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Abstract
Microbial responses to climate change will partly 
control the balance of soil carbon storage and 
loss under future temperature and precipitation 
conditions. We propose four classes of response 
mechanisms that can allow for a more general 
understanding of microbial climate responses. We 
further explore how a subset of these mechanisms 
results in microbial responses to climate change 
using simulation modelling. Specifically, we incor-
porate soil moisture sensitivity into two current 
enzyme-driven models of soil carbon cycling and 
find that moisture has large effects on predictions 
for soil carbon and microbial pools. Empirical 
efforts to distinguish among response mechanisms 
will facilitate our ability to further develop models 
with improved accuracy.

Introduction
There is twice as much carbon in soils as in the 
atmosphere ( Jenkinson et al., 1991), making 
below-ground responses to climate change an 
important aspect of ecosystem responses and 
feedbacks to climate. Nevertheless, below-ground 
responses to climate change remain a large source 
of uncertainty (Solomon et al., 2007), such that 
earth system models poorly predict current soil 
carbon pools (Todd-Brown et al., 2013). This is 
probably due, in part, to historical assumptions of 
purely abiotic controls of soil carbon cycling and 
the lack of a strong mechanistic framework for how 
soil microbes respond to environmental change 
and the resulting impacts on the fate of soil carbon 
(Chapin III et al., 2009; Ogle et al., 2010).

Soil respiration is the main pathway for the trans-
fer of carbon from terrestrial to atmospheric pools 

(Schlesinger and Andrews, 2000). Soil microbes 
may also make a larger contribution to the build-
ing of soil organic carbon than previously thought 
(Kindler et al., 2006; Liang and Balser, 2008, 2011; 
Potthoff et al., 2008). For example, mycorrhizal 
fungi can be the dominant pathway through which 
carbon from plants enters the soil pool, with hyphal 
turnover representing ~60% of soil organic matter 
inputs and the remaining ~40% due to fine root 
turnover and leaf litter (Godbold et al., 2006). 
Furthermore, the type of mycorrhizal fungus can 
determine soil carbon: Averill et al. (2014) found 
that ecosystems dominated by plants colonized by 
ectomycorrhizal fungi stored 70% more soil carbon 
per unit nitrogen than ecosystems dominated by 
plants associated with arbuscular mycorrhizal 
fungi. Thus, the effects of climate change on the 
activity and physiology of the soil microbes will 
partly determine what proportion of annual soil 
carbon input is respired versus stored in the long-
term reservoir of soil organic carbon (Chapin III et 
al., 2002).

Shifts in microbial community composition, 
abundance and function have been observed in 
climate change experiments manipulating tem-
perature, precipitation, carbon dioxide and their 
interactions (e.g. Castro et al., 2010; Cheng et al., 
2012; Harper et al., 2005; Hawkes et al., 2011; 
Horz et al., 2004, 2005; Lindberg et al., 2002; 
Liu et al., 2009; Staddon et al., 2003; Zogg et al., 
1997). Although results appear to be site specific, 
some broader patterns can be gleaned from meta-
analyses. Based on 32 experimental temperature 
manipulations, warming increased soil respiration 
by 20% and net nitrogen mineralization by 46% 
(Rustad et al., 2001). Blankinship et al. (2011) 
analysed 75 experimental climate studies and found 
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that bacteria decreased in response to warming, 
fungi increased in response to altered precipitation, 
and total microbial biomass increased with elevated 
carbon dioxide (Blankinship et al., 2011); however, 
these groups were represented by as few as two 
studies, so more work is needed to confirm the 
generality of their responses.

The mechanisms regulating process rates in 
below-ground ecosystems are complex, lend-
ing these systems a high potential for varied and 
seemingly idiosyncratic empirical behaviour 
(May, 1976). To usefully integrate empirical data 
into even more complicated regional and global 
modelling, below-ground observations must 
be systematized by comparison with simplified 
mathematical representations. There exists a long 
history of terrestrial ecosystem modelling, includ-
ing below-ground process modelling, but only 
recently have these addressed variation in microbial 
functioning (e.g. Allison, 2012; Allison et al., 2010; 
Orwin et al., 2011; Wang et al., 2014; Waring et al., 
2013; Wieder et al., 2013). Furthermore, the role of 
water in regulating process rates has received com-
paratively little attention relative to mass-balance 
and nutrient-driven approaches.

In this chapter, we focus on how soil microbes 
respond to changes in soil moisture, which is a 
primary controller of soil microbial activity, but 
remains poorly understood relative to other factors 
such as temperature. We first provide an overview 
of what is known about microbial responses to 
changes in moisture availability, review micro-
bial mechanisms that are likely to be important 
for improving our understanding of microbial 
responses, and discuss the current state of microbial 
and ecosystem models, In addition, as a demon-
stration of the potential relevance of moisture to 
microbial function, we integrate moisture functions 
into two microbial process models.

Microbial responses to altered 
soil moisture
The magnitude and shape of microbial functional 
responses to soil moisture will directly affect ecosys-
tem responses, as well as how we model microbial 
process responses to climate change. Water is a 
primary controller of soil microbial activity (Liu 
et al., 2009), limiting both soil respiration and 
enzyme activities. However, microbial responses to 

moisture can be highly variable. Water availability 
can act as a resource that limits microbial processes 
(either directly or by limiting nutrient acquisition), 
such that microbial responses to water might be 
linear or at least monotonic. Yet because both too 
little and too much water can act as stressors for 
soil microbes (Davidson et al., 2012; Schimel et al., 
2007; Stark and Firestone, 1995), we might also 
find non-linear, threshold and/or non-monotonic 
responses of microbial communities to water avail-
ability (e.g. Curiel-Yuste et al., 2007).

