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SUMMARY

The major theme of this thesis is the treatment of defect cores in uniaxial nematic liq-

uid crystals. For simplicity, we prefer the Oseen-Frank formalism, where the orientational

order of the uniaxial nematics is represented by unit vectors with head-tail symmetry. How-

ever, the defect core in this formalism is a tiny region where the unit vectors are not defined.

This implies that when we evaluate the Oseen-Frank free-energy functional and solve the

corresponding Euler-Lagrange equation, we should not admit differentiation and integra-

tion cross the defect core. In fact, we should either treat the defect core as a boundary or put

it at the coordinate singularity of a special coordinate system. The first treatment is used in

our numerical study of the defect transitions in the nematic bridges. The finite-difference

method (with the use of the successive over-relaxation method) enables us to select the

ground state after exhausting many possible defect structures. Our results confirm the ex-

istence of different types of equilibrium defect structures in the cylindrical bridge. Our

results further imply that some different shapes of the lateral surfaces preserve the qual-

itative features of the defect structure diagram yet they can change the positions of the

transition lines.

However, the above-mentioned two treatments impede a general analytical theory of de-

fects in nematics since they usually require exhaustive search or special geometries. There-

fore, a better treatment may be to create the defect core during the calculation process.

To test its feasibility, we conduct a numerical experiment by designing a special multigrid

method for the study of equilibrium defect structures in the cylindrical bridge, where the

crudest information of the defect core is expected to be contained on the coarsest grid and

better information of the defect core is expected to be contained on the finer grid. Then, for

the analytical study, we first experiment on the one-dimensional analog, where the solution

is represented by Fourier series and the defect core is the jump discontinuity. We observe

that the correct energy function can be obtained by properly eliminating an infinitely large

xviii



part, and the resulting regularized energy function is equally effective with a finite number

of its Fourier modes for the purpose of determining the equilibrium state. Based on that,

some calculations are performed for two-dimensional nematics. We speculate that a finite

number of Fourier modes of the regularized energy function may be enough to determine

the equilibrium defect structures in nematics.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Liquid Crystal and its Order Parameter

Liquid crystals, whose basic microscopic components are rod-like or disc-like molecules,

exhibit unusual emergent phenomena in which spatial and orientational correlations present

over short distances may or may not fade away at large distances. In this sense, they

are partially reminiscent of liquids and solids. Distinct phases of liquid crystals include

isotropic, nematic, cholesteric, smectic and columnar. As a result of their different types of

ordering, they have distinctive elastic, electric and optical properties; see Refs. [1–4].

Liquid crystal phases, such as isotropic and nematic, whose translational symmetry is

maintained while the rotational symmetry may or may not be broken, can be characterized

by the order parameter Q, which is a symmetric traceless tensor and can be represented by

a 3× 3 matrix diagonalized as

Q =
1

3




2S1 − S2 0 0

0 −S1 − S2 0

0 0 −S1 + 2S2



, (1.1)

where S1 and S2 are scalars; see Refs. [1, 5, 6]. If the system is in the isotropic phase then

Q = 0, i.e., S1 = S2 = 0. If it is in the uniaxial nematic phase then S1 6= 0, S2 = 0, and Q

simplifies to

Q = S (n⊗ n− 1

3
I), (1.2)

and in terms of Cartesian coordinate, it becomes

Qij = S (ni nj −
1

3
δij), (1.3)
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where i, j are Cartesian indices, δij is the Kronecker delta, S is a scalar, and n is a unit

vector, also known as the director [1]. The scalar S is a second moment average of the

distribution of the orientations of the molecules near some particular spatial point r and is

defined as

S(r) =
1

2
〈3 cos2 θ − 1〉 =

1

2

∫
(3 cos2 θ − 1)f(θ, r)dθ, (1.4)

where 〈· · ·〉 is a statistical-mechanical average, θ is the angle between n and the orientation

of each molecule, and f(θ, r) is the distribution of the θ near the point r, which satisfies

f(θ, r) = f(π − θ, r) because n and −n represent the same local direction of molecular

alignment (i.e., head-tail symmetry). If the molecules are fully oriented in some particular

direction then S = 1; if the molecules are fully randomly oriented in 3-dimensional space

(so that the system is in an isotropic phase) then S = 0; and if the molecules are fully

randomly oriented in an 2-dimensional plane perpendicular to some axis then S = −1/2;

see Refs. [1, 5].

If the system is, however, in the biaxial nematic phase then S1 6= 0 and S2 6= 0.

Equation (1.1) can be written compactly as

Q = S1 n⊗ n + S2m⊗m− 1

3
(S1 + S2) I, (1.5)

or equivalently,

Qij = S1 ni nj + S2mimj −
1

3
(S1 + S2) δij, (1.6)

where m is a unit vector perpendicular to n [5].

1.2 Isotropic-Nematic Phase Transition

In the Landau-de Gennes formalism, when the temperature of the system is close to the

isotropic-nematic transition temperature, the bulk free energy density Fb can be expanded

in terms of (a) powers of Q, and (b) gradients of Q. This is because the order parameter Q is
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typically rather small despite the discontinuous character of the transition, and the gradients

of Q represents the small energy cost due to the long-wavelength spatial distortion of the

spatially uniform equilibrium states [1]. To determine the spatially uniform equilibrium

states below and above the transition point, we can ignore the gradients of Q and express

Fb as

Fb =
3

2
a(T − T ∗) Tr(Q2)− 9

2
bTr(Q3) +

9

4
cTr(Q4), (1.7)

where a, b, c and T ∗ are approximately independent of temperature and pressure. Fb is

known as the Landau-de Gennes free-energy density; see Refs. [5, 7].

If we assume that the nematic phase is uniaxial, then Eq. (1.7) becomes [by using

Eq. (1.2)]

Fb = a(T − T ∗)S2 − bS3 + cS4. (1.8)

At the transition temperature Tp = T ∗ + b2/ac, the scalar S has the value Sp = b/2c. For

the common nematic material 5CB, one has a ≈ 5.2× 104Jm−3K−1, b ≈ 5.3× 105Jm−3,

c ≈ 9.7× 105Jm−3, T ∗ ≈ 307.55K, and Tp ≈ 308.94K, Sc ≈ 0.27 [8–10].

1.3 Elasticity of the Uniaxial Nematic Phase in the Low-Temperature Regime

In the Landau-de Gennes formalism, the distortion free-energy densityFd is part of the free

energy density composed of the lowest gradients of Q that are symmetry-invariant. For the

uniaxial or biaxial nematic state, Fb can be expressed as

Fd =
L1

2

(∂Qij

∂xk

)2
+
L2

2

∂Qij

∂xj

∂Qik

∂xk
+
L3

2

∂Qik

∂xj

∂Qij

∂xk
+
L6

2
Qlk

∂Qij

∂xl

∂Qij

∂xk
, (1.9)

where L1, L2, L3 and L6 are constants.

In the Oseen-Frank formalism, when the system is so much lower than the nematic-

isotropic transition temperature that fluctuations of S are weak and S is approximately a
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constant, the distortion free-energy density Fd can be expressed in terms of n:

Fd =
K11

2
(∇ · n)2 +

K22

2
(n · (∇× n))2 +

K33

2
(n× (∇× n))2

+K13∇ · [n(∇ · n)]−K24∇ · [(n× (∇× n) + n(∇ · n))], (1.10)

where the five terms represent, respectively, the contributions of the splay, twist, bend,

splay-bend and saddle-splay, and the first three are illustrated in Fig. 1.1; see Refs. [5, 11–

14]. This is known as the Oseen-Frank free-energy density [15, 16].

The distortion free energy functional is the integration of the free energy density over a

domain, i.e.,

Fd =

∫
d3V Fd, (1.11)

where Fd is either Eq. (1.9) or (1.10).

In Eq. (1.10), the terms corresponding to the contributions of splay-bend and saddle-

splay are beyond the scope of this thesis, because they are surface energies (by the use of

divergence theorem) and the examples we are studying have fixed outer boundary condi-

tions.

For example, note that the saddle-splay contribution to the functional can be written, by

using the divergence theorem, as a surface integral

−
∫
K24[n× (∇× n) + n(∇ · n)] · vdS, (1.12)

where v is the vector normal to the boundary. As this term does not contain any derivatives

of n in the normal direction of the boundary (see Refs. [17, 18]), it therefore is a constant

when the boundary conditions are given. Thus, instead of using Eq. (1.10), we usually

consider

Fd =
K11

2
(∇ · n)2 +

K22

2
(n · (∇× n))2 +

K33

2
|n× (∇× n)|2 . (1.13)
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Now, to obtain the equilibrium state, we need to derive the Euler-Lagrange equation

corresponding to the functional Eq. (1.11), and solve it subject to the prescribed boundary

conditions.

One tricky issue is that the tensor field Q and the unit vector field n are not equivalent

in characterizing a uniaxial nematic state since n is not an order parameter. The fact that

n and −n equivalently characterize the local direction of molecular alignment means that

n or −n hide the head-tail symmetry. In some cases, n cannot replace Q without flipping

through π rad on some lines or planes, i.e., there is a branch cut. To illustrate this situation,

we use “arrows” and “sticks” to represent n and Q, respectively, in schematic diagrams.

Figures 1.2 and 1.3 illustrate the tensor fields and their corresponding unit vector fields

assuming homeotropic boundary conditions (i.e., n perpendicular to the boundary). The

former represents a state where both n and Q are continuous, while the latter is a state

where n inevitably flips through π rad on a line while the corresponding Q is continuous.

This issue is related to the existence of a defect core [11, 19–22].

(a) Splay (b) Bend

y y

x

z z

(c) Twist

Figure 1.1: Distortion types (based on Figs. 3.1. and 3.7. in Ref. [1])

1.4 Defects in Uniaxial Nematics and their Topologies

The defect in a uniaxial nematic is characterized by its topology. In the Oseen-Frank for-

malism, the defect core is characterized by a tiny region where the orientation of the order

is undefined, i.e., the unit vector n is undefined. However, in the Landau-de Gennes for-
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(a) Uniaxial tensor field #1 (b) Unit vector field #1

Figure 1.2: Uniaxial tensor field #1 (left) and its corresponding unit vector field #1 (right),
for the case in which there are no topological defects

malism, the defect core is in a different state, i.e., the biaxial state; see Refs. [23–29]. The

Oseen-Frank formalism is more convenient in the study of the topology, as the defect core

can be treated as a hole in a manifold, which can be studied by homotopy theory.

1.4.1 Topology of Defects in Two-Dimensional Uniaxial Nematics

In a spatially two-dimensional uniaxial nematic, the defect core is a point. The vector field

n can be parametrized as

n = cos θ(x, y) x̂ + sin θ(x, y) ŷ, (1.14)

subject to the head-tail symmetry, i.e., n and −n are equivalent. θ is the angle between the

vector and the x̂ direction. Therefore the order parameter space is the real projective line

RP 1, i.e., a circle with antipodal points being identified. Its topology can be captured by

the fundamental group, i.e., the first homotopy group,

π1(RP 1) = Z ≡ {0,±1,±2, . . . }. (1.15)
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(a) Uniaxial tensor field #2 (b) Unit vector field #2

Figure 1.3: Uniaxial tensor field #2 (left) and its corresponding unit vector field #2 (right),
for the case in which there is a topological defect

Each element of the group represents an topologically equivalence class of configuration

that cannot be transformed into another by continuously deforming the vector field n in

two dimensions [30–34].

The topology can also be accessed by a winding number m, which is defined to be the

total number of turns through which a vector rotates when one travels counterclockwise

around the defect core; then

m ∈ 1

2
· Z ≡ {0,±1

2
,±1, . . . }. (1.16)

We can think of the different winding numbers as representing different elements in the

fundamental group π1(RP 1) [1, 34, 35]. Defects with different winding numbers are illus-

trated in Fig. 1.4.

1.4.2 Topology of Defects in Three-Dimensional Uniaxial Nematics

In a three-dimensional uniaxial nematic, the defect core can be a point or a line. The order

parameter space is now the real projective plane RP 2, i.e., a sphere with antipodal points
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being identified.

If the defect core is a line then its topology can be captured by the first homotopy group

π1(RP 2) = Z/2Z ≡ {0, 1}. (1.17)

However, contrary to the two–dimensional counterpart, two defect structures whose two–

dimensional projections are topologically equivalent can belong to the same topologically

equivalent class in three dimensions [32, 34–36]. In Fig. 1.5, (a) – (c) are line defects

whose two-dimensional projections are the point defects with winding numbers 1/2, −1/2

and 1 respectively. However, in three dimensions, (a) and (b) are topologically equivalent,

represented by the element 1 in π1(RP 2); and (c) is topologically equivalent to a homoge-

neous state, represented by the element 0 in π1(RP 2).

If the defect core is a point then its topology can be captured by the second homotopy

group

π2(RP 2) = Z ≡ {0,±1,±2, . . . }. (1.18)

Since the elements with the same absolute value but opposite signs represent the same

defect, the topologically equivalent classes are therefore represented by the set of nonzero

integers. Again, two apparently different defect structures can belong to the same class.

If the defect core is a ring then we need the automorphism classes of π1(RP 2) o

π2(RP 2) to understand its topology [30–32, 34, 35].

Inside one topologically equivalence class, one defect structure can be continuously de-

formed into another defect structure, which means there exists a path between two defects

with a finite energy barrier. Experimentally, we can use this information to predict the de-

fect structures under certain topological constraints imposed by the boundary conditions.

Furthermore, homotopy theory helps us predict the result of the merger of several defects

by the rules of group multiplication [32, 34, 37–39].
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(a) m = 1 (b) m = 1 (c) m = −1

(d) m = 1/2
(e) m = −1/2

Figure 1.4: Defects with different winding numbers m

1.5 Equilibrium Defect Structures in Uniaxial Nematics

The equilibrium defect structure is defined to be the spatial equilibrium configuration of

Q or n in the presence of defects. Thus, to determine it, we are required to minimize

the distortion free-energy functional [i.e., Eq. (1.11)]. A necessary step is to solve the

corresponding Euler-Lagrange equation, subject to prescribed boundary conditions, plus a

treatment for the defect cores.

The Landau-de Gennes formalism [i.e., Eq. (1.9)] is straightforward, in principle, be-

cause it will always give us a continuous solution showing that the small defect core is

actually not in the uniaxial nematic state, and therefore no special treatment for the defect

core is needed [7, 23–29]. In contrast, by using fewer variables, the Oseen-Frank formal-
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(a) m = 1/2 (b) m = −1/2 (c) m = 1

Figure 1.5: Line defect (based on Fig. 5. in Ref. [32])

ism [i.e., Eq. (1.13)] only considers the uniaxial nematic state, and the small defect cores

are not included in the integration domain of the functional. Our purpose is to determine

the number and locations of the defect cores regardless of their fine structures, which is

a small step forward in studying the topology, the Oseen-Frank formalism is being used.

As a result, we are faced with a problem about how to deal with the defect core in the

Oseen-Frank formalism. Here, we summarize three general schemes.

1.5.1 Defect Cores as Inner Boundaries

The distortion free-energy functional [i.e., Eq. (1.11)] is an integration of an energy density

composed of derivatives of a field (i.e., Q or n). For a given field, in order to get the energy

functional, we should do the differentiation and integration with respect to this field. Since

the Oseen-Frank formalism is not supposed to give us the energy for the defect core, the

derivative of the field at the location of the defect core is undefined and cannot be included

in the domain of integration. One scheme is to treat the defect core as a boundary.

This scheme requires the number and locations of the defect cores to be prescribed. In

practice, in order to determine the equilibrium defect structure, one has to guess all the pos-

sible numbers and locations of the defect cores and solve the many corresponding boundary

10



value problems. Therefore it often occurs in numerical computations. One example is the

study of defects in nematic bridges introduced later in this thesis [40–45]. Another example

is the study of a long cylindrical cavity, where defect cores exist along the cylinder axis,

and the cylinder segment between the two defect cores is the domain where the numerical

computation is conducted [46–50].

1.5.2 Defect Cores as Coordinate Singularities

To make sure the defect cores are not in the domain of integration, we can also choose

a special coordinate system such that the defect cores are located at the coordinate sin-

gularities. This scheme still requires the numbers and locations of the defect cores to be

prescribed, since the coordinate singularities are determined for a given coordinate system.

However, for some special cases, the special coordinate system is easy to construct.

Example 1: One Point Defect in an Infinitely Large Disk

We consider a point defect (with a point-like defect core at the origin) in an infinitely large

disk with radius R→∞ [1]. The boundary condition is

n|R→∞= r̂, (1.19)

where r̂ is the radial unit vector in the polar coordinate system. Within the one-constant

approximation, i.e., K11 = K22 = K33, the distortion free energy for two dimensions

[see Eqs. (1.11) and (1.13)] becomes

Fd =
K

2

∫
d2S [(∇ · n)2 + (∇× n)2], (1.20)
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and the domain of integration is an annulus, i.e., the complement of the origin in the in-

finitely large disk. Substituting Eq. (1.14) into Eq. (1.20), we have

Fd =
K

2

∫
d2S (∇θ)2. (1.21)

Its Euler-Lagrange equation is

∆θ = 0. (1.22)

For a two-dimensional nematic, if we choose the polar coordinate system with the coordi-

nate singularity coinciding with the defect core then Eq. (1.22) becomes

1

ρ

∂

∂ρ

(
ρ
∂θ

∂ρ

)
+

1

ρ2
∂2θ

∂φ2
= 0. (1.23)

It is straightforward to check that

θ = m · φ+ C, (1.24)

is a solution to Eq. (1.23), where m is the winding number and C is a constant. The

boundary condition Eq. (1.19) requires that m = 1 and C = 0. Therefore the solution to

the boundary value problem [i.e., Eqs. (1.22) and (1.19)] is

θ = φ. (1.25)

Example 2: One Point Defect in an Infinitely Large Ball B3

We consider a point defect (with a point-like defect core at the origin) in an infinitely large

ball B3 with radius R→∞ [49]. The boundary condition is

n|R→∞= r̂, (1.26)
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where r̂ is the radial unit vector in the spherical coordinate system. With one-constant

approximation, the distortion free energy for three dimensions becomes

Fd =
K

2

∫
d3V [(∇ · n)2 + (∇× n)2], (1.27)

and the domain of integration is S2 × I , i.e., the complement of the origin in the infinitely

large ball. The vector field n can be parametrized as

n = sinα(x, y, z) cos β(x, y, z) x̂ + sinα(x, y, z) sin β(x, y, z) ŷ (1.28)

+ cosα(x, y, z) ẑ.

