A CRASH COURSE IN CHARGED BLACK HOLES

Gina Chen (Mentored by Nicolas Duran)

PHYSICS DRP SYMPOSIUM

MAY 8, 2020

_

WHAT ARE BLACK HOLES?

SOLUTIONS TO EINSTEIN'S EQUATION

curvature of spacetime

matter content

WHAT KINDS OF BLACK HOLES ARE THERE?

TYPES OF BLACK HOLES

The No Hair Theorem tells us that black holes can be characterized by M, Q, and J

Sc	Q = 0
Reissn	$Q \neq 0$

WHY SHOULD WE STUDY R-N BH?

- simple solution (spherical symmetry!)
- similarities to Kerr (spinning BHs)
 - **two horizons**
 - > spacetime diagrams
- connection to other areas of physics

WHAT EXACTLY ARE WE SOLVING FOR?

AN INTRODUCTION TO THE METRIC

Tells us the structure of spacetime and gives us an indication of how it curves.

$$\eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

HOW DO WE FIND THE METRIC?

SPHERICAL SYMMETRY

Having spherical symmetry allows us to choose coordinates with a very simple metric!

THE EQUATIONS TO SOLVE

$G^{\mu\nu} = 8\pi T^{\mu\nu}$

Einstein's Field Equations

 $\nabla_{\mu}F^{\mu\nu} = J^{\nu}$

Maxwell's Equations

EINSTEIN'S FIELD EQUATIONS

 $g_{\mu\nu} = \begin{pmatrix} -e^{2\alpha(r)} & 0 & 0 & 0 \\ 0 & e^{-2\alpha(r)} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$

THE EQUATIONS TO SOLVE

$G^{\mu\nu} = 8\pi T^{\mu\nu}$

Einstein's Field Equations

 $\nabla_{\mu}F^{\mu\nu} = J^{\nu}$

Maxwell's Equations

TOO MUCH ALGEBRA...

 $\nabla_{0}F^{00} = \partial_{0}F^{00} + \Gamma_{0\lambda}^{0}F^{\lambda0} + \Gamma_{0\lambda}^{0}F^{0\lambda} = 0$ $\nabla_{1}F^{10} = \partial_{1}F^{10} + \Gamma_{1\lambda}^{0}F^{\lambda1} + \Gamma_{1\lambda}^{1}F^{0\lambda}$ $= -\frac{d}{dr}E(r) + \frac{1}{2}E(r)[g^{1\sigma}(2\partial_{1}g_{1\sigma} - \partial_{0}g_{11}) + g^{0\sigma}(2\partial_{1}g_{1\sigma} - \partial_{\sigma}g_{11})]$ $= \cdots$

 $g_{\mu\nu}$ =

THE END RESULT

WHAT DOES THE METRIC TELL US?

two horizons!

$$r_{\pm} = M \pm \sqrt{M^2 - Q^2}$$

$$\blacktriangleright Q = 0 \implies r = 2M$$

n $f = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$

VISUALIZING BLACK HOLES

SPACETIME DIAGRAMS: SCHWARZSCHILD

Schwarzschild Coordinates

SPACETIME DIAGRAMS: SCHWARZSCHILD

Schwarzschild Coordinates

Eddington Finkelstein Coordinates

SPACETIME DIAGRAMS: REISSNER-NORDSTROM

WHAT CAN WE LEARN FROM BLACK HOLES?

- **Kerr (BH with spin)**
 - **astrophysics/gravitational waves**
 - high energy physics

> Schwarzschild metric is a good approximation for large, spherically symmetric bodies

AdS/CFT correspondence: general relativity to particle physics

Reissner-Nordstrom (BH with charge) -> high temperature superconductors

REFERENCES

Introducing Einstein's Relativity by Ray d'Inverno

Spacetime and Geometry by Sean Carroll

THANK YOU FOR LISTENING!