Broad consistency in microbial functional 
responses to moisture should allow for microbe-
driven soil carbon processes to acclimatize given 
a change in precipitation regime, and lead to 
straightforward predictions based on water avail-
ability. Manzoni et al. (2011) found that the lower 
moisture limit for microbial activity was consistent 
across 15 studies, probably representing universal 
constraints on solute diffusion and dehydration 
tolerance. However, individual microbial taxa have 
unique physiological response curves to moisture, 
including both specialist and generalist strategies 
(Lennon et al., 2012). Therefore, we may be able 
to generalize the lower endpoint of microbial mois-
ture responses, but we also expect variability in 
responses to increasing moisture and its upper 
limits. The challenge is then to understand the 
distribution of variability in microbial moisture 
responses and whether/how it influences aggregate 
function.

Microbial moisture responses that are specific to 
biomes, ecosystems, habitats, microbial functional 
groups, or taxa could lead to historical contingen-
cies that modify how functions such as respiration 
respond to a change in precipitation regime. In 
this scenario, predictive models might require 
modifications based on local factors. For example, 
soil microbial responses may fundamentally differ 
between arid and mesic regions, because arid 
soils are expected to be dominated by fungi, have 
higher potential decomposition (particularly of 
recalcitrant material), and have greater decoupling 
of plant and microbial activities (Collins et al., 
2008). Similarly, regions with a longer history of 
drought may have a reduced capacity to respond to 
water based on both climate change experiments 
and lab tests of soils exposed to different periods of 
drought (Evans and Wallenstein, 2012; Göransson 
et al., 2013; Meisner et al., 2013a). More complex 
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scenarios may impede our ability to make accurate 
predictions for soil functional responses to climate 
change.

An additional key to considering microbial 
moisture responses is the dynamic distribution of 
rainfall. Rainfall punctuated by dry periods results 
in pulses of biological activity that can decouple 
plant and microbial processes (Collins et al., 2008). 
Pulsed rainfall distributions may become more 
important in the future given that predictions 
often include larger events and fewer days of rain 
(IPCC, 2007; Jentsch et al., 2007; Jiang and Yang, 
2012; Leung and Gustafson, 2005). Pulsed rain 
events can drive transitions between alternative 
stable states representing high and low microbial 
functioning, and the duration of the pulse events 
may differentially affect fast and slow components 
of the microbial community. Transient rain events 
may contribute disproportionately to soil carbon 
cycling, particularly when microbial responses are 
both rapid and large, or when short-duration rain 
pulses allow older soil carbon pools to be accessed 
(Carbone et al., 2011; Collins et al., 2008; Sala and 
Lauenroth, 1982). In addition, microbial responses 
upon rewetting may outweigh apparent reductions 
in process rates during dry periods, particularly 
if extracellular enzymes are retained in dry soils 
(Schimel et al., 2007). Most studies of microbial 
pulse responses have been in single sites, however, 
and do not provide us with a sufficiently broad 
understanding of these processes.

Microbial response mechanisms
An understanding of the mechanisms underlying 
microbial responses is critical to generalize soil 
microbial contributions to soil carbon cycling and 
other ecosystem functions under future climate 
scenarios. When an environment is altered by a 
press disturbance such as climate change, we can 
observe changes in functions such as soil respira-
tion, enzyme activity, and litter decomposition, but 
often we lack the information necessary to discover 
through what mechanisms those changes occurred. 
Whole-soil, aggregate functional responses result 
from the individual activities of a diverse com-
munity of soil microbes, meaning that different 
mechanisms can be operating simultaneously to 
create the observed function.

Here, we consider four classes of response 

mechanisms that are likely to be at play: physiol-
ogy, community composition, feedbacks, and 
evolution. Traits linking individual physiology 
and performance to environmental conditions will 
lead to species sorting and compositional change 
over gradients (Leibold et al., 2004). Community 
states may also be influenced by dispersal limitation 
combined with landscape connectivity patterns 
(Ehrlen and Eriksson, 2000). In addition, positive 
feedbacks that reinforce alternative stable states 
may override sorting and immigration locally, and 
introduce strong history dependence in community 
responses (Keitt et al., 2001; Scheffer et al., 2001). 
Finally, trait variation owing to evolutionary change 
is yet another mechanism modulating community 
response to environmental change and is perhaps 
the least understood in terms of interactions with 
sorting, migration and positive feedbacks ( Johnson 
and Stinchcombe, 2007). We discuss each of these 
in more detail below.

Microbial physiology
Microbes are often considered to have broad 
physiological capabilities and thus physiological 
acclimatization to environmental change may be 
common. Aggregate functional responses could 
be due to the physiological breadth of individual 
taxa in the community, but alternatively might 
represent the diversity of physiologies among taxa. 
Functional plasticity has been observed in micro-
bial community responses to short-term changes 
in temperature and moisture (Bradford et al., 2010; 
Griffiths et al., 2003; Heinemeyer et al., 2006), 
although this is not always the case (Malcolm et 
al., 2009). Dormancy is another form of plasticity 
that is widespread in soil microbes and can allow for 
avoidance of temporary periods of environmental 
stress such as drought (Lennon and Jones, 2011). 
Resuscitation of dormant taxa can result in rapid 
and predictable functional resilience once condi-
tions improve (Placella et al., 2012). However, 
the success of dormancy strategies in the face of 
climate change will depend on both the persistence 
of dormant propagules and the nature of the new 
environment; for example, long-lived spores will be 
needed to withstand long-term drought.