Here, {x, y, z} are Cartesian coordinates and {x̂, ŷ, ẑ} are Cartesian basis vectors.

If we consider the one-constant approximation then by substituting Eq. (1.28) into

Eq. (1.27) we have

Fd =
K

2

∫
d3V [(∇α)2 + sin2 α(∇β)2]. (1.29)

Its Euler-Lagrange equations are

1

2
sin 2α(∇β)2 = ∆α, (1.30)

sin 2α(∇α · ∇β) + sin2 ∆β = 0. (1.31)

If we choose the spherical coordinate system with the coordinate singularity coinciding

with the defect core then Eqs. (1.30) and (1.31) become

1

2
sin 2α

[(∂β
∂r

)2
+

1

r2

(∂β
∂θ

)2
+

1

r2 sin2 θ

(∂β
∂φ

)2]
(1.32)

=
∂2α

∂r2
+

2

r

∂α

∂r
+

1

r2
∂2α

∂θ2
+

cos θ

r2 sin θ

∂α

∂θ
+

1

r2 sin2 θ

∂2α

∂φ2
,
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sin 2α
(∂α
∂r

∂β

∂r
+

1

r2
∂α

∂θ

∂β

∂θ
+

1

r2 sin2

∂α

∂φ

∂β

∂φ

)
+ sin2 α

(∂2β
∂r2

(1.33)

+
2

r

∂β

∂r
+

1

r2
∂2β

∂θ2
+

cos θ

r2 sin θ

∂β

∂θ
+

1

r2 sin2 θ

∂2β

∂φ2

)
= 0.

It is straightforward to check that





α = θ,

β = φ+ C,

(1.34)

is a solution to Eqs. (1.32) and (1.33), where C is a constant. The boundary condition

Eq. (1.26) requires that C = 0. Therefore the solution to the boundary value problem [i.e.,

Eqs. (1.32), (1.33) and (1.26)] is 



α = θ,

β = φ,

(1.35)

Example 3: A Ring Defect in an Infinitely Large Ball B3

We consider a ring defect in an infinitely large ballB3 with radiusR→∞ [31, 51–54]. As-

sume the ring-like defect core of radius a lying in the x-y plane with the center coinciding

with the origin of the Cartesian coordinate system. The boundary condition is Eq. (1.26).

Then we can choose a spheroidal coordinate system (u, v, φ), for which
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(a) Ring defect in three-dimensions (b) Cross section of a ring defect

Figure 1.6: Ring defect (based on Figs. 2 and 3. in Ref. [31])

x = a coshu cos v cosφ,

y = a coshu cos v sinφ,

z = a sinhu sin v;

(1.36)

see Ref. [55]. Then we can choose the unit vector field n to be perpendicular to the oblate

spheroids
x2 + y2

a2 cosh2 u
+

z2

a2 sinh2 u
= 1. (1.37)

This Ansatz does not satisfy the Euler-Lagrange equation, and therefore it can only provide

an upper bound for the free energy. However, one good thing about writing n in terms of

(u, v, φ) is that the differentiation and integration never cross the ring-like defect core and

the disk bounded by the ring (i.e., the branch cut), and therefore there is no fictitious infinite

free energy.

1.5.3 Defect Cores as Contained in the Solutions to the Boundary Value Problems

In the Landau-de Gennes formalism, the defect core is contained in the solution to the

boundary value problem, and it is created as the emergence of a different state in a tiny
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region. The equilibrium defect structure can be obtained by directly solving the Euler-

Lagrange equation corresponding to Eq. (1.9). In contrast, lots of computations are spent

on the many non-equilibrium defect structures by using Oseen-Frank formalism (since the

defect core is not in the domain of integration). However, this convenience from Landau-

de Gennes formalism comes with an expense of intense computations for the fine structure

of the defect core, which is deemed by us as unnecessary for our purpose since we are

interested in the equilibrium location of the defect core. When using the Oseen-Frank

formalism, we can ask: Can we create the inner boundaries during the process of solving

the Euler-Lagrange equation? A substantial part of this thesis is to provide a partial answer

to this question.

Contrary to the schemes introduced in the last two subsections, where the complement

of the defect cores in the whole domain is considered as the domain of integration, the

scheme arising from a positive answer to the question in the last paragraph would require

us to consider the whole domain, which results in some unphysical contributions to the free-

energy functional. An essential part of this scheme involves how to cancel these unphysical

contribution out, as will be introduced in Chapter 5.

The above three schemes are for general considerations. For two-dimensional nematics

within the one-constant approximation, there is a simple method, as introduced below,

which bears some resemblance to the second scheme.

1.5.4 Two-Dimensional Nematics within the One-Constant Approximation

An important observation is that Eq. (1.22) is a linear PDE, which means that we can get

the vector field n of many defect cores via superposition of the vector fields associated

with each defect core. However, we should be careful about the multiplicity of θ, as there

exist branch cuts. For two-dimensional nematics within the one-constant approximation,

there are two methods for determining the equilibrium defect structures, as shown in the

following [1, 56, 57].
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Method 1

First, we let N be the number of the defect cores and introduce mi (i = 1, 2, . . . , N ) as the

associated winding numbers (and these numbers need to be compatible with the topology

imposed by the boundary conditions). Then, we connect each pair of defect cores by a

straight line segment which can be the branch cut. As a result, the whole domain is divided

into patches, in each of which θ is single valued, and this makes it safe to solve Eq. (1.22).

Let us mark each patch, and focus our following discussion on an arbitrary patch, say patch

j. Since Eq. (1.22) is linear, we can write its solution as:

θ(j) = θ
(j)
1 + θ

(j)
2 + · · ·+ θ

(j)
N , (1.38)

where

θ
(j)
i = miφi + C

(j)
i (1.39)

is the contribution from defect-core i with φi being the polar angle of its particular polar

coordinate system and C(j)
i being a constant. mi should be prescribed while C(j)

i can be

determined by the prescribed values on the two sides of the branch cuts. Following the

same procedure, we can find θ in every patch. Then, to compute the free energy in patch j,

we use the following relation for the continuous function θj:

K

2

∫

Sj

drj (∇θ(j))2 = −K
2

∫

Sj

drj θ
(j)∆θ(j) +

K

2

∫

∂Sj

drj θ
(j)∇θ(j), (1.40)

where Sj and ∂Sj are the area and boundary of the patch j, repectively. Because of

Eq. (1.22), the first term on the RHS of Eq. (1.40) vanishes, and therefore the bulk en-

ergy of patch j can be transformed to a surface energy. Thus, the total free energy is related

to the length of each branch cut; see Refs. [1, 58].
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Method 2

Let θi be the contribution from defect-core i in an arbitrary patch. Then, Eq. (1.39) shows

that θi is determined up to a constant, and ∇θi can be made continuous throughout the

whole domain [56]. (To be specific, when crossing the branch cut, θj and each of its terms

θji are changed by a multiple of π/2, while ∇θj and ∇θji are unchanged.)

The total energy can then be written as

F =
K

2

∫
dr (∇θ1 +∇θ2 + · · ·+∇θN)2 (1.41)

=
N∑

i=1

K

2

∫
dr (∇θi)2 +

N∑

i=1,k=1,j 6=k

K

∫
dr (∇θi)(∇θk).

These two methods are equivalent. Method 1 computes the boundary integral, em-

phasizing the fact that the function θ is discontinuous at the branch cut, while Method 2

computes the bulk integral, taking advantage of the fact that ∇θ can be made continuous

at the branch cut. To better elucidate the above two methods, let us revisit an example

introduced in de Gennes’ book [1].

Problem: Compute the free energy of two parallel straight-line defect cores having

winding numbers m and −m, respectively, and separated by a distance d, which is illus-

trated in Fig. 1.7.

Solution via Method 1: Choose the Cartesian coordinate system for the whole domain,

and let the defect core with winding number m be at (−d/2, 0) and the other defect core be

at (d/2, 0). Then the whole domain can be divided as two patches: one with x > 0 (patch

1) and one with x < 0 (patch 2). Then, on patch 1 and patch 2, we have, respectively,

θ(1) = θ
(1)
1 + θ

(1)
2 = mφ1 −mφ2 +D(1), (1.42)
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Figure 1.7: Problem of two parallel straight-line defects (based on Fig. 4.9 in Ref. [1])

θ(2) = θ
(2)
1 + θ

(2)
2 = mφ1 −mφ2 +D(2), (1.43)

where D(1) and D(2) are constants. We choose the line segment connecting (−d/2, 0) and

(d/2, 0) be the branch cut. Then, due to symmetry, D(1) and D(2) can be chosen such that

θ(1) = θ(2) on the intervals (−∞,−d/2) and (d/2,∞), and θ(2) − θ(1) = 2πm on the

interval (−d/2, d/2). Then we can compute the total energy as follows:

F =
K

2

∫

S1

(∇θ(1))2 dr1 +
K

2

∫

S2

(∇θ(2))2 dr2 (1.44)

=
K

2

∫ ∞

−∞
θ(1)∇θ(1) · dr1 +

K

2

∫ ∞

−∞
θ(2)∇θ(2) · dr2

=
K

2

∫ d/2

−d/2
θ(1)∇θ(1) · dr1 +

K

2

∫ d/2

−d/2
θ(2)∇θ(2) · dr2

=
K

2

∫ d−a

a

θ(1)
m

ρ1
φ̂1 · dr1 +

K

2

∫ d−a

a

θ(2)
(
− m

ρ2

)
φ̂2 · dr2
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= −K
2

∫ d−a

a

θ(1)
m

ρ1
dρ1 +

K

2

∫ d−a

a

θ(2)
(
− m

ρ2

)
dρ2

=
K

2

∫ d−a

a

2πm
(m
ρ1

+
m

d− ρ1

)
dρ1

= 2πKm2 ln
(d
a

)
,

where a is the radius of the defect cores.

Solution via Method 2: We can compute the total energy in the following way:

F =
K

2

∫
dr (∇θ1 +∇θ2)2 (1.45)

=
K

2

∫
dr (∇θ1)2 +

K

2

∫
dr (∇θ2)2 +K

∫
dr (∇θ1)(∇θ2)

=
K

2

∫ R

a

ρ1dρ1

∫ 2π

0

dφ1

( 1

ρ1

∂θ1
∂φ1

)2
+
K

2

∫ R

a

ρ2dρ2

∫ 2π

0

dφ2

( 1

ρ2

∂θ2
∂φ2

)2

+K

∫ R

a

ρ1dρ1

∫ 2π

0

dφ1

( 1

ρ1

∂θ1
∂φ1

φ̂1

)( 1

ρ2

∂θ2
∂φ2

φ̂2

)

= Kπm2

∫ R

a

1

ρ1
dρ1 +Kπm2

∫ R

a

1

ρ2
dρ2 −Km2

∫ R

a

dρ1

∫ 2π

1

1

ρ2
cos(φ2 − φ1)

= 2πKm2 ln
(R
a

)
+Km2

∫ R

a

dρ1

∫ 2π

0

dφ1
−ρ1 + d cosφ1

ρ21 + d2 − 2ρ1d cosφ1

= 2πKm2 ln
(R
a

)
−Km2

∫ R

a

dρ1
2πρ1
|ρ21 − d2|

−Km2

∫ R

a

dρ1
π

ρ1

+Km2

∫ R

a

dρ1
π(ρ21 + d2)

ρ1|ρ21 − d2|

= 2πKm2 ln
(R
a

)
+ πKm2 ln

(d
a

)
− πKm2 ln

(R
a

)
− πKm2 ln

(R
d

)
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= 2πKm2 ln
(d
a

)
,

where R(→∞) is the size of the whole domain.

Another interesting example is to find the equilibrium locations of two point defects

of winding number 1/2 and −1/2, respectively, in a disk [57]. The only difference from

the above example is that this example considers a finite domain, and we need to use the

method of images, similar to the one used in electrostatics. Based on this method, there is

a Green function formalism, as we now discuss.

Green Function Formalism

In a two-dimensional space, for a point charge q, we have the following electrostatic po-

tential:

Vel = kq ln
(ρ
a

)
; (1.46)

by contrast, for a single defect core of winding number m, the distortion potential is

Vd = 2πKm ln
(ρ
a

)
. (1.47)

This implies we may borrow the Green function formalism from electrostatics to study

defects in two-dimensional nematics [59–64]. The procedure is as follows.

Let us assume that there is a defect core located at (x1, y1) of winding number m1.

Then we can draw a contour around it and use Stokes’ theorem:

∮
dθ =

∮ (∂θ
∂x

dx+
∂θ

∂y
dy
)

= 2πm1 (1.48)

=⇒
∫

dx dy
( ∂
∂x

∂θ

∂y
− ∂

∂y

∂θ

∂x

)
= 2πm1

∫
dx dy δ(x− x1, y − y1)

=⇒ ∂

∂x

∂θ

∂y
− ∂

∂y

∂θ

∂x
= 2πm1 δ(x− x1, y − y1).
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By Eqs. (1.22) and (5.17), we have

∂θ

∂x
= −2πm1

∂

∂y

∫
dx′dy′ G(x, y;x′, y′) δ(x′ − x1, y′ − y1), (1.49)

∂θ

∂y
= 2πm1

∂

∂x

∫
dx′dy′ G(x, y;x′, y′) δ(x′ − x1, y′ − y1), (1.50)

where G(x, y;x′, y′) is the Green function that satisfies

( ∂2
∂x2

+
∂2

∂y2

)
G(x, y;x′, y′) = δ(x− x′, y − y′). (1.51)

Next, we let

η(x, y) =
N∑

i=1

2πmi · δ(x′ − xi, y′ − yi) (1.52)

By superposition, Eqs. (5.18) and (5.19) generalize to

∂θ

∂x
= − ∂

∂y

∫
dx′dy′ G(x, y;x′, y′) η(x′, y′), (1.53)

∂θ

∂y
=

∂

∂x

∫
dx′dy′ G(x, y;x′, y′) η(x′, y′). (1.54)

Thus, Eq. (1.21) becomes

F [θ] = −K
2

∫
G(x, y;x′, y′) η(x, y) η(x′, y′) dx dy dx′ dy′. (1.55)

1.6 Defects in Nematic Liquid-Crystal Capillary Bridges

The main objects to be studied in this thesis are defects in nematic liquid-crystal capillary

bridges [40–44]. In experiments, these are created by the confinement of nematic liquid

crystal droplets (e.g., 5CB) between two parallel glass microscope slides [45].

Since the energy functional [i.e., Eq. (1.11)] is an integral, in order to determine the

22



equilibrium defect structures, we need to first specify the domain of integration. Apparently

in experiments, the bridge has a cylindrical symmetry, and therefore we can focus our

discussion on the axial plane. We then notice that the bridge is symmetrical with respect to

the mid-plane, which is due to the fact that the gravity is far smaller than surface tension

in its effect. Experimentally, it is easy to measure the height H of the bridge as well as the

radius R of the mid-plane. Therefore, the first important rescaled parameter we know is the

aspect ratio defined by Γ = 2R/H .

The lateral surface is determined by the Young-Laplace equation, i.e.,

∆P = 2γM, (1.56)

where ∆P is the Laplace pressure, γ is the surface tension between the outer medium and

the inside liquid crystal, and M is the mean curvature, written as

M =
1

2

( 1

R1

+
1

R2

)
, (1.57)

where 1/R1 and 1/R2 are the two principal curvatures. As the pressures inside and outside

the surface are approximately uniform, the Laplace pressure is a constant, and therefore the

surface is a mean-curvature surface. The contact angle θC , which is the angle between the

glass and the lateral surface, is given by the Young equation

γSG − γSL − γLG cos θC = 0, (1.58)

where γSG, γSL and γLG are the surface tensions between solid and outer medium, between

glass and liquid crystal, and between liquid crystal and outer medium, respectively, as illus-

trated in Fig. 1.8. Detailed calculations based on Eq. (1.56) shows that the rescaled shape

of the lateral surface (regardless of its location) is determined by the contact angle θC and

the rescaled mean curvature M/H , where the latter can be replaced by the aspect ratio Γ.
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Therefore, the rescaled domain is determined by Γ and θC ; see Ref. [65–68].

✓C

(a) Sharp angle

✓C

(b) Obtuse angle

Figure 1.8: Contact angles
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Figure 1.9: Nematic bridges

From Eq. (1.13), we can see that the equilibrium defect structures are also related to the

Frank constants K11, K22 and K33. For nematic liquid-crystal capillary bridges, we will

show later that K11/K33 is another important parameter.

1.6.1 Defects in Cylindrical Nematic Bridges

A cylindrical nematic bridge, as shown in Fig. 1.9a, requires that θC = π/2, which implies

γSG = γSL by Eq. (1.57). That means that the outer medium may have to be the same as the

nematics inside the bridge and thus it is impossible for this type of experiments. However,

we can consider a similar experiment, which is nematics confined inside a short cylindrical
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tube with end caps. In this case, if the unit vectors n are made to be perpendicular to the

boundary, i.e., the homeotropic boundary conditions, then defect cores will be inevitably

formed inside the tube and at the cusps of the boundary [69–74]. Numerical study of the

shapes of the defects in this short cylinder with end caps was carried out by Liang and

Chen [42].

