 5 distinct age groups within each node (0-4, 5-17, 18-49, 50-64, and 65+) based on 2017 American Community Survey 5-Year Data [9] (Figure A1.3).

Figure A1.3. Demographic and risk composition of the Austin-Round Rock population. Bars indicate age-specific population sizes, separated by low risk, high risk, and pregnant. High risk is defined as individuals with cancer, chronic kidney disease, COPD, heart disease, stroke asthma, diabetes, HIV/AIDS, and morbid obesity, as estimated from the CDC 500 Cities Project [16], reported HIV prevalence [17] and reported morbid obesity prevalence [18,19], corrected for multiple conditions. The population of pregnant women is derived using the CDC's method combining fertility, abortion and fetal loss rates [20–22].

- School calendar: Assume published calendar for <u>Austin Independent School</u> <u>District</u>.
- Contact matrices (Tables A1.3-A1.6). Ref. [14] provides contact rates for the United States derived from population-based contact diaries in eight European

countries from the POLYMOD study [15]. The original POLYMOD data was used to estimate age and location specific contact patterns, which were then extrapolated to other countries based on the similarity to the original countries using demographic and household structure information, as well as school participation and workforce enrollment. The rates are broken down by age group (0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-75, 75+) and by type of contact (at home, work, school and other locations). Then each location specific contact matrix was aggregated into the 5 age groups used in our model, using US population in each of those age groups. We classify days into four categories and used these reported values to estimate the corresponding contact matrices as follows:

- <u>Weekdays when school is in session</u>: All reported contacts
- Weekdays during school holidays: All reported contacts except those occurring in school
- <u>Weekdays during social distancing</u>: All reported contacts except those occurring in school and a specified fraction of those occurring outside of home.
- <u>Weekends</u>: All reported contacts except those occurring in school and work.
- Epidemiological dynamics. Disease transmission within Austin-Round-Rock MSA is governed by an age- and risk-stratified SEIR model that incorporates the school calendar and implements school closures as changes to age-specific contact rates (Figure A2.2).
 - Subpopulations are defined by age group *a* and risk group *r*
 - Each subpopulation is split into epidemiological compartments: susceptible, exposed, asymptomatic, symptomatic, hospitalized, recovered, and deceased.

Figure A2.2. Diagram of compartmental model of COVID-19 transmission within the Austin-Round Rock MSA. Each subgroup (defined by age class and risk group) is modeled with a separate set of compartments. Upon infection, susceptible individuals (S) progress to exposed (E) where they are pre-symptomatic and possibly infectious and then to either symptomatic infectious (I^{Y}) or asymptomatic infectious (I^{A}). All asymptomatic cases eventually progress to a recovered class where they remain permanently protected from future infection (R); symptomatic cases are either hospitalized (I^{H}) or recover. Influenza mortality (D) varies by population subgroup and is assumed to be preceded by hospitalization. We model stochastic transitions between compartments using the τ -leap method [80,81] with key parameters given in <u>Appendix 1</u>.

- Force of Infection.
 - The *within-node force of infection* for susceptible people in group of *i*, *a*, *r* is given by

$$\Upsilon_{i,a,r} = \sum_{g \in G} \sum_{k \in K} (E_{i,g,k}\omega_E + I_{i,g,k}^Y \omega_Y + I_{i,g,k}^A \omega_A) \beta_i \phi_{a,g} / N_{i,g}$$

where *G* and *K* indicates all possible age groups and risk groups, respectively. All other variable and parameter symbols are defined in Table 2.1.

Texas and US COVID-19 Pandemic Models

The Austin-Round Rock MSA COVID-19 model is one component of a national COVID-19 model built by the University of Texas at Austin which includes 217 metropolitan areas across the US. The model contains 22 metropolitan areas in Texas (Figure A2.3) that can be analyzed individually or at the state level.

Figure A2.3. Texas cities and metropolitan areas included in the US COVID-19 Pandemic Model. The Austin-Round Rock module covers five counties: Bastrop, Caldwell, Hays, Travis, and Williamson and 57 cities/towns (Table A.1).

References

- Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020. doi:10.1056/NEJMoa2001316
- 2. Kraemer MUG, Yang C-H, Gutierrez B, Wu C-H, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. medRxiv. 2020. Available: https://www.medrxiv.org/content/10.1101/2020.03.02.20026708v1
- Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of COVID-19 disease. Epidemiology. medRxiv; 2020. doi:10.1101/2020.03.09.20033357
- 4. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the Asymptomatic Proportion of 2019 Novel Coronavirus onboard the Princess Cruises Ship, 2020. Infectious Diseases (except HIV/AIDS). medRxiv; 2020. doi:10.1101/2020.02.20.20025866
- Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020. doi:10.7326/M20-0504
- 6. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. The serial interval of COVID-19 from publicly reported confirmed cases. Epidemiology. medRxiv; 2020.

doi:10.1101/2020.02.19.20025452

- 7. Tindale L, Coombe M, Stockdale JE, Garlock E, Lau WYV, Saraswat M, et al. Transmission interval estimates suggest pre-symptomatic spread of COVID-19. Epidemiology. medRxiv: 2020. doi:10.1101/2020.03.03.20029983
- 8. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. The Novel Coronavirus, 2019-nCoV, is Highly Contagious and More Infectious Than Initially Estimated. Epidemiology. medRxiv; 2020. doi:10.1101/2020.02.07.20021154
- 9. US Census Bureau. American Community Survey (ACS). [cited 19 Nov 2019]. Available: https://www.census.gov/programs-surveys/acs
- 10. OST_R | BTS | Transtats. [cited 31 Jan 2020]. Available: https://www.transtats.bts.gov/tables.asp?Table ID=288&SYS Table Name=T MASTER CORD
- 11. US Census Bureau. 2011-2015 5-Year ACS Commuting Flows. [cited 21 Jan 2020]. Available: https://www.census.gov/data/tables/2015/demo/metro-micro/commuting-flows-2015.html
- 12. United States School Calendar 2020 PublicHolidays.us. In: PublicHolidays.us [Internet]. [cited 1 Mar 2020]. Available: https://publicholidays.us/school-holidays/
- 13. NYC School Calendar 2019-2020, Available: https://www.schools.nyc.gov/docs/default-source/default-document-library/school-calendar-2019-2020
- 14. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017;13: e1005697.
- 15. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5: e74.
- 16. 500 Cities Project: Local data for better health | Home page | CDC. 5 Dec 2019 [cited 19] Mar 2020]. Available: https://www.cdc.gov/500cities/index.htm
- 17. for Disease Control C, Prevention, Others. HIV surveillance report. 2016; 28. URL: http://www.cdc.gov/hiv/library/reports/hiv-surveil-lance.html Published November. 2017.
- 18. Sturm R, Hattori A. Morbid obesity rates continue to rise rapidly in the United States. Int J Obes . 2013;37: 889-891.
- 19. Morgan OW, Bramley A, Fowlkes A, Freedman DS, Taylor TH, Gargiullo P, et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. PLoS One. 2010;5: e9694.
- 20. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final Data for 2017. Natl Vital Stat Rep. 2018;67: 1–50.
- 21. Jatlaoui TC, Boutot ME, Mandel MG, Whiteman MK, Ti A, Petersen E, et al. Abortion

Surveillance - United States, 2015. MMWR Surveill Summ. 2018;67: 1–45.

22. Ventura SJ, Curtin SC, Abma JC, Henshaw SK. Estimated pregnancy rates and rates of pregnancy outcomes for the United States, 1990-2008. Natl Vital Stat Rep. 2012;60: 1–21.