Even if plasticity is common, however, we might 
expect that microbial responses to altered climate 
might be constrained by local climatic history, with 
larger, more variable, or less predictable responses 



UNCORRECTED PROOF Date: 16:14 Wednesday 12 August 2015
File: Climate Change 1P

Keitt et al.100  |

when outside the range of historical selection pres-
sures. Reciprocal transplants of intact soil cores 
between plant communities support this idea: 
Waldrop (2006) found little change in microbial 
community composition and aggregate function for 
soil cores transplanted from grasslands to beneath 
oak canopies (where environmental conditions 
were entirely within the range normally found in 
grasslands), but observed rapid changes when oak 
canopy cores were transplanted into grasslands 
(where conditions were outside the normal range). 
Understanding the limits of microbial physiological 
plasticity will provide the boundary conditions for 
potential microbial functional responses to altered 
climate.

Microbial community composition
Differences in microbial performance in altered 
environments can lead to shifts in community 
composition either via changes in the relative abun-
dance of taxa already present or dispersal from the 
regional species pool. As the environment shifts, 
some microbial taxa will benefit more than others, 
resulting in changes in dominance and function 
(e.g. Pett-Ridge and Firestone, 2005). Dispersal 
will also provide new immigrant taxa, and species 
sorting should result in the presence of organisms 
best suited to the local environment (Leibold et 
al., 2004). Species sorting has been observed in 
bacterial communities (Hovatter et al., 2011; Van 
der Gucht et al., 2007), but not in protists (Finlay, 
2002). The degree of sorting versus mass effects 
can depend on dispersal, which is often assumed to 
be unlimited in microbes; however, recent studies 
support microbial dispersal limitation (Kivlin et 
al., 2011; Martiny et al., 2011; Öpik et al., 2009) 
and even a high degree of endemism (Cho and 
Tiedje, 2000; Talbot et al., 2014). If there are local 
differences in microbial species pools, empirical 
responses of microbes in experimental climate 
manipulations may be limited by available taxa. 
Many climate change experiments impose drought 
on small plots embedded in an ambient high rain-
fall region, which may lack a regional species pool 
containing drought-adapted individuals if dispersal 
is limited.

Positive feedbacks
When ecosystem states reinforce their own per-
sistence, multiple stable states arise (Beisner et al., 

2003). As an example, in arid rangelands, plants 
can reinforce their own water availability via 
shading and their influence on soils. The result is 
dramatic pattern formation that gives way abruptly 
to collapse under sever water limitation (Rietkerk 
and van de Koppel, 2008). Similar positive feed-
backs could play a role in below-ground microbial 
responses to climate change. Positive reinforcement 
of an existing microbial community may create 
resistance to climate change initially followed by 
a rapid shift or collapse as the degree of change 
grows. Invasion dynamics that could introduce 
change-adaptive varieties into local communities 
can be shutdown by positive feedbacks, sometimes 
referred to as Allee effects, because small founder 
populations cannot survive at low density (Keitt et 
al., 2001). Life history traits of microbes are gen-
erally not consistent with Allee effects; however 
an Allee effect might be observed in the case of 
microbial consortia requiring sufficient densities to 
enable cooperative functioning. Similarly, positive 
feedback may produce frequency dependent com-
petitive asymmetries whereby larger established 
populations cannot be replaced by potentially 
more fit varieties invading at low densities. The net 
effect is a large potential for historical ecosystem 
and community structures to persist under change, 
increasing temporary resistance, but ultimately lim-
iting resilience when an abrupt state shift occurs. 
Historical legacies in microbial function have been 
observed for drought (Evans and Wallenstein, 2012; 
Göransson et al., 2013; Meisner et al., 2013b), but 
do not always occur (Rousk et al., 2013). If positive 
feedbacks dominate in soil microbial communities, 
then historical legacies of past climate may play a 
strong role in how these communities change in the 
future and the resiliency of ecosystem functions.

Evolution
Periodic selective sweeps in microbial populations 
(Koch, 1974; Levin, 1981; Notley-McRobb and Fer-
enci, 2000) suggest the potential for rapid adaptive 
responses to climate change. In the lab, Escherichia 
coli adapted to altered temperature within 2000 
generations (Bennett et al., 1992) and cultured soil 
bacteria appeared to be locally adapted to edaphic 
conditions at the scale of a few metres (Belotte et 
al., 2003). Identifying adaptation outside the lab, 
however, is constrained by our inability to measure 
fitness in complex, highly diverse communities. We 
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are often limited to deducing adaptation through 
aggregate function, which results from the sum of 
traits in the microbial community. Comparisons of 
local and non-local litter decomposition provide 
evidence for functional specialization of microbial 
communities to the environment: microbial com-
munities are generally most efficient at degrading 
litter from plant species growing immediately 
above them, termed the ‘home-field advantage’ 
(e.g. Ayres et al., 2009; Keiser et al., 2014; Strick-
land et al., 2009). The breadth of decomposition 
may also be constrained by resource history if some 
functional strategies are eliminated (Keiser et al., 
2011). Although rapid adaptation represents a 
viable strategy for microbes facing climate change, 
existing specialization may prevent selective sweeps 
(Dykhuizen and Dean, 2004), which could limit 
responses to environmental change.