Their study claims the existence of four different types of defects: radial point, radial

ring, hyperbolic point and hyperbolic ring, as illustrated in Fig. 1.10. The phase diagram

they obtained further shows that:

(1) When the aspect ratio Γ is large, the ring defect is preferred over the point defect.

(2) When the Frank constant ratio K11/K33 is large, the hyperbolic type defect is pre-

ferred over the radial type defect.

(3) There exist a transition between hyperbolic point and hyperbolic ring defects at

Γ ≈ 7.5, and a transition between hyperbolic point and hyperbolic ring defects at Γ ≈ 4.5.

Qualitative explanations for these findings are:

(1) For the ring defect, the unit vector field n in the cylindrical region bounded by the

ring-like defect core is only slightly distorted, and this region is large when Γ is large.

(2) The bend distortion free energy is dominant in the hyperbolic type defect while the

splay distortion free energy is dominant in the radial type defect.

However, their predictions of the existence of defect transition lines require quantitative

explanations. Their numerical strategy is that: by using the finite difference method, they

obtained the distortion free energy for each defect at each Γ and K11/K33, and then they

determined which one cost the least free energy. As computations shown before, the ring-

like defect cores in the center and at the edges cost infinite free energy if no cut-off length

scale is introduced. It is not obvious that they introduced this cut-off length; instead, they

computed the relative free energy, which is the energy difference between the ring defect

and the point defect at each Γ and K11/K33. This relative free energy can still be infinite.

Our numerical work for the cylindrical bridge will be introduced in Chapter 2.

25



r

z

(a) Radial point

r

z

(b) Radial ring

r

z

(c) Hyperbolic point

r

z

(d) Hyperbolic ring

Figure 1.10: Nematic configuration on diametrical planes for the four types of defect struc-
ture. Black dots represent defect cores, yellow annular regions represent rapidly varying
uniaxial nematic regions, and blue rods represent the unit vector field

1.6.2 Defects in Waist-Shaped and Barrel-Shaped Bridges

The study of defects in waist-shaped and barrel-shaped bridges, as shown in Figs. 1.9b

and 1.9c, was done in Prof. Fernandez-Nieves’ lab [45]. The bridge was made of 5CB

with K11/K33 = 0.74, therefore certain defect transition points can be obtained though the

defect structure diagram was not recreated experimentally.

To make a waist-shaped bridge, the outer medium was chosen to be the air; and to make

a barrel-shaped bridge, the outer medium was chosen to be water. By tuning the aspect ratio

Γ, they discovered that

(1) Hyperbolic type defects exist in waist-shaped bridges and radial type defects exist

in barrel-shaped bridges.
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(2) There is a transition between hyperbolic point and hyperbolic ring defects at Γ =

2.7± 0.3 while no radial point to radial ring transition is observed.

A qualitative explanation for (1) is that bend distortion is dominant in waist-shaped

bridges and splay distortion if dominant in barrel-shaped bridges. However, (2) seems

drastically different from the results of the previous numerical study by Liang and Chen,

even though the shapes of the bridges are not exactly the same. Our numerical work for the

waist-shaped and barrel-shaped bridges will be introduced in Chapter 3.
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CHAPTER 2

NUMERICAL STUDY OF NEMATIC LIQUID-CRYSTAL BRIDGES PART I –

FINITE DIFFERENCE METHOD FOR CYLINDRICAL NEMATIC BRIDGES

The experimental setting is that nematic liquid-crystal fills up a short cylindrical tube with

homeotropic anchoring at the upper, lower and lateral surfaces. The important parameters

are the aspect ratio Γ and the Frank constant ratio K11/K33. The main question is: what

are the equilibrium states of defect structures for different parameters? This was answered

by Liang and Chen in their numerical study of defect structures inside a closed cylinder

filled with nematics [42] (for other similar numerical studies, please see Refs. [69, 70, 75–

78]). In this chapter, we obtain better results by using a modified version of their original

numerical strategy.

2.1 Theoretical Preparations

This is characterized as a problem of calculus of variations, and the computation process

involves solving the boundary value problem (Euler-Lagrange equations subject to outer

and inner boundary conditions) and evaluating the Oseen-Frank free energy functional [1,

6, 79, 80]. There are two tricky issues: (1) how to deal with the inner boundaries which

include the defect cores and the branch cuts; and (2) when to introduce the cut-off length in

order to make the energy finite. The short answer is: Issue (1) can be resolved by symmetry

or empirical considerations; and for Issue (2), we can introduce the cut-off length either

when setting up the inner boundary conditions or evaluating the energy functional.

2.1.1 Symmetry Assumptions and the Euler-Lagrange Equations

Subject to the homeotropic outer boundary conditions, the unit vector field n in a cylindrical

nematic bridge is assumed to have cylindrical symmetry. For simplicity, we neglect the
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contributions from the twist distortion. Therefore we can choose an arbitrary plane through

the axis of the cylinder and parametrize n via cylindrical coordinates (r, φ, z) as

n = cos θ(r, z) r̂ + sin θ(r, z) ẑ. (2.1)

We see that there is only one angular variable left (i.e., θ), and it only depends on two

spatial coordinates (i.e., r and z). Furthermore, n is assumed to be symmetric with respect

to the mid-plane (i.e., z = 0 plane), which enables us to restrict our consideration to one

quarter of any axial plane as indicated by the purple region of Fig. 2.1.

According to the structures of the four types of defects shown in Fig. 2.2, the order

parameter field Q can be replaced by a continuous vector field n on this region. Therefore,

it is safe to use the Oseen-Frank free energy which is written as

Fd = 2π

∫
dr

∫
dzFd(r, z, θ,

∂θ

∂r
,
∂θ

∂z
), (2.2)

where

Fd ≡ K11
cos2 θ

r
− r(K11 sin2 θ +K33 cos2 θ)

(∂θ
∂r

)2
− r(K11 cos2 θ +K33 sin2 θ)

(∂θ
∂z

)2

−K11 sin 2θ
∂θ

∂r
+K11(cos 2θ + 1)

∂θ

∂z
− (K11 −K33)r sin 2θ

∂θ

∂r

∂θ

∂z
. (2.3)

The associated Euler-Lagrange equation is

K11
sin 2θ

r
+ r sin 2θ(K11 −K33)

((∂θ
∂r

)2
−
(∂θ
∂z

)2)
(2.4)

− 2r cos 2θ(K11 −K33)
∂θ

∂r

∂θ

∂z
+ 2(K11 sin2 θ +K33 cos2 θ)

∂θ

∂r

− sin 2θ(K11 −K33)
∂θ

∂z
+ 2r(K11 sin2 θ +K33 cos2 θ)

∂2θ

∂r2
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Figure 2.2: One quarter of the axial planes for the four types of defect structures; blue
arrows represent unit vectors
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+ 2r(K11 cos2 θ +K33 sin2 θ)
∂2θ

∂z2
− 2r sin 2θ(K11 −K33)

∂2θ

∂r∂z
= 0.

2.1.2 Boundary Conditions

Let a denote the radius of the ring-like defect core. Based on whether the cut-off length is

introduced at this stage, there are two types of boundary conditions for the defect structures.

Boundary Conditions (A)

No cut-off length is introduced, therefore the vector field n can experience a jump in its

direction when crossing the defect core. As a result, the complete boundary conditions are

written as

Radial Point





θ(r, 0) = 0

θ(r, H
2

) = π
2

θ(0, z) = π
2

θ(R, z) = 0

(2.5)

Hyperbolic Point





θ(r, 0) = 0

θ(r, H
2

) = −π
2

θ(0, z) = −π
2

θ(R, z) = 0

(2.6)
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Radial Ring





θ(r < a, 0) = π
2

θ(r > a, 0) = 0

θ(r, H
2

) = π
2

θ(0, z) = π
2

θ(R, z) = 0

(2.7)

Hyperbolic Ring





θ(r < a, 0) = −π
2

θ(r > a, 0) = 0

θ(r, H
2

) = −π
2

θ(0, z) = −π
2

θ(R, z) = 0

(2.8)

where a is a variable. These boundary conditions are illustrated in Fig. 2.3.

Boundary Conditions (B)

A finite cut-off region is introduced which contains the defect core. Then another issue

arises as to how to determine n on their boundaries. We address this issue by dealing with

the following two cases.

(1) The vector field n on the toroidal surface surrounding a ring-like core: This case

includes the ring-like cores at the mid-plane for radial ring or hyperbolic ring defects, as

well as the ones at the top right corner for all types of defects. These ring-like cores are

residing within tori of large major radii and small minor radii of length b/2. Because b is

very small, so it is safe to assume that n on the surface of the toroid is essentially determined

by the proximity of the defect (without regard to the bulk configuration), and that curvature

of the defect line has a negligible effect. To determine the condition of n on the surface of

the toroid, it is convenient to adopt Cartesian coordinates (x, y) centered on the defect as
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Figure 2.3: Boundary conditions (A)

illustrated in Fig. 2.4. Thus, we write

n(x, y) = cos θ(x, y) x̂ + sin θ(x, y) ŷ, (2.9)

and, upon substituting this parametrization into Eq. (1.13), we arrive at the reduced free

energy functional

Fd = L

∫
1

2

[
(K11 sin2 θ +K33 cos2 θ)

(∂θ
∂x

)2
+ (K11 cos2 θ +K33 sin2 θ)

(∂θ
∂y

)2
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Figure 2.4: Cartesian coordinates on the cross-section of a ring-like defect core

− (K11 −K33) sin 2θ
∂θ

∂x

∂θ

∂y

]
dxdy, (2.10)

where L is the length of the equivalent straight defect line. The associated Euler-Lagrange

equation for θ(x, y) is then

2(K11 sin2 θ +K33 cos2 θ)
∂2θ

∂x2
+ 2(K11 cos2 θ +K33 sin2 θ)

∂2θ

∂y2
(2.11)

− (K11 −K33)
[
− sin 2θ

(∂θ
∂x

)2
+ sin 2θ

(∂θ
∂y

)2

+ 2 cos 2θ
∂θ

∂x

∂θ

∂y
+ 2 sin 2θ

∂2θ

∂x∂y

]
= 0.

We expect that the vector field n in the immediate vicinity of the defect core has cylin-

drical symmetry around it; therefore exchanging the independent variables (x, y) for (r, φ)

via (x, y) = r(cosφ, sinφ), and observing that θ = θ(φ), Equation (2.11) becomes the

following nonlinear ordinary differential equation

d2θ

dφ2
+ ε
[

cos(2θ − 2φ)
d2θ

dφ2
− sin(2θ − 2φ)

(dθ

dφ

)2
+ 2 sin(2θ − 2φ)

dθ

dφ

]
= 0, (2.12)

where ε ≡ (K11 −K33)/(K11 +K33), and the boundary condition is θ(2π)− θ(0) = mπ

with m being an integer. Although Eq. (2.12) is nonlinear, some common liquid crystals

usually have |ε|� 1, therefore we may apply perturbation theory in ε [1]. To first order, the
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solution to Eq. (2.12) is

θ(φ) ≈





m
2
φ+ C (for m = 2),

m
2
φ+ C + ε m

2−4m
4(m−2)2

[
− sin ((m− 2)φ+ 2C) + sin(2C)

]
(for m 6= 2),

(2.13)

whereC is a constant of integration. With regard to the ring-like core at top right corner, we

have (m,C) = (−2,−π/2) for the radial defect and (m,C) = (2, π/2) for the hyperbolic

defect. With regard to the ring-like core at the mid-plane, we have (m,C) = (1, 0) for the

radial ring and (m,C) = (−1, 0) for the hyperbolic ring.

(2) The vector field n on the spherical surface surrounding a point-like core: This case

includes the point-like cores at the mid-planes for the radial point and the hyperbolic point.

For convenience, we assume that the radius of the spherical surface surrounding the point

equals the minor radius of the toroidal surface. Then we adopt the boundary conditions

shown in Eq. (2.13), with (m,C) = (2, 0) for the radial point and (m,C) = (−2, 0) for the

hyperbolic point.

To make it easier for numerical computations, we treat each boundary for the cut-off

region as rectangular instead of circular; then the complete boundary conditions can be

written as
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Radial Point





θ(r < b
2
, b
2
) = arctan b

2r

θ(r > b
2
, 0) = 0

θ(r < R− b
2
, H

2
) = π

2

θ(r > R− b
2
, H

2
− b

2
) = − arctan b

2(R−r) + π
2

θ(0, z) = π
2

θ( b
2
, z < b

2
) = arctan 2z

b

θ(R− b
2
, z > H

2
− b

2
) = − arctan H−2z

2R−b + π
2

θ(R, z) = 0

(2.14)
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Hyperbolic Point





θ(r < b
2
, b
2
) = − arctan b

2r

θ(r > b
2
, 0) = 0

θ(r < R− b
2
, H

2
) = −π

2

θ(r > R− b
2
, H

2
− b

2
) = arctan b

2(R−r) − π
2

θ(0, z > b
2
) = −π

2

θ( b
2
, z < b

2
) = − arctan 2z

b

θ(R− b
2
, z > H

2
− b

2
) = arctan H−2z

2R−b − π
2

θ(R, z) = 0

(2.15)
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Radial Ring





θ(r < a− b
2
, 0) = π

2

θ(a− b
2
< r < a, b

2
) = 1

2

[
arctan b

2(r−a) + π
]
− 3

4
ε sin

[
arctan b

2(r−a) + π
]

θ(a < r < a+ b
2
, b
2
) = 1

2
arctan b

2(r−a) − 3
4
ε sin

[
arctan b

2(r−a)

]

θ(r > a+ b
2
, 0) = 0

θ(r < R− b
2
, H

2
) = π

2

θ(r > R− b
2
, H

2
− b

2
) = − arctan b

2(R−r) + π
2

θ(0, z) = π
2

θ(a− b
2
, z < b

2
) = 1

2
(π − arctan 2z

b
)− 3

4
ε sin (π − arctan 2z

b
)

θ(a+ b
2
, z < b

2
) = 1

2
arctan 2z

b
− 3

4
ε sin ( arctan 2z

b
)

θ(R− b
2
, z > H

2
− b

2
) = − arctan H−2z

2R−b + π
2

θ(R, z) = 0

(2.16)
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Hyperbolic Ring





θ(r < a− b
2
, 0) = −π

2

θ(a− b
2
< r < a, b

2
) = −1

2

[
arctan b

2(r−a) + π
]

+ 5
4
ε sin

[
3 arctan b

2(r−a) + 3π
]

θ(a < r < a+ b
2
, b
2
) = −1

2
arctan b

2(r−a) + 5
4
ε sin

[
3 arctan b

2(r−a)

]

θ(r > a+ b
2
, 0) = 0

θ(r < R− b
2
, H

2
) = −π

2

θ(r > R− b
2
, H

2
− b

2
) = arctan b

2(R−r) − π
2

θ(0, z) = −π
2

θ(a− b
2
, z < b

2
) = −1

2
(π − arctan 2z

b
) + 5

4
ε sin (3π − 3 arctan 2z

b
)

θ(a+ b
2
, z < b

2
) = −1

2
arctan 2z

b
+ 5

4
ε sin (3 arctan 2z

b
)

θ(R− b
2
, z > H

2
− b

2
) = arctan H−2z

2R−b − π
2

θ(R, z) = 0

(2.17)
where a is a variable. These boundary conditions are illustrated in Fig. 2.5. Note that,

strictly speaking, θ on the circular boundary of the cut-off region is asymmetric, and θ
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on the rectangular boundary of the cut-off region is different from the one on the circu-

lar boundary. However, Eq. (2.13) is a good approximation if the cut-off region is small

enough; and the errors can be treated as a change to the defect core energy, which is un-

likely to affect the qualitatively features of the defect transitions.

r

z

(a) Radial point

r

z

(b) Hyperbolic point

r

z

(c) Radial ring

r

z

(d) Hyperbolic ring

Figure 2.5: Boundary conditions (B)

2.1.3 Solving the Boundary Value Problem and Evaluating the Energy Functional

There are two kinds of boundary value problems: [a] solving Eq. (2.4) subject to boundary

conditions (2.5) – (2.8), and [b] solving Eq. (2.4) subject to boundary conditions (2.14) –

(2.17). The difference between the resulting solutions θ outside the cut-off regions (i.e., the
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regions which is of length b and contains the defect core) is minimal and can be ignored.

To determine the ground state, we need to substitute the solutions θ for different ring

radii a into the energy functional Eq. (2.3) and search for the state which costs the lowest

free energy. For both of the boundary value problems, the energy functional should not be

evaluated on the cut-off regions, because: for boundary value problem (a), these regions

can cost infinite free energy; for boundary value problem (b), θ is not defined on these

regions.

To summarize, there are two equivalent methods based on Boundary Conditions (A) or

(B). And the former is mentioned in Ref. [81]. In the numerical study conducted by Liang

and Chen, it is not obvious that the cut-off length has been introduced [42]. And computing

the energy difference between the ring defect and point defect at each Γ and K11/K33 does

not suffice to obtain a finite energy. Therefore, their results are not convincing, and we

need to redo the numerical computations.

2.2 Numerical Strategy

To solve this problem numerically, we adopt finite difference method [82–86].

To start with, we choose a set of equally-spaced lattices on this rectangular domain

of length R and width H/2. For all the defect structures we exhaust, we fix the value of

H/2, and vary the value of R to achieve different values of aspect ratio Γ. For fixed H/2,

we choose 33 lattice points; then for R, we choose (2R/H) · 32 + 1 lattice points [note

that, (2R/H) · 32 + 1 is not necessarily an integer; but we define it to be of an integer type,

therefore the number of the lattice points is the largest integer smaller than (2R/H)·32+1].

Secondly, we discretize Eq. (2.4) and the boundary conditions (2.5) – (2.8) or (2.14) –

(2.17). For our study, we consider two different use of boundary conditions:

Case (1): Boundary Conditions (B) for both of the defect cores at the mid-planes and

those at the top right corners;

Case (2): Boundary Conditions (A) for the defect cores at the top right corners and
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Boundary Conditions (B) for those at the mid-planes.

