Biophysical Neural Models

Dhruva Karkada

GOAL: Understand how neurons can be modelled and analyzed mathematically

- Motivation and Background
 - Computation: brain vs cpu
 - Neurons: structure and function
 - Neural communication
- Biophysics
 - Ion gates and channels
 - Morris-Lecar Model

Brain computation is fundamentally different from silicon computation

The architecture of the brain is malleable

- Neuroplasticity
 - neural connections form, strengthen, weaken, depending on experiences
 - "programs" are encoded in the architecture
- CPU+RAM
 - architecture is immutable
 - programs are loaded onto the architecture

Neurons perform input/output computation

Neurons communicate via spike trains

Different neuron types have diverse behavior

Biophysics offers insight into constructing neuron models

Ions flow through gated channels

Inside the cell

Spike = spike in membrane potential

Gating variable is coupled to V

- **n**: The fraction of K⁺ gates that are open
 - Each ion has its own gating variable
 - Voltage-gated (sigmoid)
- V: membrane potential
 - Depends on ionic currents

Morris-Lecar model is inspired by biophysics

1 T 7

Capacitance:

Capacitance:

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = I_{\mathrm{cap}}$$

$$= I - I_{\mathrm{K}} - I_{\mathrm{Na}} - I_{\mathrm{I}}$$
Restoring strength Equilibrium gate value
Gate equilibrium:

$$\tau \frac{\mathrm{d}n}{\mathrm{d}t} = n_{\infty}(V) - n$$

Morris-Lecar model is inspired by biophysics

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = I - I_{\mathrm{K}} - I_{\mathrm{Na}} - I_{\mathrm{L}}$$

$$\tau \frac{\mathrm{d}n}{\mathrm{d}t} = n_{\infty}(V) - n$$

Dynamical Systems Theory can analyze and reproduce qualitative behaviors

Thank You!

contact: dkarkada@gmail.com

Supplemental Slides

Excitation Mechanism

Andronov-Hopf bifurcation