Current microbial and 
ecosystem models
Microbial contributions to both soil CO2 fluxes 
and carbon pools in a changing climate are likely to 
be substantial and more explicit representation of 
their role could improve the accuracy of ecosystem 
carbon models. Nevertheless, the vast majority of 
ecosystem carbon cycling models do not include 
explicit microbial mechanisms (Chapin III et al., 
2009; Ostle et al., 2009; Treseder et al., 2011) or, 
when microbes are included, all microbial taxa 
are treated as functional equivalents (Lawrence et 
al., 2009). This simplification arises from our his-
torical assumption that high microbial diversity and 
apparently broad distributions equate to ecological 
redundancy (Allison and Martiny, 2008; Torsvik 
et al., 2002). It is clear, however, that there is high 
beta-diversity in both fungi (Kivlin et al., 2011; 
Öpik et al., 2006, 2009, 2010) and bacteria (Fierer 
et al., 2009; Lauber et al., 2009). Such differences 
in microbial community composition can directly 
influence ecosystem process rates (e.g. Fukami et 
al., 2010; Gulledge et al., 1997; Hawkes et al., 2011; 
Strickland et al., 2009).

Even simplified representations of microbial 
community functional groups can improve models. 
In an enzyme-drive biogeochemical model, for 
example, moving from one microbial pool (Schimel 
and Weintraub, 2003) to two pools of fungi and 
bacteria (Waring et al., 2013) significantly improves 

our ability to capture real patterns of carbon 
and nitrogen cycling by including differences in 
physiology between these groups. Other exam-
ples of microbial functional groups include active 
versus dormant states (Blagodatsky and Richter, 
1998; Hunt, 1977), generalists versus specialists 
(Moorhead and Sinsabaugh, 2006), decomposers 
of fresh litter versus soil organic matter (Fontaine 
and Barot, 2005), decomposers versus builders 
of soil organic matter (Perveen et al., 2014), and 
ectomycorrhizal versus saprotrophic fungi (Orwin 
et al., 2011).

Current state-of-the-art soil carbon models have 
adopted explicit representation of extracellular 
enzyme activities as a key factor influencing decom-
position (Allison et al., 2010; Wang et al., 2013). 
The major innovation of these efforts is dynamically 
modelling enzyme pools and their influence on 
microbial carbon uptake through regulation of the 
rate of soil carbon conversion to dissolved organic 
carbon. For example, Wieder et al. (2013) recently 
modified the Community Land Model (Lawrence 
et al., 2011; Oleson et al., 2010) by adding microbial 
biomass pools and decomposition via enzyme-
driven, temperature-dependent Michaelis–Menten 
kinetics, including above-ground, surface, and 
subsurface soil horizons. In doing so, they were 
able to explain 50% of the variation in global soil 
carbon pools, approximately a 20% improvement 
compared with traditional carbon models (Wieder 
et al., 2013). Other existing models differ primarily 
in the degree of detail and realism in representing 
different carbon states (e.g. Allison, 2012; Allison et 
al., 2010; Wang et al., 2013).

While these models explicitly include effects 
of temperature on process rates, they typically do 
not consider effects of soil moisture. The lack of 
soil moisture effects limits model applicability to 
forecasting, as it is known that soil moisture is a sig-
nificant factor influencing both microbial and soil 
carbon dynamics (e.g. Bontti et al., 2009; Carbone 
et al., 2011; Curiel-Yuste et al., 2007; Inglima et al., 
2009; Lellei-Kovács et al., 2011). An exception is 
the dual Arrhenius Michaelis–Menten (DAMM) 
model of Davidson et al. (2012). The DAMM 
model includes both temperature and soil moisture 
effects to predict soil respiration. The current ver-
sion of DAMM is not a dynamic state model, but it 
does define key rate functions that can be included 
in a dynamic process model.
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There are other direct and indirect effects on 
soil microbes that might affect microbial responses 
to climate change and thus potentially improve 
model predictions. Chapin et al. (2009) point out 
that partitioning of carbon into roots, mycorrhizas, 
and exudates, as well as their effects on respiration 
and soil organic carbon, remain unknown for any 
ecosystem, despite these carbon pools having very 
different residence times and potential climate 
change responses. Mycorrhizas may increase soil 
organic carbon by hyphal aggregation of soil par-
ticles (Rillig and Mummey, 2006; Wilson et al., 
2009) or reduce carbon pools via hyphal respira-
tion under some climate change scenarios (Hawkes 
et al., 2008). Priming effects may occur in response 
to an increase in labile carbon exudates resulting 
in depletion of soil organic carbon pools, although 
the magnitude is soil-specific (Blagodatskaya and 
Kuzyakov, 2008; Paterson and Sim, 2013). Finally, 
trophic interactions are likely to be important, 
despite similar responses of soil fauna to different 
climate change factors in experimental settings 
(Blankinship et al., 2011). Although we do not 
address these further here, these effects likely war-
rant further consideration.

Integrating moisture into 
microbial carbon cycling models
As a first step towards integrating soil moisture into 
decomposition models, we have fused the DAMM 
model of Davidson et al. (2012) with two enzyme-
based, temperature-dependent soil carbon cycling 
models to produce models where rates depend on 
both soil moisture and soil temperature (Fig. 7.1). 
Specifically, we focus on the models developed by 
Allison et al. (2010) and Wang et al. (2013), here-
after referred to as the AWB and MEND models, 
respectively. While we believe that soil moisture 
could have complex effects throughout the models, 
we integrate the models initially by substituting 
available dissolved organic carbon, as computed 
in the DAMM model, for the particulate dissolved 
organic carbon pool used in the AWB and MEND 
models. Additionally, we incorporate oxygen 
limitation by adding an additional oxygen-driven 
Michaelis–Menten term to the microbial biomass 
growth equation. The MEND model differs slightly 
in how temperature enters into the model, but is 
otherwise similar to the AWB model, except for 

splitting particulate organic carbon pool into three 
different pools and the inclusion of adsorption-
desorption dynamics.