Thirdly, we use the successive over-relaxation method to solve the difference equation

resulting from the discretization of Eq. (2.4); see Ref. [82, 87, 88].

Finally, we evaluate the discretized version of the free energy functional Eq. (2.3). Note

that for Case (2), when we evaluate this functional, we should leave out a thin layer of lat-

tices (of thickness b) on the rightmost edge which contains the core at the top right corner

as illustrated in Fig. 2.6. The reasons will be explained in Chapter 3.

r

z

(a) Case (1): the defect cores (deep blue
regions) are not in the domain of inte-
gration

r

z

(b) Case (2): the defect core and the thin
layer (deep blue regions) are not in the
domain of integration

Figure 2.6: The difference between Case (1) and Case (2) in the evaluation of energy
functional

As mentioned before, we suspect that the original algorithm designed by Liang and

Chen [42] does not converge, which leads to the possible problematic results. Here, we

verify the convergence of our algorithm by plotting the energy landscapes of few examples

as shown in Fig. 2.7.

For the source code, please visit our github repositories; see Ref. [89] for Case (1) and

Ref. [90] for Case (2).
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Figure 2.7: Energy landscapes with different mesh densities. The difference between the
landscapes with two neighboring mesh densities becomes smaller as the mesh densities
increase

2.3 Results Part I – Equilibrium Defect Structures

As expected, by tuning the parameters Γ andK11/K33, we obtain four different equilibrium

defect structures: hyperbolic point, hyperbolic ring, radial point (small ring) and radial ring,

which are shown in Fig. 2.8. The point and ring defects are distinguished by whether the

radius of the ring-like defect core is almost zero or nonzero. While it is easy to obtain the

hyperbolic point defect, the radial defects usually have nonzero radii, so we consider those

with very small radii as the radial point defects.

2.4 Results Part II – Free Energy Landscapes

For each Γ and K11/K33, there are two energy landscapes: one is for the hyperbolic defect

and the other is for the radial defect, as shown in Fig. 2.9. The x-axis is for the scaled radius

of the ring defect, denoted by a/R; the y-axis is for the scaled energy density, denoted by

F/(πK33HΓ2). Then the point defect is represented by the dot at a/R = 0, and the

ring defect is represented by any dot at nonzero a/R. We can see that the landscapes

have several local minima representing the equilibrium states, one of which is the global

minimum representing the ground state. For the sake of simple exposition, we choose to

show the landscape that contains the ground states.

43



0 0.5 1
0

1

r/H

2z/H

(a) Hyperbolic point (Γ = 1, K11/K33 = 1)

0 0.5 1
0

1

r/H

2z/H

(b) Radial point (Γ = 1, K11/K33 = 0.1)

0 1 2 3 4
0

1

r/H

2z/H

(c) Hyperbolic ring (Γ = 4, K11/K33 = 1)

0 1 2 3 4
0

1

r/H

2z/H

(d) Radial ring (Γ = 4, K11/K33 = 0.1)

Figure 2.8: Examples of equilibrium defect structures (shown in one quarter of the axial
plane)
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To better understand the properties of the free energy landscapes, we consider three

general categories: [a] Case (1) and cut-off length b/H = 1/32, [b] Case (1) and cut-off

length b/H = 1/16, and [c] Case (2) and cut-off length b/H = 1/32. For each category,

we consider hyperbolic types with Γ = 1, 2, 3, 4 and K11/K33 = 1, 2, 3, 4 as well as radial

types with Γ = 1, 2, 3, 4 and K11/K33 = 0.1, 0.2, 0.3, 0.4; see Figs. 2.10 – 2.18.

Note that in Figs. 2.10 – 2.15, we choose scaled energy density F/(πK33HΓ2). It may

be a better quantity to characterize the energy costs by different defect structures than scaled

energy F/(πK33H), because when H is fixed, the system with large Γ has a large volume

and is surely expected to have a large total energy. Figures 2.10 – 2.15 show that, in general,

the equilibrium ring defect has lower average energy density than equilibrium point defect,

which is consistent with the fact that a larger portion of the ring defect structure is weakly

distorted as shown in Fig. 2.8.

2.4.1 The Effects of Aspect Ratios

Hyperbolic Defects

For hyperbolic type of defects, Figures. 2.10, 2.12, 2.14, 3.11a, 3.12a and 2.18a show that:

when Γ is small, there is only one minimum representing a point defect; when Γ increases,

a second minimum which represents a ring defect appears, decreases its energy and slowly

increases its radius. Therefore, we observe a hyperbolic point defect when Γ is small and a

hyperbolic ring defect when Γ is large.

Radial Defects

For radial type of defects, Figures. 2.11, 2.13, 2.15, 3.11b, 3.12b and 2.18b show that:

whatever the value of Γ is, there is always one minimum representing a ring defect; when

Γ is very small, the radius of the equilibrium ring is so small that it may be treated as a

point defect; and then, the radius increases as Γ increases. Therefore, we observe a radial

point (small ring) defect when Γ is small and a radial ring defect when Γ is large.
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Figure 2.9: Energy landscapes for hyperbolic and radial types at the same Γ and K11/K33
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Figure 2.11: Energy landscapes for radial types of defects with Case (1) and b/H = 1/32
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Figure 2.12: Energy landscapes for hyperbolic types of defects with Case (1) and b/H =
1/16
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Figure 2.13: Energy landscapes for radial types of defects with Case (1) and b/H = 1/16
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Figure 2.14: Energy landscapes for hyperbolic types of defects with Case (2) and b/H =
1/32
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Figure 2.15: Energy landscapes for radial types of defects with Case (2) and b/H = 1/32
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Figure 2.16: Radii of the equilibrium ring defects with Case (1) and b/H = 1/32
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Figure 2.17: Radii of the equilibrium ring defects with Case (1) and b/H = 1/16
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Figure 2.18: Radii of the equilibrium ring defects with Case (2) and b/H = 1/32
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Figure 2.19: Regions in ring defects. Region (1) is weakly distorted; Region (2) is highly
distorted

One may ask: why is the ring defect preferred over the point defect when Γ is large? A

heuristic argument is in the following.

Let us first divide the cylinder into two regions as shown in Fig. 2.19: Region (1) is

the cylinder bounded by the ring-like defect core with radius a and height H; and Region

(2) is the remaining hollow cylinder. The vector field n is almost uniformly distributed in

Region (1) while it is highly distorted in Region (2). Therefore the average energy density

is almost zero in Region (1) while it is large in Region (2). In addition, the larger of the

rescaled radius a/R of the ring-like core, the higher of the average energy density in Region

(2).

We may imagine the competition between these two regions as follows: for fixed H

and R, the system would like to increase Region (1) to reduce the total energy; however, if
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Region (2) gets too small, its contribution to the total energy will increase due to its very

high average energy density; as a result, Region (1) cannot be too large and Region (2)

cannot be too small.

If the aspect ratio Γ is small, then in order not to make Region (2) too small, Region (1)

may have to be zero, thus we may observe a point defect. If Γ is large, then there will be

enough room for Region (1) to exist, therefore we may observe a ring defect.

2.4.2 The Effects of Frank Constant Ratios

Figures. 2.10 – 2.15 show that, when K33 is fixed, the defect structure with larger K11 has

higher free energy. This is consistent with the fact that larger K11 results in larger splay

distortion energy.

Moreover, by comparing the hyperbolic defects [i.e., Figs. 2.10, 2.12, 2.14, 3.11a, 3.12a

and 2.18a] with the radial defects [i.e., Figs. 2.11, 2.13, 2.15, 3.11b, 3.12b and 2.18b], we

observe that, even though the change of K11/K33 in the radial defects is one order in

magnitude less than the change in the hyperbolic defects, the changes of the energies are

of the same order in both types. This can be explained by the fact that the splay distortion

is more dominant in the radial defects and therefore the radial defects are more sensitive to

the change of K11 when K33 is fixed.

2.4.3 The Effects of Cut-Off Lengths

In our numerical computations, we do not consider the energy inside the defect core with

cut-off length b. By comparing landscapes of b/H = 1/32 [i.e., Figs. 2.10, 2.11] with those

of b/H = 1/16 [i.e., Figs. 2.12, 2.13], we observe no obvious differences in the general

shapes of the landscapes, and the energy difference should come from the hollow toroid

(the difference of the two ring-like defect cores) with thickness H/64, major radius a and

minor radius H/32 as illustrated in Fig. 2.20.
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a H/32

H/64

Figure 2.20: The difference between the two ring-like defect cores

Figures 2.21 and 2.22 illustrate the differences between landscapes of b/H = 1/32

and those of b/H = 1/16 [here, the scaled energy F/(πK33H) is a better choice than

scaled energy density F/(πK33HΓ2)]. We observe that, the landscape differences are al-

ways linear functions, which is consistent with the fact that the energy difference of the

two ring-like defect cores is proportional to the ring radius. Also, we notice that, the land-

scape differences have the same slopes for fixed K11/K33 and have larger slopes for larger

K11/K33, which implies that the energy density difference of the two ring-like defect cores

is independent of Γ but is dependent of K11/K33.

Figure 2.23 illustrates the differences between the equilibrium ring radii of b/H = 1/32

and those of b/H = 1/16. We observe that the change of the cut-off length has small effect

on large equilibrium rings, knowing that the accuracy of our algorithm is of orderO(1/32).

A tentative analytical justification follows.

Let b1 and b2 denote two cut-off lengths. And let F = F (a) denote the free energy for

cut-off length b1, where a denotes the radius of the ring-like core. In another word, F (a)

is the total energy of the defect structure (inside the cylindrical bridge) with the radius of

the ring-like core being a and the length of the cut-off region being b1; and a can be the

radius of an equilibrium ring or a non-equilibrium ring. Then the free energy for the cut-

off length b2 can be approximated by F (a) + ∆F (a) = F (a) + k(H) · a, where ∆F (a)

represents the energy difference between the ring-like defect cores of these two states. Here

we make an approximation that the field n is changed very little by different cut-off lengths,
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Figure 2.21: The differences between energy landscapes for hyperbolic defects between
b/H = 1/32 and b/H = 1/16
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Figure 2.22: The differences between energy landscapes for radial defects between b/H =
1/32 and b/H = 1/16
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Figure 2.23: The differences between the equilibrium ring radii between different cut-off
lengths

and the most important factor that affects the free energy is the change of the domain of

integration, i.e., the change of the size of the cut-off region. The equilibrium conditions for

defect structures with cut-off lengths b1 and b2 are written repectively as

F ′(a) = 0, (2.18)

F ′(a) + k = 0. (2.19)

Let a1 and a2 satisfy Eq. (2.18) and (2.19) respectively. And let ∆a = a2 − a1 denote the

difference between the two radii. If |∆a/a1|� 1, then we can substitute a2 = a1 + ∆a into

Eq. (2.19) and then we have

F ′(a1 + ∆a) + k = 0 =⇒ F ′(a1) + ∆a · F ′′(a1) + k = 0 (2.20)

=⇒ ∆a · F ′′(a1) + k = 0.

Therefore, ∣∣∣∣
∆a

a1

∣∣∣∣� 1 =⇒
∣∣∣∣

k

a1 · F ′′(a1)

∣∣∣∣� 1. (2.21)

Introducing the scaled quantities a1 ≡ a1/R and F ≡ F/πK33H , Condition (2.21) be-

comes ∣∣∣∣
kΓ

πK33F ′′(a1)

∣∣∣∣� 1 =⇒ F ′′(a1)�
∣∣∣∣
kΓ

πK33

∣∣∣∣ . (2.22)
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A large equilibrium ring tends to have a very large F ′′ and we suspect that it can richly

satisfy Condition (2.22), therefore it is less sensitive to the change of the cut-off length.

2.4.4 The Effects of the Boundary Layer Near the Lateral Surface

We will see in Chapter 3 that, for our numerical method if the lateral surface is curved

(e.g., waist-shaped or barrel-shaped), the boundary layer must be cut off in order to make

sure the energy is finite. To understand the influence of this boundary layer and make sure

the qualitative features of the energy landscapes do not change without this layer, we now

focus our study on the energy landscapes in Case (1) and Case (2) with the same cut-off

length b = H/32 as shown in Figs. 2.24 and 2.25. These figures show that the energy of

the boundary layer has an monotonic dependence of Γ and K11/K33. So adding this energy

or subtracting it from an energy landscape is unlikely to change the types and numbers

of equilibrium states, and therefore we can say that the qualitative features of the energy

landscapes do not change without the boundary layer.

Figure 2.26 illustrates the differences between the equilibrium ring radii from Case (1)

and those from Case (2). We can conclude that this thin layer has small effect on large

equilibrium rings. A tentative analytical justification follows.

First, we can write the energy of this thin layer as

∆F = h(a) ·H ·R (2.23)

where h(a) is the energy density with a being the ring radius, and the height H is fixed.

Also, the radius R of the cylinder is a constant for a fixed Γ.

Then, let F = F (a) denote the free energy of remaining region. For fixed Γ, the

equilibrium conditions for Case (1) and (2) are written respectively as

F ′(a) = 0, (2.24)
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Figure 2.24: The differences between energy landscapes for hyperbolic defects between
Case (1) and Case (2)
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Figure 2.25: The differences between energy landscapes for radial defects between Case
(1) and Case (2)
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Figure 2.26: The differences between the equilibrium ring radii between Case (1) and Case
(2)

F ′(a) + h′HR = 0. (2.25)

Let a1 and a2 satisfy Eq. (2.24) and (2.25) respectively; and let ∆a = a2 − a1 denote

the difference between the two radii. If |∆a/a1|� 1, then we can substitute a2 = a1 + ∆a

into Eq. (2.25) and we have

F ′(a1 + ∆a) + h′HR = 0 =⇒ F ′(a1) + ∆a · F ′′(a1) + h′HR = 0 (2.26)

=⇒ ∆a · F ′′(a1) + h′HR = 0.

Therefore we have ∣∣∣∣
∆a

a1

∣∣∣∣� 1 =⇒
∣∣∣∣

h′HR

a1 · F ′′(a1)

∣∣∣∣� 1. (2.27)

Introducing the scaled quantities a1 ≡ a1/R and F ≡ F/πK33H , the condition (2.27)

becomes ∣∣∣∣
h′HRΓ

πK33F ′′(a1)

∣∣∣∣� 1 =⇒ F ′′(a1)�
∣∣∣∣
h′HRΓ

πK33

∣∣∣∣ (2.28)

We suspect that Condition (2.28) is richly satisfied by large equilibrium rings.
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2.5 Results Part III – Defect Structure Diagrams

2.5.1 Common Features

Figure 2.27 shows the defect structure diagrams for Case (1) with b/H = 1/32, Case (1)

with b/H = 1/16 and Case (2) with b/H = 1/32. These defect structure diagrams share

some common features: (1) there exist hyperbolic point – hyperbolic ring; (2) there do not

exist radial point – radial ring, and the radius of the radial ring gradually increases as Γ

increases; (3) there exist radial defects – hyperbolic defects.

Feature (1) can be explained by the fact that two local minima (one represents the

hyperbolic point, and the other represents the hyperbolic ring) are competing with each

other. Feature (2) can be explained by the fact that there is only one local minima and the

associate ring radius a is continuously changing with Γ. As for Feature (3), one may ask:

why is the hyperbolic preferred over the radial when the Frank constant ratio K11/K33 is

large? The answer is that: the bend distortion free energy is dominant in the hyperbolic

defect while the splay distortion free energy is dominant in the radial defect; when K33 is

relatively small, then the hyperbolic defect (with bend distortion occupying more area) will

cost less free energy.

2.5.2 The Effects of Cut-Off Lengths

By comparing Figs. 2.27a and 2.27b, we observe the effects of different cut-off lengths on

the defect structure diagrams: the hyperbolic point – hyperbolic ring transition line for a

greater cut-off length (i.e., b/H = 1/16) is to the left of the line for a shorter cut-off length

(i.e., b/H = 1/32). The explanation is as follows.

As introduced before, let F (a) + k · a and F (a) be the free energies for cut-off lengths

b1 and b2 respectively with b1 < b2 (therefore k · a > 0). For fixed K11/K33, let Γ1

and Γ2 denote the hyperbolic point – hyperbolic ring transition points for the two cases

respectively. Then we know that at Γ2, the two local minima for F (a) have the same
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energy. However, at this same Γ2, the local minimum representing the hyperbolic point

defect has the lower energy for F (a) + k · a due to the fact that k · a is monotonically

increasing with a. Thus, in order to reach the transition point Γ1 for F (a) + k · a, we

need to further increase Γ to reduce the energy for the local minimum representing the

hyperbolic ring defect. Therefore, we have Γ1 > Γ2.

2.5.3 The Effects of the Boundary Layer Near the Lateral Surface

By comparing Figs. 2.27a and 2.27c, we observe the effects of the boundary layer near the

lateral surface on the phase diagrams: [a] the hyperbolic point – hyperbolic ring transition

line for Case (2) is to the left of the line for Case (1); [b] the radial defect – hyperbolic

defect transition line for Case (2) is slightly above the line for Case (1).

For [a], it can be explained as follows: as introduced before, let F (a) +h(a) ·H ·R and

F (a) be the free energies for Case (1) and Case (2) respectively. For fixed K11/K33, let

Γ1 and Γ2 denote the hyperbolic point – hyperbolic ring transition points respectively. Fig-

ure 2.24 shows that h(a) has an increasing trend even though it may not be monotonically

increasing, therefore it is reasonable to assume h(a) ·H · R to be larger for the hyperbolic

ring than the hyperbolic point. Knowing that the two local minima for F (a) have the same

energy at Γ2, in order to reach the transition point Γ1 for F (a) + h(a) ·H · R, we need to

further increase Γ to reduce the energy for the local minimum representing the hyperbolic

ring defect. Therefore, we have Γ1 > Γ2.

