Biophysical Neural Models

Dhruva Karkada
GOAL: Understand how neurons can be modelled and analyzed mathematically

• Motivation and Background
 ○ Computation: brain vs cpu
 ○ Neurons: structure and function
 ○ Neural communication

• Biophysics
 ○ Ion gates and channels
 ○ Morris-Lecar Model
Brain computation is fundamentally different from silicon computation
The architecture of the brain is malleable

● Neuroplasticity
 ○ neural connections form, strengthen, weaken, depending on experiences
 ○ “programs” are encoded in the architecture

● CPU+RAM
 ○ architecture is immutable
 ○ programs are loaded onto the architecture
Neurons perform input/output computation
Neurons communicate via spike trains
Different neuron types have diverse behavior

- Constant amplitude, increasing frequency
- Constant frequency, increasing amplitude
- Nonlinear superposition
Biophysics offers insight into constructing neuron models
Ions flow through gated channels

Outside the cell

Inside the cell
Spike = spike in membrane potential

Off-equilibrium SPIKE Equilibrium
Gating variable is coupled to V

- **n**: The fraction of K^+ gates that are open
 - Each ion has its own gating variable
 - Voltage-gated (sigmoid)
- **V**: membrane potential
 - Depends on ionic currents
Morris-Lecar model is inspired by biophysics

Ohm’s Law:

\[I_K = g_K \cdot n \cdot (V - E_K) \]

Capacitance:

\[C \frac{dV}{dt} = I_{\text{cap}} \]

\[= I - I_K - I_{\text{Na}} - I_L \]

Gate equilibrium:

\[\tau \frac{dn}{dt} = n_\infty (V) - n \]
Morris-Lecar model is inspired by biophysics

\[C \frac{dV}{dt} = I - I_K - I_{Na} - I_L \]

\[\tau \frac{dn}{dt} = n_\infty(V) - n \]

\[I_K = g_K \cdot n \cdot (V - E_K) \]
Dynamical Systems Theory can analyze and reproduce qualitative behaviors
Thank You!

contact: dkarkada@gmail.com
Excitation Mechanism
Andronov-Hopf bifurcation