The integration of the models generates an initial 
set of four model–hypotheses to be compared and 
confronted with data: AWB (unmodified), MEND 
(unmodified), AWB–DAMM, and MEND–
DAMM. Our initial merger of these models does 
not explicitly include oxygen uptake dynamics. 
We expect, however, that we can ignore the oxygen 
limitation term from the DAMM model as it will 
have a relatively small impact in arid ecosystems 
that are the focus of this initial effort. However, we 
also acknowledge that oxygen limitation may be 
large during extreme wetting events. In ecosystems 
where empirical validation suggests the inclusion 
of explicit oxygen dynamics, this should be intro-
duced as a state variable.

Enzyme-driven models with 
sensitivity to temperature and 
soil moisture
Carbon exists in many forms in soils (Robertson et 
al., 1999). Newer models of soil carbon dynamics 
more finely divide pools, explicitly model biological 
feedbacks, and use more realistic uptake kinetics. 
A key factor regulating rates of carbon flux in soils 

Figure 7.1  Carbon pools and fluxes in the AWB-
DAMM model. Symbols are I = carbon input, 
P = particulate carbon, D = dissolved carbon, 
M = microbial biomass, E = enzymes, V = volumetric 
soil moisture, O2 = oxygen and T = temperature. 
Dashed lines indicate effects on rates. Dashed 
circles represent boundary conditions. The MEND-
DAMM model is analogous but with the phosphorus 
pool divided into three separate pools and the E-pool 
divided into two separate pools.
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is enzymatic catalysis involved in the breakdown 
of particulate organic carbon into biologically 
available dissolved organic carbon (Schimel and 
Weintraub, 2003). Soil microbes produce extracel-
lular enzymes that react with particulate carbon to 
produce soluble carbon, which can then be con-
sumed. The extracellular enzymes are themselves a 
pool of dissolved organic carbon and contribute to 
the overall soil carbon budget.

Allison et al. (2010) developed an extracellular 
enzyme-driven model of soil carbon (AWB). The 
model is not a full ecosystem model but captures in 
a simplified way the essential details of the enzyme-
driven particulate-to-dissolved carbon pathway. 
The model includes four carbon pools: particulate 
organic carbon (P), dissolved organic carbon (D), 
microbial biomass (M) and extracellular enzymes 

(E). The AWB model is given by the following 
system of equations (Equations 7.1 to 7.4) (sym-
bols defined in Table 7.1):

dP
dt
= I p+ 1−α( )δM−ν1

P
K1+P

⎛

⎝
⎜

⎞

⎠
⎟E � (7.1)

dD
dt
= ID+ αδ−ν2

D
K2 +D

⎛

⎝
⎜

⎞

⎠
⎟M+ ν1

P
K1+P

+r1
⎛

⎝
⎜

⎞

⎠
⎟E

(7.2)

dM
dt

= εν2
D

K2 +D
−δ−r2

⎛

⎝
⎜

⎞

⎠
⎟M � (7.3)

dE
dt

r M r E2 1= − � (7.4)

The AWB model is sensitive to temperature, which 

Table 7.1  Symbols used in the AWB–DAMM model
Variable Description Units Default value

P Particulate organic carbon mg/cm3 111.876
D Dissolved organic carbon mg/cm3 0.00144928
M Microbial biomass mg/cm3 2.19159
E Extracellular enzymes mg/cm3 0.0109579
Ip Input rate of particulate carbon mg/cm3/h 0.0005
ID Input rate of dissolved carbon mg/cm3/h 0.0005
α Soluble fraction of dead microbial matter Dimensionless 0.5
δ Microbe death rate h–1 0.0002
ν1 Maximum rate of conversion from particulate to 

dissolved carbon
h–1 Function of temperature

n2 Maximum dissolved carbon uptake by microbes h–1 Function of temperature
ν́1 Conversion rate scaling constant h–1 108

ν́2 Uptake rate scaling constant h–1 108

K1 Half-saturation of particulate carbon conversion mg/cm3 Function of temperature
K1

I, K1
S Least-squares K1 intercept and slope mg/cm3, mg/cm3/T 500, 5

K2 Half-saturation of dissolved carbon uptake by microbes mg/cm–3 Function of temperature
K2

I, K2
S Least-squares K2 intercept and slope mg/cm3, mg/cm3/T 0.1, 0.01

ε Microbial carbon use efficiency Dimensionless Function of temperature
εI, εS Least-squares CUE intercept and slope Dimensionless, T–1 0.63, −0.016
r1 Rate of enzyme loss h–1 0.001
r2 Enzyme production rate h–1 0.000005
η Dissolved organic carbon diffusion factor Dimensionless 72.3
t Scaling factor for O2 limitation Dimensionless 2.0
V Volumetric soil moisture Dimensionless 0.24
O2 Oxygen concentration l O2/l air Function of soil moisture
K3 Oxygen half-saturation l O2/l air 0.121
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affects both the maximum rates n1 and n2, the half-
saturation coefficients K1 and K2, and carbon-use 
efficiency e. The maximum rates are governed by 
the Arrhenius function: ν1,2 = ́ν1,2e–5653/(T + 273), 
where T is temperature in celsius. The numerator in 
the exponent is derived from the activation energy 
and ideal gas constant. This function captures 
the well-known increase in reaction rates with 
increasing temperature. Temperature effects on 
the half-saturation coefficients and carbon-use effi-
ciency are linear regression functions constructed 
from empirical data: K1 = K1