For [b], we do not have a good explanation so far. Also, notice that the difference is not

large, so maybe a detailed calculation is necessary.
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Figure 2.27: Defect structure diagrams of cylindrical nematic bridges
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CHAPTER 3

NUMERICAL STUDY OF NEMATIC LIQUID-CRYSTAL BRIDGES PART II –

FINITE DIFFERENCE METHOD FOR WAIST-SHAPED AND

BARREL-SHAPED NEMATIC BRIDGES

3.1 Introduction to the Experiments

The experiments were conducted in Prof. Fernandez Nieves’ Lab by Ellis et al., and were

performed on microscope stages; see Ref. [45]. The experimental setup is shown in Fig. 3.1,

and three different shapes of bridges are illustrated in Fig. 3.2. For the experiments on

waist-shaped bridges, the main procedure is as follows:

(1) To ensure homeotropic anchoring of the nematics on the glass microscope slides,

they dip the slides into hexane (98.5% purity; BDH) with 0.1% w/w lecithin (granular;

Acros).

(2) Place two microscope slides on top of each other on the microscope stage.

(3) In order to be capable of adjusting the distance between the slides, they connect the

top slide to a micromanipulator.

(4) To create a waist-shaped bridge, they first raise the top slide and put a drop of 5CB

(with the Frank constant ratioK11/K33 = 0.74 and approximately 1 nL in volume) onto the

bottom slide by the use of a glass capillary, then lower down the top slide until it touches

the droplet (note that the outer medium is air).

(5) To determine whether there is a point or ring defect, they view the nematic bridge

from the top by the use of polarized optical microscopy (POM).

(6) To determine whether it is a radial or hyperbolic type of defect, they view the ne-

matic bridge from the side by the use of polarized epifluorescent microscopy (PFM).

For the experiments of barrel-shaped bridges, the procedure is almost the same except
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Figure 3.1: Experimental setup (based on Fig. 3(a) in Ref. [45])
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that we replace the Step (4) above by:

(4) To create a barrel-shaped bridge, they first raise the top slide and put a drop of

5CB onto the bottom slide by the use of a glass capillary, then lower down the top slide

until it touches the droplet, and then submerge the nematic bridge in the water; to ensure

homeotropic anchoring of the nematics on the nematics – water interface, they add 8 mM

sodium dodecyl sulfate (Sigma Aldrich) into the water.

The main experimental results are:

(1) For waist-shaped bridges made of 5CB, there are only hyperbolic type of defects,

and the hyperbolic point – hyperbolic ring transition occurs at Γc = 2.7 ± 0.3; and for a

bridge initially created with Γ > Γc, the hyperbolic ring is observed and therefore is the

ground state; and for Γ < Γc, the hyperbolic point is the ground state. In addition, they have

observed that: if the bridge starts at Γ < Γc with a point defect, then the point defect never

becomes a ring defect as Γ increases; however, for the bridge with Γ > Γc which contains

a point defect, the ring defect can always be recovered if they first melt the nematic phase

in the bridge and then let this bridge cool back to the nematic phase. This implies that the

point defect is metastable for Γ > Γc, i.e., the point defect is an equilibrium state but not

a ground state for Γ > Γc. Note that in experiments, the aspect ratio Γ is defined to be

Γ = 2R/H , where R is the radius of the mid-plane.

(2) For barrel-shaped bridges made of 5CB, there are only radial ring defects observed.
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These experimental results are very interesting, and we would like to understand them

through numerical computations, showing that the Oseen-Frank formalism for defects in

nematics is effective in describing these phenomena. One tricky issue is that the actual

process during which the bridge is undergoing defect transition is quite complex: when Γ

is changed, the contact angle θC and K11/K33 are unchanged but the shape of the lateral

surface is deformed; although the shape of the boundary can be determined by Γ and θC ,

there will be more PDEs which make the computations much more expensive than those we

did in Chapter 2. In addition, it is expected that some details of the boundary surface is not

crucial to the defect transitions; rather, it is whether the surface is convex or concave that

is most important. Therefore, in our numerical study, we aim at answering the following

question:

What will the defect structure diagrams look like if the lateral surface of a cylindrical

bridge slightly deviate so that the bridge becomes waist-shaped or barrel-shaped?

This simplifies our computations tremendously, because we can treat this deviation of

lateral surface as a perturbation to the original cylinder. Although in principle our numerical

computations will not be able to provide a great quantitative explanation to the experimental

results, we can have a good qualitative or even semi-quantitative understanding.

3.2 Theoretical Preparations and Numerical Strategy

Similar to the cylindrical bridge, one quarter of the diametrical plane is sufficient for study-

ing the defect structures of waist-shaped and barrel-shaped nematic bridges. We choose it

to be the first quadrant of the Cartesian coordinate system in two dimensions, in which we

need to solve boundary value problems. For the Euler-Lagrange equation, we use Eq. (2.4)

as introduced in Chapter 2. For the boundary conditions, we choose Case (2), i.e., Bound-

ary Conditions (A) for the defect cores at the top right corners and Boundary Conditions
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(B) for those at the mid-planes, which are introduced in Sections 2.1.2 and 2.2. However,

we are faced with some tricky issues shown as follows.

Issue (1)

In Fig. 3.2, there are two radii: the radius R1 for the mid-plane, and the radius R2 for the

upper or lower plane. The question is: is the aspect ratio Γ defined to be 2R1/H or 2R2/H?

Of course, these two definitions are equivalent. In our numerical study, we prefer Γ =

2R2/H to the one used in experiments. Our reasons are: (a) R2 is the boundary for the

boundary value problem, while R1 can be the boundary only if the mid-plane is treated as a

boundary by symmetry arguments; (b) R2 is the radius of the ring-like defect cores located

on the upper and lower planes, and the locations of the defect cores are supposed to be

important information for studying defect structures. For convenience, we simply write R

instead of R2 for later discussions.

Issue (2)

We still choose the finite difference method to study the waist-shaped and barrel-shaped

nematic bridges. However, one may ask: is it good to discretize the curved rightmost

boundary with equally-spaced lattices, and why do we choose Case (2) instead of Case

(1)?

If one wants to accurately describe the shape of the bridges created in the experiments

so that the numerical results can match the experimental results with great precision, then

the finite difference method is not good enough and the finite element method may be a

better choice. However, our goal is to understand how convexity or concavity of the lateral

surface affect the defect structure diagrams of the defect transitions, and we can understand

it by small perturbations of the lateral surface of a cylinder; therefore, the finite difference

method can be good enough if we can approximate the correct perturbations. A detailed

exposition is in the following.
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Assuming that the upper and lower boundaries are parallel to the x-axis when putting

the axial plane in the x− y plane, we choose the function

x

H/2
= Γ− 1

5
+

1

5
· y

H/2
(3.1)

as a phenomenological model of the shape of the lateral surface for the waist-shaped bridge;

similarly, we choose
x

H/2
= Γ +

1

5
− 1

5
· y

H/2
(3.2)

to be the lateral surface for the barrel-shaped bridge. Then we discretize the boundaries of

height H/2 with 33 lattice points; as a result, the discrete versions of the lateral boundaries

are combinations of short line segments as shown in Fig. 3.3. Equations (3.1) and (3.2)

are specially chosen such that the resulting discretized boundaries are close to the lateral

boundary of a cylinder with the former being slightly concave and the latter being slightly

convex.
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Figure 3.3: Boundary of a nematic bridge

As we know, if the the vector field n does not change continuously along a path, then

a defect core will come into being, for example, the defect core at the top right corner.

Therefore the discontinuities on the discretized boundary are likely to be implanted by

66



Discretized Boundary

Smooth Boundary

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

r

z

Boundary of a Waist-Shaped Bridge

1/4 Axial Plane

Γ=1.0

(a) Waist-shaped bridge

Discretized Boundary

Smooth Boundary

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

r

z

Boundary of a Barrel-Shaped Bridge

1/4 Axial Plane

Γ=1.0

(b) Barrel-shaped bridge

Figure 3.4: Vectors on the lateral surface of a nematic bridge

defect cores, which should never occur to the actual smooth boundary. To cope with this

issue, we use two tricks:

(a) For the homeotropic boundary condtions, we let n be perpendicular to the actual

smooth boundary [i.e., Eqs. (3.1) and (3.2)] rather than the discretized boundary, which

makes n on the lateral boundary to be as smooth as possible; see Fig. 3.4.

(b) When evaluating the energy functional, we leave out a layer of thickness b near the

lateral boundary to avoid the infinite energy caused by the possible “fake” defects; this is

also the reason why we should choose Case (2) for our study of waist-shaped and barrel-

shaped nematic bridges.

Note that, even though Eqs. (3.1) [or (3.2)] make the lateral surfaces look like concave

cones [or convex cones], the discretized surfaces are smooth at the midpoint. The two tricks

mentioned above further make sure that the vector field n on the boundary has a general

pattern of it perpendicular to a smooth concave (or convex) boundary.

For the source code, please visit our github repositories; see Ref. [91] for waist-shaped

bridges and Ref. [92] for barrel-shaped bridges.
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Figure 3.5: Equilibrium defect structures in waist-shaped bridges (shown in one quarter of
the axial plane). The thickness of the boundary layer (which is not shown) is set to be the
radius of the defect core, which is b/2, about the distance of two lattices in our algorithm
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Figure 3.6: Equilibrium defect structures in barrel-shaped bridges (shown in one quarter of
the axial plane). The thickness of the boundary layer (which is not shown) is set to be the
radius of the defect core, which is b/2, about the distance of two lattices in our algorithm
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3.3 Results Part I – Equilibrium Defect Structures

As with the case of cylindrical bridges, we observe four different types of equilibrium

defect structures in both waist-shaped and barrel-shaped bridges, i.e., hyperbolic point,

hyperbolic ring, radial point (small ring) and radial ring, which are shown in Figs. 3.5

and 3.6. However, same values of the parameters Γ and K11/K33 can result in different

equilibrium defect structures in a cylindrical, waist-shaped or barrel-shaped bridge, which

implies that the convexity or concavity of the lateral surface affects the energy landscapes

and defect structure diagrams.

3.4 Results Part II – Free Energy Landscapes

As mentioned in the Chapter 2, for each Γ and K11/K33, there are energy landscapes for

both hyperbolic and radial defects. As usual, we choose to show the one that contains

the ground state. In order to compare the energy landscapes, we consider Case (2) and

b/H = 1/32 for all the three types of bridges. Moreover, concerning the fact that the

region for hyperbolic defects in the defect structure diagram becomes larger for waist-

shaped bridges and smaller for barrel-shaped bridges, we consider Γ = 1, 2, 3, 4 for all

defect structures, and K11/K33 = 1, 2, 3, 4 for hyperbolic defects in waist-shaped bridges,

K11/K33 = 0.1 for radial defects in waist-shaped bridges, K11/K33 = 4 for hyperbolic

defects in barrel-shaped bridges, K11/K33 = 0.1, 0.2, 0.3, 0.4 for radial defects in barrel-

shaped bridges; see Figs. 3.7 – 3.12.

Figures. 3.7 – 3.10 are the energy landscapes for waist-shaped and barrel-shaped bridges,

which we need to compare with Figs. 2.14 – 2.15 shown in the Chapter 2. We observe that

the effects of aspect ratios are the same in all three types of bridges: for hyperbolic defects,

there is only one minimum representing a point defect when Γ is small and there appears

another minimum representing a ring defect when Γ is large; for radial defects, there is

only one minimum for whatever the value of Γ is. It is expected that the effects of Frank

70



constant ratios and cut-off lengths should also be the same. Now, we focus on the analysis

of the convexity and concavity of the lateral surface on the energy landscapes.

3.4.1 The Effects of Concavity of the Lateral Surface

By plotting the differences of energy landscapes between waist-shaped and cylindrical

bridges, Figures. 3.13 and 3.14 show that:

(1) The energy for a hyperbolic type of defect is smaller in a waist-shaped bridge than

a cylindrical bridge;

(2) The energy for a radial type of defect is greater in a waist-shaped bridge than a

cylindrical bridge;

(3) When the ring radius is not too large, the difference of energy landscapes between

the two types of bridges becomes flatter as Γ increases.

(1) and (2) imply that a concave lateral surface prefers a hyperbolic type of defect,

therefore the radial defect – hyperbolic defect transition line moves downward along the

K11/K33 – axis. (3) implies that when Γ is large, the concavity results in almost the same

amount of energy decrease for the two local energy minima near the hyperbolic point –

hyperbolic ring transition, therefore the location of this transition line is nearly unaffected.

Figure 3.17 illustrates the differences between the equilibrium ring radii of waist-shaped

bridges and those of cylindrical bridges. We observe that when Γ is large, the concavity

does not change much of the radii of the hyperbolic or radial ring; however, when Γ is

small, the concavity shrinks the radial ring (as a digression, the hyperbolic ring is not a

ground state when Γ is small, so we do not consider it).

3.4.2 The Effects of Convexity of the Lateral Surface

By plotting the differences of energy landscapes between barrel-shaped and cylindrical

bridges, Figures. 3.15 and 3.16 show that:

(1) The energy for a hyperbolic type of defect is greater in a barrel-shaped bridge than
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a cylindrical bridge;

(2) The energy for a radial type of defect is smaller in a waist-shaped bridge than a

cylindrical bridge;

(3) When the ring radius is not too large, the difference of energy landscapes between

the two types of bridges becomes flatter as Γ increases.

(1) and (2) imply that a convex lateral surface prefers a radial type of defect, therefore

the radial – hyperbolic transition line moves upward along the K11/K33 – axis. (3) implies

that when Γ is large, the concavity results in almost the same amount of energy decrease

for the two local energy minima near the hyperbolic point – hyperbolic ring transition,

therefore the location of this transition line is nearly unaffected.

Figure 3.18 illustrates the differences between the equilibrium ring radii of barrel-

shaped bridges and those of cylindrical bridges. We observe that when Γ is large, the

convexity does not change much of the radii of the hyperbolic or radial ring; however,

when Γ is small, the convexity enlarge the radial ring.

3.5 Results Part III – Defect Structure Diagrams

Figures 3.19 and 3.20 are the defect structure diagrams of cylindrical, waist-shaped, and

barrel-shaped bridges with Case (2) [as introduced in Section 3.2] and b/H = 1/32 based

on two definitions of Γ: for the former, Γ = 2R2/H where R2 is the radius of the upper or

lower plane; for the latter, Γ = 2R1/H where R1 is the radius of the mid-plane. A special

note is that there are some outliers (which we ignore) in the defect structure diagrams of

barrel-shaped bridges [i.e., Figs. 3.19c and 3.20c] which happen more frequently at the

radial ring – hyperbolic ring transition line. For example, when plotting Fig. 3.19c, we

observe that the radial ring – hyperbolic ring transition point at Γ = 3.2 has an abnormally

large value of K11/K33, which is very likely due to our very crude numerical method. In

order to get a better plot, we ignore this point and choose a nearby point instead. For the

same example, we choose the transition point at Γ = 3.22 instead, which proves to be a
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Figure 3.7: Energy landscapes for hyperbolic types of defects in waist-shaped bridges with
Case (2) and b/H = 1/32
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Figure 3.8: Energy landscapes for radial types of defects in waist-shaped bridges with Case
(2) and b/H = 1/32

73



K11/K33=4.0

0 0.2 0.4 0.6 0.8 1 1.2

20

40

60

80

Scaled Radius of the Ring Defect a/R

S
ca
le
d
E
ne
rg
y
D
en
si
ty
F
/(
π
·K
33
H
Γ
2
)

Barrel-Shaped
Hyperbolic Defect

Case (2)
Γ=1.0

b/H=1/32

(a) Γ = 1.0

K11/K33=4.0

0 0.2 0.4 0.6 0.8 1

8

12

16

20

24

28

Scaled Radius of the Ring Defect a/R

S
ca
le
d
E
ne
rg
y
D
en
si
ty
F
/(
π
·K
33
H
Γ
2
)

Barrel-Shaped
Hyperbolic Defect

Case (2)
Γ=2.0

b/H=1/32

(b) Γ = 2.0

K11/K33=4.0

0 0.2 0.4 0.6 0.8 1

4

8

12

16

20

Scaled Radius of the Ring Defect a/R

S
ca
le
d
E
ne
rg
y
D
en
si
ty
F
/(
π
·K
33
H
Γ
2
)

Barrel-Shaped
Hyperbolic Defect

Case (2)
Γ=3.0

b/H=1/32

(c) Γ = 3.0

K11/K33=4.0

0 0.2 0.4 0.6 0.8 1.

4

8

12

16

Scaled Radius of the Ring Defect a/R

S
ca
le
d
E
ne
rg
y
D
en
si
ty
F
/(
π
·K
33
H
Γ
2
)

Barrel-Shaped
Hyperbolic Defect

Case (2)
Γ=4.0

b/H=1/32

(d) Γ = 4.0

Figure 3.9: Energy landscapes for hyperbolic types of defects in barrel-shaped bridges with
Case (2) and b/H = 1/32
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Figure 3.10: Energy landscapes for radial types of defects in barrel-shaped bridges with
Case (2) and b/H = 1/32
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Figure 3.13: The differences between energy landscapes for hyperbolic defects between
waist-shaped and cylindrical bridges with Case (2) and b/H = 1/32
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Figure 3.14: The differences between energy landscapes for radial defects between waist-
shaped and cylindrical bridges with Case (2) and b/H = 1/32
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Figure 3.15: The differences between energy landscapes for hyperbolic defects between
barrel-shaped and cylindrical bridges with Case (2) and b/H = 1/32
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Figure 3.16: The differences between energy landscapes for radial defects between barrel-
shaped and cylindrical bridges with Case (2) and b/H = 1/32
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Figure 3.17: The differences between the equilibrium ring radii between waist-shaped and
cylindrical bridges with Case (2) and b/H = 1/32
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Figure 3.18: The differences between the equilibrium ring radii between barrel-shaped and
cylindrical bridges with Case (2) and b/H = 1/32

better choice with a decent value of K11/K33.

Common features

From Fig. 3.19, we observe that the concavity or the convexity of the lateral surface does

not change some qualitative features of the defect structures in cylindrical bridges: in all

three types of bridges (1) there exist hyperbolic point – hyperbolic ring transitions; (2) there

do not exist radial point – radial ring transitions, and the radius of the radial ring gradually

increases as Γ increases; (3) there exist radial defect – hyperbolic defect transitions.
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The effects of concavity and convexity

Figure 3.19d is a comparison of the defect structure diagrams of the three types of bridges.

We observe that the location of the hyperbolic point – hyperbolic ring transition line is

not affected much (especially when Γ is large) by the concavity or convexity of the lateral

surface, while the radial defect – hyperbolic defect transition line moves downward for the

waist-shaped bridge and moves upward for the barrel-shaped bridge; and the reasons are

provided in the last section.

The effects of the radii of the defect cores on the upper and lower planes

By comparing Figs. 3.19 with 3.20, we claim that the definition of the aspect ratio based on

the radius of the upper or lower plane, i.e., Γ = 2R2/H , is better, because the hyperbolic

point – hyperbolic ring transition lines are almost overlapped. This curious phenomenon

seems to suggest that the corners of the boundary, where defect cores are located, are more

important to the defect transitions than the smooth part of the boundary.

3.6 Results Part IV – Comparing Numerical Results with Experiments

All the qualitative experimental results introduced before are consistent with our numer-

ical results. Here we focus our discussion on the quantitative experimental result, i.e.,

the hyperbolic point – hyperbolic ring transition for a waist-shaped bridge made of 5CB

(K11/K33 = 0.74) occurs at Γc = 2.7± 0.3.

The corresponding transition point K11/K33 = 0.74 for the waist-shaped bridge used

in our numerical computation is Γ2 = 2.60 ∼ 2.63 (where Γ2 = 2R2/H). Considering a

different definition of Γ1 is used in the experiments (where Γ1 = 2R1/H), the aspect ratio

we need to compare with the experimental result should be Γ1 = 2.58 ∼ 2.61 which falls

into the range 2.7± 0.3. The relevant energy landscapes are shown in Fig. 3.21.

There are some factors that contribute to the errors of our numerical approach:
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(1) When measured in terms of Γ2, the location of the hyperbolic point – hyperbolic

ring transition line can be a little more affected by the actual shape of the lateral surface

when Γ2 is not large enough, which is indicated in Fig. 3.20d.

(2) Based on Fig. 3.19, we speculate that, whatever the shape of the lateral surface

is, the location hyperbolic point – hyperbolic ring transition line is kept fixed when Γ2 is

large enough. Then the locations of the transition lines in terms of Γ2 for our model [i.e.,

Eq. (3.1)] and the experiments [i.e., the lateral surface is of mean curvature] can be very

close. However, since the radii of the mid-planes for these two cases are different, the

locations of the transition lines in terms of Γ1 may not be that close.

(3) The exclusion of the energy contribution from the thin layer near the lateral surface

may tend to make our hyperbolic point – hyperbolic ring transition line located left to the

actual transition line as indicated in Fig. 2.27d.

(4) In our model, the ratio of the cut-off length to the height is b/H = 1/32. In the

experiments, H is on the order of 10−4m, and the size of the defect core is on the order of

10−8m, therefore the ratio is about 10−4; see Ref. [6, 45]. As indicated in Fig. 2.27d, this

also tends to make our hyperbolic point – hyperbolic ring transition line located left to the

actual transition line.
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Figure 3.19: Defect structure diagrams of cylindrical, waist-shaped and barrel-shaped
bridges with aspect ratio defined to be Γ = 2R2/H
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CHAPTER 4

NUMERICAL STUDY OF NEMATIC LIQUID-CRYSTAL BRIDGES PART II –

MULTIGRID METHOD FOR CYLINDRICAL NEMATIC BRIDGES

From Chapter 2, we can see that for a fixed aspect ratio Γ and K11/K33, there are four

equilibrium defect structures: hyperbolic point, hyperbolic ring, radial point (or small ring)

and radial ring. Defects with ring radii other than the equilibrium ring radii are not in the

equilibrium states. The finite difference method (with the use of successive over-relaxation

method) introduced in Chapter 2 and 3 has to exhaust all the suspicious states most of which

are in non-equilibrium. As mentioned in Chapter 1, this is due to the fact that the defect

core is treated as an inner boundary in the Oseen-Frank formalism, therefore the Euler-

Lagrange equation [i.e., Eq. (2.4)] cannot be satisfied in the whole region. By contrast, if

we use Landau-de Gennes formalism, then its corresponding Euler-Lagrange equation will

be satisfied in the whole region and the four equilibrium states will be its solutions. So our

question is: can we stay within the context of the Oseen-Frank formalism and find solutions

to only those four equilibrium states? This may require a new perspective, i.e., treating the

inner boundaries as being created. In this section, we are experimenting with this new idea

numerically.

4.1 Theoretical Preparations

Similar to Chapter 2, we neglect the energy contributions from the twist distortion and

assume the unit vector field n has cylindrical symmetry. Therefore, we can focus our

analysis on an arbitrary axial plane with length R and width H , and n can be parametrized

as Eq. (2.1) which is rewritten here

n = cos θ(r, z) r̂ + sin θ(r, z) ẑ. (4.1)
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However, different from Chapter 2, we do not assume n to be symmetric with respect to

the mid-plane in the hope that our new algorithm may explore more equilibrium states.

Because no cut-off length is introduced in our numerical experiments, it is convenient

to rescale R and H to be 1, and then let

r̄ =
r

R
, (4.2)

z̄ =
z

H
, (4.3)

θ̄(r̄, z̄) = θ(r, z), (4.4)

where r̄, z̄ and θ̄(r̄, z̄) are rescaled quantities. The Euler-Lagrange equation, i.e., Eq. (2.4),

becomes

K11
sin 2θ̄

r̄
+ r̄ sin 2θ̄(K11 −K33)

((∂θ̄
∂r̄

)2
−
(∂θ̄
∂z̄

)2
· Γ2

4

)
(4.5)

− r̄Γ cos 2θ̄(K11 −K33)
∂θ̄

∂r̄

∂θ̄

∂z̄
+ 2(K11 sin2 θ̄ +K33 cos2 θ̄)

∂θ̄

∂r̄

− Γ

2
sin 2θ̄(K11 −K33)

∂θ̄

∂z̄
+ 2r̄(K11 sin2 θ̄ +K33 cos2 θ̄)

∂2θ̄

∂r̄2

+
Γ2

2
r̄(K11 cos2 θ̄ +K33 sin2 θ̄)

∂2θ̄

∂z̄2
− r̄Γ sin 2θ̄(K11 −K33)

∂2θ̄

∂r̄∂z̄
= 0,
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where Γ = 2R/H is the aspect ratio. The boundary conditions are

Radial Type





θ̄(r̄, 0) = −π
2

θ̄(r̄, 1) = π
2

θ̄(0, z̄) = π
2

or− π
2

θ̄(1, z̄) = 0

(4.6)

Hyperbolic Type





θ̄(r̄, 0) = π
2

θ̄(r̄, 1) = −π
2

θ̄(0, z̄) = π
2

or− π
2

θ̄(1, z̄) = 0

(4.7)

which are illustrated in Fig. 4.1. Note that θ̄(0, z̄) in Eqs. (4.6) and (4.7) is not specified

enough; and we will deal with this issue when constructing the initial conditions as intro-

duced later.

r/R

z/H

(a) Radial

r/R

z/H

(b) Hyperbolic

Figure 4.1: Boundary conditions on the one half of the axial plane

Then our job is to numerically solve the boundary value problem consisting of Eqs. (4.5)
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– (4.7). However, Eqs. (4.6) and (4.7) are only the outer boundary conditions (the inner

boundary conditions, i.e., the defect cores, are not specified), and Eq. (4.5) is only satisfied

on a sub-domain (which does not contain the defect core) which has almost the same area

as the whole region. Then a question arises: how can we create the inner boundary (i.e.,

the defect core) during the numerical process?

We suspect a “competition” between the Euler-Lagrange equation and the outer bound-

ary condition: the Euler-Lagrange equation would like to be satisfied everywhere inside the

domain bounded by the outer boundary; however, the outer boundary condition does not

allow that to happen; therefore, there are some tiny regions, i.e., the defect cores, where the

Euler-Lagrange equation is not satisfied. In short, we suspect that this “competition” leads

to the formation of the defect structure.

4.2 Numerical Strategy

We suspect that this “competition” can be realized by the use of multigrid method. First,

let me introduce the general ideas of multigrid method [82, 93–95].

Suppose we are aiming at solving the following PDE

L(u) = f, (4.8)

where L is the operator, f is the source term and u is the solution. After discretized on the

grid with mesh size h, Equation (4.8) becomes

Lh(uh) = fh, (4.9)

where uh is the exact solution on this grid. Let ũh be an approximation of uh, based on

which we are aiming at obtaining a much better approximation. Let the residual dh be

dh = Lh(ũh)− Lh(uh). (4.10)
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Then Eq. (4.9) is equivalent to

Lh(ũh) = fh + dh. (4.11)

Obviously, the smaller of dh, the better of the approximation ũh.

For the relaxation method, we work on the same grid and decompose Lh as

Lh = Ah − Bh, (4.12)

where Ah is the part that is easy to be inversed, and the common methods include the

Jacobi and Gauss-Seidel methods [82–84]. Then based on Eqs. (4.11) and (4.13), we arrive

at following iterative equation

ũ
(n)
h = A−1h (Bh(ũ(n−1)h ) + fh), (4.13)

where ũ(n)h represents the approximated solution at the nth iterative step, which is expected

to be closer to uh than ũ(n−1)h . After enough iterative steps, we expect that dh is very small

and therefore ũh is very close to uh. For the study of defects in nematics, it is not obvious

to us how to create a defect core during this relaxation process, because creating a defect

core seems to imply a large change at that particular space point.

For the multigrid method, apart from the numerical process on the grid with mesh size

h, i.e., Eqs. (4.9) and (4.11), we need to construct a numerical process on a coarser grid

with mesh size H . The counterpart of Eq. (4.9) on this coarser grid is

LH(uH) = LH(Rũh)−Rdh, (4.14)

whereR is the restriction operator. Let ũH be an approximation of uH , then the counterpart

of Eq. (4.11) on this coarser grid is

LH(ũH) = LH(Rũh)−Rdh + dH , (4.15)
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where dH is the residual on this coarser grid. Then ũh on the finer grid is updated by

ũ′h = ũh + P(ũH −Rũh), (4.16)

where P is the prolongation operator which interpolates the values on the coarser grid to

the finer grid. We can also define the the relative truncation error by

τh ≡ LH(Ruh)−RLh(uh), (4.17)

and its approximation by

τ̃h ≡ LH(Rũh)−RLh(ũh). (4.18)

Then Eqs. (4.14) and (4.15) become, respectively,

LH(uH) = fH + τh, (4.19)

and

LH(ũH) = fH + τ̃h + dH . (4.20)

Following the same procedures, we can construct numerical processes on many grids

which have different mesh densities, hence the name multigrid method. Also on each grid,

we can do a relaxation process such that dh, dH . . . are small enough.

We are optimistic that the multigrid method is able to create a defect core during the

numerical process: first, after relaxation, the solution on the coarsest grid may contain the

crudest information about the location of the defect core such as whether it is in the left

half or right half of the whole region; then, by interpolating this solution to a finer grid and

doing a relaxation process, we can obtain a solution that further fine down the location of

the defect core; and finally, the solution on the finest grid may tell us the accurate location

of the defect core. It is a rather unconventional use of the multigrid method, and the detailed

description of our algorithm is as follows.

After rescaling, the whole domain (i.e., the one half of the axial plane) is a 1×1 square.
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We choose six different grids with number of lattice points: 3 × 3, 5 × 5, 9 × 9, 17 × 17,

33 × 33 and 65 × 65, such that the mesh size of one grid is twice of the mesh size of the

neighboring coarser grid. Let θ̄ki,j denote the value on the k-th grid, i-th column and j-th

row. Also, on the finest grid with 65× 65 lattices, we assume that there is a horizontal line

which cuts the whole region in halves. It is like a not fully formed inner boundary which

contains the “branch cut” of the unit vector field n. We expect it to induce the formation of

a defect core during the numerical process, and we let it to be at the w-th row of the lattice

points counting from the lower side of the square region.

The restriction operatorR in our algorithm is defined by letting θ̄ki,j = 0.5 · θ̄k+1
2i−1,2j−1 +

0.125 · (θ̄k+1
2i,2j−1 + θ̄k+1

2i−1,2j + θ̄k+1
2i−2,2j−1 + θ̄k+1

2i−1,2j−2) [for 2 ≤ i ≤ nk], θ̄ki,1 = θ̄k+1
2i−1,1,

θ̄ki,nk = θ̄k+1
2i−1,nk+1

[for 1 ≤ i ≤ nk], and θ̄k1,j = θ̄k+1
1,2j−1, θ̄knk,j = θ̄k+1

nk+1,2j−1 [for 2 ≤ j ≤ nk];

where nk is the number of lattice points along one side of the square in the k-th grid. The

prolongation operator P is different for the coarsest grid and the rest of the grids due to the

location of the above-mentioned horizontal line, and it will be introduced along with the

numerical process shown as follows.

(a) Radial (b) Hyperbolic

Figure 4.2: Vectors on the 3× 3 grid

Step 1, start with the coarsest grid with 3 × 3 lattices. Of the total nine lattice points,

eight are prescribed by the boundary condition. The value of the lattice point in the center

can be calculated exactly by a nonlinear algebraic equation. For simplicity, we assign it to
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be the same as the one on its left side as shown in Fig. 4.2.

Step 2, work on the finer grid with 5×5 lattices. Firstly, there is an interpolation process:

(a) copy the values on the coarsest grid with 3×3 lattices onto the grid with 5×5 lattices by

letting θ̄22i−1,2j−1 = θ̄1i,j , where i, j = 1, 2, 3; (b) make sure the grid with 5 × 5 lattices has

the correct outer boundary conditions, i.e., θ̄22i−1,2j = θ̄22i−1,2j−1 (for i = 1, 3 and j = 1, 2)

and θ̄22i,2j−1 = θ̄23,2j−1 (for i = 1, 2 and j = 1, 3); (c) for the remaining lattice points, we

let its value to be the upper boundary condition if i > w · 5/65 and let its value to be the

lower boundary condition if i ≤ w · 5/65, where w · 5/65 is the location of the horizontal

line scaled on this grid (note that we define it to be an integer type when programming

with C language). Secondly, there is a relaxation process by Eqs. (4.13) and (4.20) with

a constraint specially designed to cope with the “branch cut” or head-tail symmetry of n:

when computing the difference equation, if the difference of the two neighboring θ̄2i,j , we

add or subtract a π from it; in addition, if the updated θ̄2i,j is less than 0, we force it to

be 0; and if it is greater than π, we force it to be π. We hope that the resulting updated

θ̄2i,j can contain the crudest information about the location of the defect core. And finally,

we compute the relative truncation error τ̃5×5 and store it on the coarsest grid with 3 × 3

lattices.

Step 3, back to the coarsest grid with 3× 3 lattices. Ideally, we should solve Eq. (4.20)

with τ̃5×5 given by Step 2 and dH ignored. However, for simplicity, we just repeat Step 1,

which may introduce some inaccuracies to our final numerical results.

Step 4, back to the grid with 5 × 5 lattices. We update θ̄2i,j by Eq. (4.16), and then we

do another round of relaxation process by Eq. (4.13).

Step 5, work on the grid with 9 × 9 lattices. Similar to Step 2, firstly, there is a an

interpolation process with a slightly different prolongation operator: (a) copy the values on

the 5× 5 grid onto the corresponding lattice points on the 9× 9 grid by letting θ̄32i−1,2j−1 =

θ̄2i,j , where i, j = 1 ∼ 5; (b) make sure the 9 × 9 grid has the correct outer boundary

conditions, i.e., θ̄32i−1,2j = θ̄32i−1,2j−1 [for i = 1, 5 and j = 1 ∼ 4] and θ̄32i,2j−1 = θ̄35,2j−1
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[for i = 1 ∼ 4 and j = 1, 5]; (c) for the remaining lattice points, we let θ̄32i,2j−1 =

0.5 × (θ̄32i+1,2j−1 + θ̄32i−1,2j−1) [for i = 1 ∼ 4, j = 2 ∼ 4]; (d) if the location of the

defect core w · 9/65 (defined as integer type) is an even number, we let θ̄32i−1,2j = 0.5 ×

(θ̄32i−1,2j−1 + θ̄32i−1,2j+1) [for i, j = 2 ∼ 4, and j 6= w · 9/130 or 1 + w · 9/130] and let

θ̄3i,j = θ̄3i,j−1 [for i = 1 ∼ 9 and j = w · 9/65] as well as θ̄3i,j = θ̄3i,j+1 [for i = 1 ∼ 9 and

j = 2 + w · 9/65]; (e) if the location of the defect core w · 9/65 is an odd number, we let

θ̄32i−1,2j = 0.5× (θ̄32i−1,2j−1 + θ̄32i−1,2j+1) [for i, j = 2 ∼ 4, and j 6= 0.5× (−1 + w · 9/65)

or 0.5 × (1 + w · 9/65)] and let θ̄3i,j = θ̄3i,j−1 [for i = 1 ∼ 9 and j = −1 + w · 9/65] as

well as θ̄3i,j = θ̄3i,j+1 [for i = 1 ∼ 9 and j = 1 + w · 9/65]. Secondly, there is a relaxation

process by Eq. (4.13) and (4.20) with the same constraint as introduced in Step 2. We hope

that the resulting updated θ̄3i,j can fine down the location of the defect core. And finally, we

compute τ̃9×9 and store it on the grid with 5× 5 lattices.