I + K1
ST, K2 = K2

I + K2
ST 

and ε = εI – εST.
While the AWB model is responsive to tem-

perature, it does not integrate soil moisture effects. 
Changes in soil moisture have multiple potential 
influences on soil carbon dynamics. First, soil 
moisture content is the carrier for dissolved organic 
carbon diffusing though the soil pore space. Hence, 
the rate of microbial uptake of dissolved organic 
carbon is dependent on available soil moisture. A 
second effect is the decreasing rate of gas exchange 
as soil pore space becomes saturated with water. 
Reduced gas exchange can limit aerobic respiration 
of acquired carbon reducing not only microbial bio-
mass, but also production of extracellular enzymes, 
an energetically costly activity. The net effect is to 
shutdown the entire carbon feedback loop at either 
end of the moisture spectrum: lack of liquid trans-
port when dry and lack of oxygen when saturated.

The effect of soil moisture on dissolved organic 
carbon available for microbial uptake and on gas 
exchange is captured in the DAMM model (David-
son et al., 2012). Although not a fully dynamical 
model, the DAMM model framework identifies 
functions to model available carbon and incorpo-
rates soil oxygen content into microbial carbon 
kinetics. Integration of these functions into a com-
bined AWB–DAMM model results in the following 
updated equations (Equations 7.5 and 7.6) for dis-
solved organic carbon and microbial biomass:

dD
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The term ηDV3 models the diffusion of dissolved 
organic carbon to the cell surface where it is avail-
able for uptake. The parameter η is related to the 
diffusivity of dissolved organic carbon. In our 
merged model, η is scaled such that the dissolved 
organic carbon available for uptake is the same as 
in the unmodified AWB model when volumetric 
soil moisture is 24%, the time average of soil mois-
tures from our study sites. The cubic dependence 
of available carbon on soil moisture generates 
a strong limitation to microbial growth at lower 
soil moisture content, a mechanism absent from 
the AWB model. Oxygen concentration is mod-
elled purely as a function of diffusion into the soil 
pore space; microbial consumption is neglected. 
We retain the default values of soil bulk density, 
particle density, gas diffusion and O2 fraction in 
air given in Davidson et al. (2012). With these 
values, the oxygen concentration is calculated as 
O2 = 0.35(0.68 – V)4/3. Similarly to the scaled 
factor h, the parameter t scales the influence of O2 
such that there is no net effect on dissolved carbon 
concentration D when volumetric soil moisture 
is 24%. In the absence of this scaling, it would 
have been necessary to re-parameterize the AWB 
model. With these modifications, we have a model 
sensitive to both soil temperature and moisture 
content.

We also explore adding soil moisture sensitivity 
to the more elaborate enzyme-driven microbial 
MEND (microbial–enzyme-mediated decomposi-
tion) model proposed by Wang et al. (2013). The 
MEND model (Wang et al., 2013) divides the 
three soil carbon pools (enzymes, particulate and 
dissolved) of the AWB model into six separate 
components: (1) particulate and (2) dissolved 
carbon pools as in AWB, (3) an adsorbed-phase 
dissolved carbon pool, (4) a mineral-associated 
carbon pool, and two enzyme pools, (5) one acting 
on particulate carbon and the other (6) acting on 
mineral associated carbon. The MEND model 
gives an unprecedented level of detail in below 
ground carbon dynamics relative to older models 
that divide below-ground pools into labile, recalci-
trant and immobile pools without consideration of 
enzyme dynamics. Wang et al. (2013) demonstrate 
strong differences in carbon kinetics compared 
to these traditional models. We refer the reader 
to Wang et al. (2013) for additional details of the 
model formulation and parameterization.
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We utilized the same approach applied to the 
AWB–DAMM model to merge the MEND model 
with the DAMM model. As in the AWB model 
(Equation 7.7), the MEND model uses Michae-
lis–Menten kinetics to model the rate of microbial 
uptake as a function of dissolved organic carbon 
concentration. Our modification of the MEND 
model uses the dual Michaelis–Menten formulation 
of the DAMM model by making the substitution

D
KD+D

⇒
ηDV 3

K2 +ηDV
3

τO2

K3+O2
� (7.7)

where, again, η and τ are scaled parameters that 
assure a neutral influence on dissolved carbon 
concentration at the mean soil moisture. The half-
saturation coefficient KD is specific to MEND (see 
Wang et al., 2013).

Model simulations with and 
without soil moisture sensitivity 
in wet and dry sites
The models described above primarily allow us to 
consider physiological response mechanisms, as 
well as the potential for alternative stable states (pos-
itive feedbacks). We contrast outputs of the model 
combinations (AWB, AWB–DAMM, MEND, and 
MEND–DAMM) driven by soil moisture and soil 
temperature time series for two locations on the 
Edwards Plateau, TX, USA. A steep precipitation 
gradient is found across the Edwards Plateau, with 
mean annual rainfall ranging from 90 cm in the east 
to 40 cm in the west, decreasing by ~10 cm every 
40–50 km westward. Across this gradient, the plant 
communities are savannah grasslands (McMahan et 
al., 1984) and soils are limestone-derived clay Mol-
lisols (Werchan et al., 1974). In order to analyse the 
potential differences in model outcomes based on 
soil moisture, we have chosen one drier and one 
wetter site from the west and east ends of the gra-
dient as the basis for the simulation. Mean annual 
precipitation at these sites is approximately 500 mm 
and 1000 mm, respectively.