Step 6, back to the grid with 5 × 5 lattices. There is the same relaxation process with

updated τ̃9×9. Then we compute a new τ̃5×5 and store it on the coarsest grid with 3 × 3

lattices.

Step 7, back to the coarsest grid with 3× 3 lattices, where we just repeat Step 1 or 3.

Step 8, back to the grid with 5 × 5 lattices, where we update θ̄2i,j by Eq. (4.16) and do

another round of relaxation process.

Step 9, back to the grid with 9× 9 lattices, where we update θ̄3i,j and do another round

of relaxation process.

The remaining steps follow the same pattern: we work on the grid with 17×17 lattices,

then go down to the coarsest grid with 3 × 3 lattices, then bounce back to the finer grid,

and eventually obtain our numerical solution on the finest grid with 65× 65 lattices, where

the accurate location of the defect core is expected to be determined. The diagram of the

complete numerical process is shown in Fig. 4.3.

Compared with the numerical method introduced in Chapter 2 and 3 which requires
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Figure 4.3: Diagram of the numerical process of the multigrid method used in our study

an energy landscape to determine the ground state, the multigrid method is expected to

directly show us the equilibrium states, nevertheless a more theoretical justification is lack-

ing. The most worrisome fact about our algorithm is that Eq. (4.5) is only satisfied outside

the defect core (i.e., inner boundary), not everywhere inside the domain bounded by the

outer boundary. This leads to the fact that we do not know for sure when we should stop

the iterative process, and our temporary treatment is to wait until the solution stabilizes,

i.e., the resulting unit vector field n does not change its pattern. This problem also makes

the evaluation of the energy functional impossible. As a result, we are unable to determine

which one of the equilibrium states is the ground state.

This algorithm has the ability to “create” defect cores: initially, we only specify that

the defect core is at the w-row of the lattice points; then after running the algorithm, we

observe the defect core is formed at a fixed column, and the defect core is characterized

by a tiny region where the the direction of the vector field n looks undefined. A different

algorithm which also “creates” defect cores is introduced in Ref. [96], where the relax-

ation and gradient methods are used. The main difference is that: for our algorithm, the

seemingly equilibrium defect structures are obtained without the evaluation of energy func-

tional. There may be two possible explanations: (1) there is a deficiency in our algorithm

so that the resulting defect structures are not guaranteed to be in equilibrium; (2) there may

be some differences in finding equilibrium ring defects (for our algorithm) and equilibrium
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point defects (for the algorithm introduced in Ref. [96]). Here I must confess that I am un-

able to provide a more theoretical justification of our numerical idea and algorithm. What

I can show are some interesting results which may guide our future study and induce other

researchers’ interest.

For the source code, please visit our github repository; see Ref. [97].

4.3 Results

4.3.1 Qualitative Study of Defect Structures

The most interesting fact about this algorithm is that it can efficiently produce the four

types of equilibrium defect structures as shown in Fig. 4.4, which we can compare with

Fig. 2.8 in Chapter 2. For specified Γ and K11/K33, the hyperbolic or radial point defect

can be obtained by setting w = 36 (or a few of other values, where recall that we let the

defect core to be at the w-row of the lattices) and using the boundary condition Eq. (4.7) or

(4.6); and the hyperbolic or radial ring defect can be obtained by setting w = 33 (or a few

of other values) and using the boundary condition Eq. (4.7) or (4.6).

However, there is an inconsistency between the results here and the ones in Chapter

2: here, it seems that the four defect structures are the equilibrium states; nevertheless,

the results in Chapter 2 show that there is only one local minimum for the radial type

of defects. In addition, our algorithm works well for K11/K33 being close to one when

Eq. (4.5) is close to being a semi-linear PDE; otherwise, we may obtain some bizarre-

looking solutions which are obviously not the equilibrium states. That implies that our

algorithm does not cope with nonlinearity very well.

If the resulting four defect structures, where the defect cores are located at the mid-

plane, are proved to be the equilibrium states, then our next question is: can we prove

these are the only equilibrium states, or can we produce other equilibrium states? We

observe that, in most cases, the resulting defect cores are located close to the horizontal

line prescribed in our algorithm. We suspect that the question can be answered after our
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Figure 4.4: Defect structures at Γ = 1.0, K11/K33 = 2.0 (shown in one half of the diamet-
rical plane)
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algorithm is modified such that the defect core not only moves freely on the prescribed

horizontal line but also moves freely away from it.

4.3.2 Quantitative Study of Ring Radii

One attempt of showing the effectiveness of this algorithm in producing equilibrium defect

structures is to compare the radii of the ring defects obtained by this algorithm with the

results from Chapter 2.

Figures. 4.5 and 4.6 provide the comparisons of the ring radii calculated by the multi-

grid method with the equilibrium ring radii calculated by the successive over-relaxation

method introduced in Chapter 2. Although the lines representing the multigrid method is

highly nonsmooth, they are not far from the lines representing the equilibrium defect struc-

tures; in addition, they show the correct relation between the equilibrium ring radii and

Γ, i.e., the scaled equilibrium ring radii increase with the increase of Γ. The reason why

these lines do not always show the correct relation between the equilibrium ring radii and

K11/K33 is likely due to the fact that our algorithm does not have a good treatment for the

nonlinearity.

By comparing the defect structures obtained by the multigrid method and those obtained

in Chapter 2, Figs. 4.7 and 4.8 further confirm that the defect structures (obtained by the

multigrid method) with almost same radii as the equilibrium defect structures do look like

the equilibrium states. One may say that the defect core in Fig. 4.7a is nicely formed while

the defect core in Fig. 4.8a is awfully formed; however, this intuition needs to be justified

at a higher level of lattice refinement.
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grid method and the successive over-relaxation method at K11/K33 = 1.0 and 1.4
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CHAPTER 5

ANALYTICAL STUDY OF NEMATIC DEFECTS PART I – CALCULUS OF

VARIATIONS FOR ONE-DIMENSIONAL DISCONTINUOUS FUNCTIONS

The multigrid method introduced in Chapter 4 provides numerical evidence that the defect

cores (inner boundaries) can be created in the process of solving the Euler-Lagrange equa-

tion. However its methodology does not apply to analytical calculations. To construct an

analytical theory, we first choose to believe that this is still a problem of calculus of varia-

tions (may be a weird one). Then the next step is to figure out the domain of the function

space.

For many examples of calculus of variations we encounter, the domain is fixed and the

functional derivative is conducted on this fixed domain; see Refs. [79, 80, 98]. However, in

the Oseen-Frank formalism of defects in nematics, the domain is divided by the emergent

defect cores and branch cuts into many patches. The solution is nicely smooth on each

patch, but can be wildly discontinuous on the whole domain [11, 19–22]. That means, the

function space for the whole domain can be a very large Sobolev space, while the function

space for each patch is a space of smooth functions. To resolve this issue, first we need

to figure out whether (1) the energy comes from the differentiation and integration of the

function over the whole domain, or (2) it comes from the differentiation and integration

over each patch and then sum them up. According to the discussions in Chapter 1, the

differentiation and integration over the defect cores and branch cuts leads to an unphysical

energy. Therefore, (2) is physically correct. We classify this type of problems as the

calculus of variations for discontinuous functions. In this chapter, we focus our discussions

on some special one-dimensional examples.
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5.1 The Principle – Method (A)

y

x0 (L1, 0) (L, 0)

(L1,�a)

(L1, a)

Figure 5.1: Calculus of variations

Let us start with the functional

F [f(x), f ′(x)] =

∫

U

dx F(f(x), f ′(x)), (5.1)

subject to the outer boundary conditions

f(0) = f(L) = 0, (5.2)

and inner boundary conditions

f(L−1 ) = −f(L+
1 ) = −a, (5.3)

with a being a fixed parameter, which is illustrated in Fig. 5.1. The domain U is defined

to be the union of two disjoint sets, i.e., U = [0, L1) ∪ (L1, L], where the variable L1 is

the location of the discontinuity. This makes sure that the differentiation and integration

processes do not cross the discontinuity, therefore there will be no “unphysical” infinite

energy. A detailed procedure is in the following.

To find its first functional derivative, let fb(x), fc(x) denote the functions f(x) with

discontinuities being at L1 = b, c [i.e., fb(b−) = −fb(b+) = −a, fc(c−) = −fc(c+) = −a],
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and let δfb(x), δfc(x) denote the variations on fb(x), fc(x) with δfb(b−) = δfb(b
+) = 0,

δfc(c
−) = δfc(c

+) = 0. Assume δfb(x), δfc(x) are small, and |c− b|� 1. Then,

0 = F [fc + δfc]− F [fb] = (F [fc + δfc]− F [fc]) + (F [fc]− F [fb]), (5.4)

which is

∫

U

(
∂F
∂fc
− d

dx

(
∂F
∂f ′c

))
δfc = F [fb]−F [fc] = F (L1 = b)−F (L1 = c) =

dF

dL1

∣∣∣∣
L1=c

·(b−c).

(5.5)

Note that we do not consider F [fc + δfb], because fc + δfb does not satisfy the boundary

conditions thus it is not in the function space we are working on. Because b, c, and δfc are

independent, so we have

∂F
∂f
− d

dx

(
∂F
∂f ′

)
= 0, (5.6)

dF

dL1

= 0. (5.7)

Equations (5.4) – (5.7) implies that the small variations of the functional F around an

equilibrium state can be decomposed into two parts: (1) the small variations due to the

change of the function f with the location of discontinuity fixed, and (2) the small variations

due to the change of the locations of discontinuities.

Now in order to determine whether Eqs. (5.6) and (5.7) are a local minimizer, we need

to compute the second functional derivatives:

F [fc + δfc]− F [fb] = (F [fc + δfc]− F [fc]) + (F [fc]− F [fb]) (5.8)

= 0 +

∫
dx1

∫
dx2

δ2F
δfc(x1)δfc(x2)

δfc(x1)δfc(x2)

+
1

2

d2F

dL2
1

∣∣∣
L1=c
· (b− c)2.
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The local energy minimizer requires Eqs. (5.6) and (5.7) as well as

δ2F
δf(x1)δf(x2)

≥ 0, (5.9)

and
d2F

dL2
1

≥ 0. (5.10)

The above procedure is equivalent to doing calculus of variations for two separate

patches divided by the discontinuity and determine the ground states by comparing the

total energies contributed from these two patches. It is actually the theoretical foundation

for the numerical work in Chapter 2 and 3. Following this procedure which we call Method

(A), we consider the following two simple examples.

5.2 Example 1 – Solved by Method (A)

Consider a more specific energy functional

F [f(x), f ′(x)] =

∫

U

(
df

dx

)2

dx, (5.11)

with Eqs. (5.2) and (5.3) as boundary conditions, and U = [0, L1) ∪ (L1, L]. The question

is: what is the ground state?

Now by Method (A), we start with the Euler-Lagrange equation

d2f

dx2
= 0, (5.12)

which is satisfied on U . The solution is

f(x) =





− a
L1
x, x ∈ [0, L1),

− a
L−L1

x+ L
L−L1

a, x ∈ (L1, L];

(5.13)

which is shown in Fig. 5.2.
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Figure 5.2: Solution to Equation (5.13)

Then substitute Eq. (5.13) into Eq. (5.11), and we arrive at the following energy land-

scape

F (L1) =
a2

L1

+
a2

L− L1

, (5.14)

and the ground state is L1 = L/2.

5.3 Example 2 – Solved by Method (A)

Consider a similar but slightly more difficult example with the energy functional

F [f(x), f ′(x)] =

∫

U

[(df

dx

)2
+ A2f 2

]
dx, (5.15)

Equations (5.2) and (5.3) are the boundary conditions, and the domain is U = [0, L1) ∪

(L1, L]. The question is the same: what is the ground state?

Similarly, the Euler-Lagrange equation is

d2f

dx2
− A2f = 0, (5.16)
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and its solution is

f(x) =





− a
eAL1−e−AL1

eAx + a
eAL1−e−AL1

e−Ax, x ∈ [0, L1),

a
eAL1−e2AL−AL1

eAx − a
e−2AL+AL1−e−AL1

e−Ax, x ∈ (L1, L].

(5.17)

Then substitute Eq. (5.17) into Eq. (5.16), and we have the following energy landscape

F (L1) = a2A · e
AL1 + e−AL1

eAL1 − e−AL1
+ a2A · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1
. (5.18)

The ground state is still L1 = L/2.

Compared with Example 1, there is only a slight modification for Example 2. The

ground state is shown to be unchanged but the calculation is much more involved. It is

expected that for the problem of defects in nematics, Method (A) can sometimes become

impossible for an analytical study. The reason is that it requires solving a boundary value

problem on each patch, which is computationally expensive. Since the ground state is only

characterized by the locations of the inner boundaries, we expect to find a method that is

able to extract only the information of inner boundaries without struggling for the exact

solutions. To work in this direction, we “glue” all the patches by Fourier series, and call it

Method (B) to distinguish it from Method (A). Below are our experiments with this new

idea on the above two examples.

5.4 Example 1 – Solved by Method (B)

We write f as Fourier series of sine functions

f(x) =
∞∑

k=1

bk sin
kπx

L
, (5.19)
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where bk is unknown. The we write its first derivative as

df

dx
=
∞∑

k=1

kπbk
L

cos
kπx

L
. (5.20)

Written in terms of Fourier series, f(x) and f ′(x) are assigned certain values at the discon-

tinuous x = L1, hence the patches are glued together. Here, the energy functional is still

denoted by F [f(x), f ′(x)] while we should keep in mind that f(x) and f ′(x) are expressed

as Eqs. (5.19) and (5.20) and are defined on the whole domain, i.e., [0, L] or U ∪ {L1}.

Now the next step is to construct an energy function of which the small variations only

include the change of the location of the discontinuity. We start by deriving the expression

for bk.

On [0, L1) by Eq. (5.12), we have

0 =

∫ L−
1

0

d2f

dx2
sin

kπx

L
dx =

∫ L−
1

0

sin
kπx

L
d
(df

dx

)
(5.21)

= sin
kπL1

L
· df

dx

∣∣∣
L1

+
kπa

L
cos

kπL1

L
−
(kπ
L

)2 ∫ L−
1

0

f sin
kπx

L
dx.

Therefore,

∫ L1

0

f sin
kπx

L
dx =

aL

kπ
cos

kπL1

L
+
( L
kπ

)2
sin

kπL1

L
· df

dx

∣∣∣
L−
1

. (5.22)

Similarly on (L1, L], we have

∫ L

L+
1

f sin
kπx

L
dx =

aL

kπ
cos

kπL1

L
−
( L
kπ

)2
sin

kπL1

L
· df

dx

∣∣∣
L+
1

. (5.23)

Therefore,

bk =
2

L

∫ L

0

f sin
kπx

L
dx =

2

L

(∫ L−
1

0

f sin
kπx

L
dx+

∫ L

L+
1

f sin
kπx

L
dx
)

(5.24)

=
4a

kπ
cos

kπL1

L
+

2L

(kπ)2
B sin

kπL1

L
,
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where

B =
df

dx

∣∣∣
L+
1

− df

dx

∣∣∣
L−
1

.

Note that the second equality of Eq. (5.24) is due to the fact that f is a bounded function.

To determine the unknown B in Eq. (5.24), we use Dirichlet’s theorem, which is, in our

example, the fact that f , when written in terms of Fourier series as shown in Eq. (5.19), is

zero at the discontinuity; see Ref. [99–101]. Therefore we have

∞∑

k=1

( 4a

kπ
cos

kπL1

L
+

2L

(kπ)2
B sin

kπL1

L

)
sin

kπL1

L
= 0 (5.25)

=⇒
∞∑

k=1

4a

kπ
cos

kπL1

L
sin

kπL1

L
= −B ·

∞∑

k=1

2L

(kπ)2
sin

kπL1

L
sin

kπL1

L
.

To determine B, we make use of the following identity

∞∑

k=1

1

kπ
sin(kπx) =

1

2
− x

2
. (5.26)

Then the LHS of Eq. (5.26) becomes

∞∑

k=1

4a

kπ
cos

kπL1

L
sin

kπL1

L
= 2a

(1

2
− L1

L

)
, (5.27)

which is monotonically decreasing. For the summation part in the RHS of Eq. (5.26), we

have the following relation

d

dL1

( ∞∑

k=1

2L

(kπ)2
sin

kπL1

L
sin

kπL1

L

)
=
∞∑

k=1

2

kπ
sin

2kπL1

L
= 2
(1

2
− L1

L

)
. (5.28)

Knowing that this part is zero at the two end points L1 = 0 or L, then we can obtain the

solution to Eq. (5.28), which is written as

∞∑

k=1

2L

(kπ)2
sin

kπL1

L
sin

kπL1

L
= L1 −

L2
1

L
. (5.29)
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Then substitute Eqs. (5.27) and (5.29) into Eq. (5.25), and we have

B = a
( 1

L− L1

− 1

L1

)
. (5.30)

Substitute Eq. (5.30) into Eq. (5.24) and then substitute Eq. (5.24) into Eq. (5.19) and

(5.20), we have

f(x) = f1(x) + f2(x), (5.31)

where

f1(x) =
∞∑

k=1

4a

kπ
cos

kπL1

L
sin

kπx

L
, (5.32)

f2(x) =
∞∑

k=1

2L ·B
(kπ)2

sin
kπL1

L
sin

kπx

L
=
∞∑

k=1

2aL

(kπ)2

( 1

L− L1

− 1

L1

)
sin

kπL1

L
sin

kπx

L
;

(5.33)

and

df

dx
=
∞∑

k=1

[
4a cos

kπL1

L
+

2L ·B
kπ

sin
kπL1

L

]
· 1

L
cos

kπx

L
(5.34)

=
∞∑

k=1

[
4a cos

kπL1

L
+

2aL

kπ

( 1

L− L1

− 1

L1

)
sin

kπL1

L

]
· 1

L
cos

kπx

L
.