Our soil moisture and temperature time series 
are extracted from the National Centres for Envi-
ronmental Prediction’s (NCEP) reanalysis dataset 
(Kalnay et al., 1996). Reanalysis provides a uniform 
procedure for fusing all available climate data into a 
consistent historical record. A climate model is used 
to integrate data inputs and to produce gridded 

outputs. A stepwise update procedure is utilized to 
force the climate model simulation to conform to 
the historical climate data. As the model computes 
soil climate, it provides a way to obtain soil moisture 
and temperature time series for specific locations. 
Although not the same as direct measurements, the 
modelled reanalysis outputs nonetheless represent 
realistic scenarios constrained to conform to his-
torical climate patterns.

The soil climate time series represented three 
years of moisture and temperature data sampled 
hourly beginning 1 January 2008. Moisture and 
temperature values are for the first 10 cm of soil 
below the surface. Both sites were centred at 30.44° 
north latitude. The dry site was centred on 85.62° 
west longitude. The moist site was centred on 
77.49° west longitude. To make the climate time 
series continuous for integration, we used cubic 
spline interpolation. We used the deSolve package 
(Soetaert et al., 2010) in R (R Development Core 
Team, 2011) to numerically integrate the models. 
Initial conditions were those given in Allison et al. 
(2010) and Wang et al. (2013). For each model we 
ran ten simulations over the climate time series, 
each time initializing the model with the time-aver-
age of the state variables from the previous run. This 
allowed the models to converge to their long-term 
behaviour. Output of the 10th run is shown in Fig. 
7.2 and summarized in Fig. 7.3.

As expected, the moist site showed greater 
soil moisture (Figs. 7.2A and B and 7.3A and B). 
Temperatures were similar between the two sites 
with the dry site showing greater variability. The 
covariance of moisture and temperature is entirely 
different between the two sites with the dry site 
showing warm-season increases in soil moisture, 
likely driven by summer rains, whereas the moist 
site exhibits the greatest soil moisture during the 
winter months. In addition to changes in mean 
values, the dry site shows greater variation, both 
daily and seasonally. Crucially, the dry site com-
monly reaches near-zero soil moisture potentially 
imposing a large reduction in process rates during 
these extreme drying events.

All of the models (Fig. 7.2C–J) showed sea-
sonal variation in microbial biomass driven by 
temperature effects. Microbial biomass peaked in 
late spring or early summer. Similarly, dissolved 
organic carbon fluctuated seasonally in the AWB 
and MEND models (Fig. 7.2C, D, G and H). 
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Fluctuations in dissolved organic carbon were fully 
(AWB) or partially (MEND) out-of-phase with 
peaks in microbial biomass reflecting the uptake 
of dissolved organic carbon by microbes. Inter-
estingly, dissolved organic carbon in the MEND 
model peaks before microbial biomass. This effect is 
likely the result of accelerating soil enzyme activity 
during the spring months and eventual drawdown 
of dissolved organic carbon by microbial uptake 
later in the season.

The most striking result is the dynamics of dis-
solved organic carbon in the AWB–DAMM and 
MEND–DAMM models (Figs. 7.2E, F, I and J and 
7.3D and F). When soil moisture sensitivity is built 
into the model, we see strong fluctuations in dis-
solved carbon, largely shadowing variation in soil 
moisture. Interestingly, we observe a large increase 
in the average concentration of dissolved organic 
carbon in the dry site relative to the moist site for 
the moisture-sensitive models (Figs. 7.2E and I and 

7.3D and F). There is also a marked increase in the 
variance of dissolved organic carbon through time, 
although these fluctuations have relatively minor 
influence on microbial biomass, which turns over 
more slowly and is therefore more buffered. The 
exception is the MEND–DAMM model in the dry 
site (Fig. 7.2I) where the dynamics of both micro-
bial biomass and dissolved organic carbon appear 
to be strongly driven by soil moisture. Although 
some seasonal temperature-driven trends are appar-
ent, finer-scale fluctuations corresponding to rapid 
changes in soil moisture appear to dominate. Unlike 
the other simulations, the MEND–DAMM output 
for the dry site shows strong negative covariance: 
increases in dissolved organic carbon are mirrored 
by decreases in microbial biomass indicated by 
a strong and rapid influence of soil moisture on 
microbial carbon uptake.

We also compared total respiration between the 
models with and without the DAMM modifications. 

Figure 7.2  Comparison of models driven by reanalysis soil temperatures and moistures for a xeric site and 
mesic site. (A and B) Soil moistures and temperatures for the wet and dry sites. Modelled microbial biomass 
(MIC) and dissolved organic carbon (DOC) for (C and D) AWB model, (E and F) the AWB-DAMM model, (G and 
H) the MEND model, and (I-J) the MEND-DAMM model. The time series start on 1 January and spans a three-
year period.
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Interestingly, respiration rates primarily tracked 
temperature and did not differ strongly between 
the models. Again the MEND–DAMM model run 
on the dry site showed the strongest differences in 
respiration rates compared to the model without 
the DAMM modifications. However, the differ-
ences were small and overwhelmed by the seasonal 
temperature-tracking dynamics.

Simulation results and microbial 
mechanisms
Based on our merged models, soil moisture has 
a strong influence on predictions for microbial 
enzyme-mediated ecosystem processes, including 
large differences in carbon pools and pool size vari-
ability between wetter and drier regions. This was 
particularly evident in the dynamics of dissolved 
organic carbon. Moisture is known to be a key factor 

in arid land biogeochemical cycling with pulsed 
rainfall patterns (Collins et al., 2008) and adding 
moisture as a rewetting factor to biogeochemi-
cal models for arid ecosystems can significantly 
improve model performance (Li et al., 2010). 
However, soil moisture is likely to constrain micro-
bial processes more broadly as drought increases 
with climate change and, as noted by Moyano et al. 
(2013), current models are limited approximations 
and substantial work is needed to improve their 
predictive capacity.

Of the four proposed response mechanisms of 
physiology, community composition, feedbacks, 
and evolution, these results are primarily related 
to physiology. Through integration of the DAMM 
model with the AWB and MEND models, we have 
shown how dynamic moisture and temperature 
drivers can influence physiological process rates 
in a transient manner. However, the physiological 

Figure 7.3  Box plot of model outputs. (A) Volumetric soil moisture. (B) Soil temperature. (C) Microbial biomass 
for AWB and AWB–DAMM. (D) dissolved organic carbon for AWB and AWB–DAMM. (E) microbial biomass for 
MEND and MEND-DAMM. (F) dissolved organic carbon for MEND and MEND–DAMM. The four letter codes on 
the x-axis correspond to model (two characters: A_ = AWB, AD = AWB-DAMM, M_ = MEND, MD = MEND-DAMM, 
__ = climate), variable (one character: V = soil moisture, T = temperature, M = microbial carbon, D = dissolved 
carbon) and site (one character: M = moist, D = dry).



UNCORRECTED PROOF Date: 16:14 Wednesday 12 August 2015
File: Climate Change 1P

Keitt et al.108  |

plasticity built into these models may not be real-
istic in situations where environmental history 
constrains responses. For example, a history of 
drought can alter microbial community structure 
(Evans and Wallenstein, 2012), change microbial 
carbon use efficiency (Göransson et al., 2013), 
decouple microbial growth from respiration (Meis-
ner et al., 2013a), and create feedbacks to plant 
communities (Meisner et al., 2013b).

The dynamic nature of soils indicated in the driv-
ing climate time series of the models presented here 
also has bearing on the other mechanisms. A vari-
able environment is a mechanism that can allow for 
coexistence of species in communities (community 
composition mechanism) that would otherwise 
exclude each other through resource competition 
(Chesson, 2000). This variation is at least in part an 
attribute of the physiological rates incorporated into 
our models. Moisture and other climate variation 
may therefore maintain more diverse communities, 
and as a result more resilient communities with 
multiple players than can compensate for losses of 
past dominants when conditions change.

We did not find strong evidence of multiple 
stable states (positive feedback mechanism) for 
the ranges of climate we investigated. Nevertheless, 
sudden changes in dynamics could occur at extremes 
of soil temperature and moisture. We notice, for 
example, a sharp drop in dissolved organic carbon 
in the second cold season (around day 650) cor-
responding to an extreme low temperature event 
that influenced both the wet and dry sites. Whether 
this corresponds to a shift between stable states or a 
more simple transient effect cannot be ascertained 
without additional analysis. However, this observa-
tion suggests the models are capable of rapid shifts 
in response to extremes in climate.

Whether variability in soil climate impacts 
evolution is not directly addressed in the 
modified enzyme-driven models examined here. 
Similar to the community composition mecha-
nism, a variable environment could maintain 
genetic polymorphisms with populations, and this 
genotypic variation could maintain functional phe-
notypic variation lending greater resilience under 
climate change. Evolutionary tradeoffs must cer-
tainly abound in soil microbial systems (Gudelj et 
al., 2010). A key tradeoff is the fast–slow spectrum 
characterized by maximizing rate of reproduction 
at the expense of survivorship versus long lifespan 

with lower fecundity. The observed strong variation 
in dissolved organic carbon – the energy resource 
fuelling microbial population growth – under a 
variable soil moisture regime has bearing on the 
fast-slow tradeoff. Rapid changes in resources 
should favour the fast end of the tradeoff spectrum. 
However a live-fast life history provides little popu-
lation buffer to prolonged or directional changes 
in environment and thus limit resilience to certain 
types of disturbance. Conversely the shorter gen-
eration times on the fast end of the spectrum could 
enable more rapid adaptive evolution and rescue 
populations impacted by major environmental 
changes (Gonzalez and Bell, 2013).

Conclusions and future needs
Here we demonstrate that adding moisture sensi-
tivity to enzyme-driven models of carbon cycling 
changes their outcomes when parameterized for a 
wet and a dry ecosystem located on the same soil 
type. However, these outcomes have not been vali-
dated against field data and the particular moisture 
function that we incorporated may not produce 
the best fit. As ecosystem models become more 
and more sophisticated, we expect discovery of the 
tipping point at which additional realism ceases to 
improve the accuracy of model predictions. For 
example, Talbot et al. (2014) recently found high 
endemism in the fungal communities of North 
American pine forests, but this did not translate into 
local variation in enzymes, suggesting a high degree 
of functional redundancy. Distinguishing among 
physiological, compositional, and other microbial 
mechanisms will help us to generalize expectations 
across ecosystems. Linking of modelling activities 
to data collection in the field and experimental 
plots will promote greater understanding of critical 
processes and build that understanding into a new 
generation of advanced soil carbon models.
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