Then we substitute Eqs. (5.31) and (5.34) into the energy functional

F [f(x), f ′(x)] =

∫ L

0

(df

dx

)2
dx, (5.35)

and the resulting energy function is

F (L1) =
∞∑

k=1

(bkkπ)2

2L
= F1(L1) + F2(L1) + F3(L1), (5.36)

where

F1(L1) =
1

2L
·
∞∑

k=1

(
4a cos

kπL1

L

)2
, (5.37)
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F2(L1) =
1

2L
·
∞∑

k=1

(2L ·B
kπ

sin
kπL1

L

)2
=

1

2L
·
∞∑

k=1

[2aL

kπ

( 1

L− L1

− 1

L1

)
sin

kπL1

L

]2
,

(5.38)

F3(L1) =
1

L
·
∞∑

k=1

(
4a cos

kπL1

L

)
·
(2L ·B

kπ
sin

kπL1

L

)
(5.39)

=
1

L
·
∞∑

k=1

(
4a cos

kπL1

L

)
·
[2aL

kπ

( 1

L− L1

− 1

L1

)
sin

kπL1

L

]
.

F1 is insanely divergent, while interestingly for F2, Eq. (5.38) is equal to

F2(L1) =
a2

L1

+
a2

L− L1

− 4a2

L
. (5.40)

We can see that Eqs. (5.41) and (5.14) are equally effective in determining the ground state.

But can we throw away F1(L1) and F3(L1), and keep only F2(L1)? Now it is time to figure

out what F1(L1) and F3(L1) represent.

For F3(L1), Eq. (5.39) is equal to

F3(L1) = −2 ·
( a2
L1

+
a2

L− L1

− 4a2

L

)
, (5.41)

which is finite except at two extreme points, i.e., L1 = 0 or L, therefore it does not contain

the fictitious core energy.

For F1(L1), let us first consider the following energy functional

F (y, L1) =

∫ y

0

(df

dx

)2
dx = F1(y, L1) + F2(y, L1) + F3(y, L1), (5.42)

where F (L,L1) = F (L1), F1(L,L1) = F1(L1), F2(L,L1) = F2(L1), and F3(L,L1) =

F3(L1). Then after tedious calculations, we have

F1(y, L1) =

∫ L

0

(df1
dx

)2
dx (5.43)
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=
4a2

L2
· lim
N→∞

N∑

k=1

(
y + y · cos

2kπL1

L

)

+
4a2

L2
· lim
N→∞

N∑

k1,k2=1,k1 6=k2,

[ L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

+
L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

]

+
4a2

L2
· lim
N→∞

N∑

k1,k2=1

[ L

(k1 + k2)π
cos

(k1 − k2)πL1

L
sin

(k1 + k2)πy

L

+
L

(k1 + k2)π
cos

(k1 + k2)πL1

L
sin

(k1 + k2)πy

L

]

= −2a2

πL
· sin πy

L

cos πL1

L
− cos πy

L

+
a2

πL
· cos (2N+1)πL1

L

sin πL1

L

ln

(
1− cos π(y−L1)

L

1− cos π(y+L1)
L

)

+
4a2y

L2
+





0, if 0 < y < L1

4(N−1)a2
L

+ 2a2

L

(
− 1 +

sin
(2N+1)πL1

L

sin
πL1
L

)
, if L1 < y < L

see Appendix A.

Equation (5.43) implies that F1(L1) contains the fictitious core energy because there is

an infinite energy jump at y = L1. However, for some fixed large value of N , two values

of L1 with a tiny difference can result in two values of F1(L1) with a large difference,

which contradicts our intuition that the energy function F1(L1) should be a differentiable

function. To resolve this issue, we speculate that N should depend on L1 and satisfies the

following condition:

(N − s) · L1

L
∈ Z, (5.44)

where s is a fixed integer. Equation (5.44) implies that, when N is fixed, F1(L1) works for
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only finite number of states characterized by different values of L1, and only whenN →∞

can it be effective for comparing all the states and determining the ground state.

Now we need to show that (5.44) is both a sufficient and necessary condition for F1(L1)

being differentiable.

Proof. Part I: Prove that (5.44) is a sufficient condition.

If L1/L is a rational number, then obviously we can choose an integer N1 that satisfies

(5.44). For many different rational values of L1/L, we can choose (N − s) to be the least

common multiple of all the (N1−s)s. If L1/L is an irrational number, then for any arbitrary

small number δ1, there exists an integer N1, such that

(N1 − s) ·
L1

L
− δ1 ∈ Z. (5.45)

For many different irrational values of L1/L, we can choose (N−s) to be the least common

multiple of all the (N1− s)s, and each δ1 to be replace by δ/(N − s), where δ is arbitrarily

small. Therefore, Condition (5.44) can be satisfied by L1/L being any real number. Then

we substitute Eq. (5.44) into Eq. (5.43), and the resulting F1(y, L1) is written as

F1(y, L1) = −2a2

πL
· sin πy

L

cos πL1

L
− cos πy

L

(5.46)

+
a2

πL
· cos (2s+1)πL1

L

sin πL1

L

ln

(
1− cos π(y−L1)

L

1− cos π(y+L1)
L

)

+
4a2y

L2
+





0, if 0 < y < L1

4(N−1)a2
L

+ 2a2

L

(
− 1 +

sin
(2s+1)πL1

L

sin
πL1
L

)
, if L1 < y < L

Then let y = L, and we have

F1(L1) =
4a2

L
+

4(N − 1)a2

L
+

2a2

L

(
− 1 +

sin (2s+1)πL1

L

sin πL1

L

)
, (5.47)
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which is differentiable.

Part II: Prove that Condition (5.44) is a necessary condition.

If F1(L1) is differentiable, then

sin (2N+1)πL1

L

sin πL1

L

(5.48)

is differentiable. We can write (5.48) as

sin (πh+ πL1

L
)

sin πL1

L

, (5.49)

where h is a differentiable function of L1/L. Then N must satisfy the following condition

N · L1

L
− 1

2
· h
(L1

L

)
∈ Z. (5.50)

If h is a constant function, then without loss of generality, we assume h ∈ [0, 2). And

we can check that only h = 0 can make sure that Condition (5.50) is satisfied for all values

of L1/L. If h is not a constant function, then we need to make sure

L

2L1

· h
(L1

L

)
∈ Z. (5.51)

Therefore we have

h
(L1

L

)
= 2s · L1

L
, (5.52)

where s is an integer. Substitute Eq. (5.52) into Condition (5.50), and we arrive at Condition

(5.44).

Among the many possible values of s, we find that s = 0 is the best option, because

F1(L1) becomes

F1(L1) =
4a2

L
+

4(N − 1)a2

L
, (5.53)

which is independent of L1 (i.e., the location of the discontinuity). With this choice, F1(L1)

is the part of the energy that contains the infinite core energy but it does not change when
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the core moves. To have an idea of the importance of Condition (5.44) [in this case with

s = 0] in determining F1(L1), please see Figure 5.3a which shows that, when N = 50,

F1(L1) has same values for L1 being 0.04, 0.3, 0.6 and 0.96, while F1(L1 = 0.61) has a

different value.
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Figure 5.3: Background energy and its energy density

In order to better understand the fictitious core energy, we need Eq. (5.46) as well as its

density profile

F1(y, L1) =
4a2

L2
+

a2

2L2
·
[

csc2
π(y − L1)

2L
+
(

cos
π(y − 3L1)

2L
− cos

π(y + L1)

2L

)

· cot
πL1

L
csc2

π(y − L1)

2L
csc

π(y + L1)

2L
+ csc2

π(y + L1)

2L

]
, (5.54)

as illustrated in Fig. 5.3b. From Eqs. (5.53) and (5.54), we have two observations:

(1) The fictitious core energy spans over a large region which contains the zero-sized

core (i.e., the discontinuity) at y = L1; in another word, the core has a nonzero size from

an energy point of view. We attribute it to Gibbs phenomenon: the Fourier series of the

discontinuous function f [i.e., Eq. (5.19)] has large oscillations and the size of the region

where these oscillations occur is almost zero; however when we substitute Eqs. (5.19) and

(5.20) into Eq. (5.35), the effect of these oscillations magnifies.

(2) There is a “base” energy 4a2/L in Eq. (5.47); and if we add it to Eq. (5.35), the
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resulting energy is equal to Eq. (5.14).

To make it convenient for later discussions, let us redefine the above concepts, and

name F1(L1) as the background energy (since it is independent of L1) which consists of

three parts:

(a) The fictitious core free energy (new) which is the infinite energy jump right at the

discontinuity;

(b) The fictitious fluctuation energy which is the energy caused by large oscillations

near the discontinuity (i.e., Gibbs phenomenon);

(c) The base energy which is 4a2/L in this example.

Now in order to legally throw away the core and fluctuation energies in F1(L1) to-

gether with F3(L1), let us make a deep comparison between Method (A) and (B) in solving

Example 1.

For clarity, let us denote the function and energy in Method (A) by g andG respectively

instead of f and F , while we keep the notations in Method (B) unchanged. The domains

of f and g are U ∪ {L1} and U respectively. We observe that when the location of the

discontinuity is fixed at x = L1, the only differences between f and g are that f has an

(almost) perpendicular line at x = L1 and large oscillations near it. Let η and ξ denote

these two effects respectively, thus the relation between f and g is written as

f = g + η + ξ. (5.55)

g can be further decomposed as

g = (g − g2) + g2, (5.56)

where g2 = f2|U and f2 being Eq. (6.48).

Compare the energy functions Eqs. (5.14), (5.36) – (5.41) and (5.47), and we have the
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= + +

f g ⌘ ⇠= + +

= +

f = +f1 f2

= +

= +g g � g2 g2

Figure 5.4: Comparisons between f [the solution by using Method (B)] and g [the solution
by using Method (A)]

following observations:

(a) g = (g − g2) + g2 contributes to the real energy G(L1), where g − g2 contributes to

the base energy (i.e., 4a2/L);

(b) f1 = (g − g2) + η + ξ contributes to the background energy F1(L1);

(c) F2(L1) is equal to G(L1) minus the base energy;

(d) F3(L1) can be seen as the interaction energy between f2 and η+ ξ. [We can see that

Eq. (5.39) is the interaction energy between f1 = (g− g2) + η+ ξ and f2; then we observe

that the interaction energy between g− g2 and f2 is zero because the first derivatives of the

former is a constant on U . ]; see Fig. 5.4.

According to the discussion before, the physical free energy functional does not contain

any contribution from the differentiation and integration of the function f across the defect

core, so any part of the energy involving η or ξ should be thrown away and that includes

the core and fluctuation energies in F1(L1) as well as F3(L1). The resulting regularized
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energy calculated by Method (B) is the sum of F2(L1) and the base energy, i.e.,

F (L1) = F2(L1) +
4a2

L
=
a2

L1

+
a2

L− L1

(5.57)

which is equal to Eq. (5.14). Therefore, Method (A) and (B) are equivalent, at least for

Example 1.

So far, Method (B) seems much more difficult than Method (A) with lots of efforts on

how to throw away unphysical energies. Is there a criterion that tells us which part of the

Fourier series of f [i.e., Eq. (5.19)] is related to these unphysical energies and should be

thrown away? Two common features for this part of Fourier series are: (a) its first derivative

is extremely divergent, and (b) its corresponding free energy is independent of the location

of the discontinuity (i.e., independent of L1). That is all we know and we lack a complete

criterion in the general context to specify this part of Fourier series. Fortunately, in this

example, we know we should throw away f1 and keep only f2.

However, even though we know the criterion for this example, the computation leading

to Eq. (5.30) is still not simple enough. Our next question is: do we have to get the exact

solution for f2 [i.e., the second equality of Eq. (6.48) instead of the first equality] in order

to determine the ground state? It is about how to extract the necessary information, and the

answer is a no for this example. Our reasons are as follows.

Firstly, we observe that the procedure from Eq. (5.19) to (5.24) makes sure that the

variable L1 in the Fourier series of f [i.e., Eqs. (5.31) – (6.48)] is either in a trigonometric

function or in B, and both the numerator and denominator of B are Fourier series with L1

as the variable.

Secondly, we realize that: in order to show that a finite number of Fourier modes deter-

mine the ground state, we need to show that F2(L1) can be replaced by a finite number of

trigonometric functions; and therefore we need to show thatB can be replaced by a rational

function of trigonometric functions.
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Thirdly, we observe that by keeping only the first terms of the summations in Eq. (5.25),

the resulting

B = −2πa

L
cot

πL1

L
, (5.58)

has the same zero point and monotonicity with Eq. (5.30).

Lastly, we observe that the part in F2(L1), i.e.,

∞∑

k=1

( 1

kπ
sin

kπL1

L

)2

has the property that its first term has the same monotonicity and zero points with the whole

sequence; therefore we substitute Eq. (5.58) into the first Fourier mode of the first equality

of Eq. (5.38), and the result is

F2(L1) =
8a2

L
cos2

πL1

L
; (5.59)

interestingly but unsurprisingly, Eqs. (5.14) and (5.59) have the same ground states, thus

are equally effective. Figure 5.5 shows the comparisons between Method (A) and (B) for

this example by plotting the energy landscapes and the function B.
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Figure 5.5: Comparisons between Methods (A) and (B) in Example 1
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5.5 Example 2 – Solved by Method (B)

By the same procedure, the function f can be decomposed as

f(x) = f1(x) + f2(x), (5.60)

where

f1(x) =
∞∑

k=1

4a

kπ
cos

kπL1

L
sin

kπx

L
, (5.61)

f2(x) =
∞∑

k=1

[ 4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
+

2C

L
· 1

A2 + (kπ
L

)2
· sin kπL1

L
(5.62)

− 4a

kπ
cos

kπL1

L

]
sin

kπx

L
. (5.63)

By using Dirichlet’s theorem, C satisfies

∞∑

k=1

[ 4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
+

2C

L
· 1

A2 + (kπ
L

)2
· sin kπL1

L

]
sin

kπL1

L
= 0 (5.64)

=⇒

∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L
= −2C

L
·
∞∑

k=1

1

A2 + (kπ
L

)2
· sin kπL1

L
sin

kπL1

L
.

The LHS of Eq. (5.64) satisfies

∞∑

k=1

2a

kπ
sin

2kπL1

L
−
∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L
(5.65)

=
∞∑

k=1

2a

kπ

A2

A2 + (kπ
L

)2
sin

2kπL1

L
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=⇒

d2

dL2
1

∞∑

k=1

2a

kπ
sin

2kπL1

L
− d2

dL2
1

∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L

= −
∞∑

k=1

2aA2

A2 + (kπ
L

)2
2kπ

L
sin

2kπL1

L

=⇒

d2

dL2
1

∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L
− 4A2 ·

∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L
= 0.

Therefore, we have

∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L
= D · (e2AL1 − e2AL−2AL1), (5.66)

where D is a constant. For the summation part in the RHS of Eq. (5.64), we have

d

dL1

∞∑

k=1

1

A2 + (kπ
L

)2
· sin kπL1

L
sin

kπL1

L
=

L

2a
·
∞∑

k=1

4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
sin

kπL1

L
.

(5.67)

Therefore,

∞∑

k=1

1

A2 + (kπ
L

)2
· sin kπL1

L
sin

kπL1

L
=
L ·D
4Aa

· (e2AL1 + e2AL−2AL1 − 1− e2AL). (5.68)

Then substitute Eqs. (5.66) and (5.68) into Eq. (5.64), and we have

C = −Aa · e
AL1 + e−AL1

eAL1 − e−AL1
+ Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1
. (5.69)

We can decompose the energy function F (L1) as

F (L1) = F1(L1) + F2(L1) + F3(L1) + F4(L1), (5.70)
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where

F1(L1) =

∫ L

0

(df1
dx

)2
dx (5.71)

=
1

2L
·
∞∑

k=1

(
4a cos

kπL1

L

)2
,

F2(L1) =

∫ L

0

(df2
dx

)2
dx (5.72)

=
1

2L
·
∞∑

k=1

[
4(kπ)2a
L2

A2 + (kπ
L

)2
cos

kπL1

L
− 4a cos

kπL1

L
+

2C

L
· kπ

A2 + (kπ
L

)2
· sin kπL1

L

]2

=
1

2L
·
∞∑

k=1

[
4(kπ)2a
L2

A2 + (kπ
L

)2
cos

kπL1

L
− 4a cos

kπL1

L
+

2

L

· kπ · sin
kπL1

L

A2 + (kπ
L

)2

(
− Aa · e

AL1 + e−AL1

eAL1 − e−AL1
+ Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)]2
,

F3(L1) = 2

∫ L

0

(df1
dx

)
·
(df2

dx

)
dx (5.73)

=
1

L
·
∞∑

k=1

(
4a cos

kπL1

L

)
·
[

4(kπ)2a
L2

A2 + (kπ
L

)2
cos

kπL1

L
− 4a cos

kπL1

L

+
2C

L
· kπ

A2 + (kπ
L

)2
· sin kπL1

L

]

=
1

L
·
∞∑

k=1

(
4a cos

kπL1

L

)
·
[

4(kπ)2a
L2

A2 + (kπ
L

)2
cos

kπL1

L
− 4a cos

kπL1

L
+

2

L

· kπ · sin
kπL1

L

A2 + (kπ
L

)2

(
− Aa · e

AL1 + e−AL1

eAL1 − e−AL1
+ Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)]
,
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F4(L1) =

∫ L

0

(A2f 2)dx (5.74)

=
A2L

2
·
∞∑

k=1

[
4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
+

2C

L
· 1

A2 + (kπ
L

)2
sin

kπL1

L

]2

=
A2L

2
·
∞∑

k=1

[
4kπa
L2

A2 + (kπ
L

)2
cos

kπL1

L
+

2

L
· sin kπL1

L

A2 + (kπ
L

)2
·

(
− Aa · e

AL1 + e−AL1

eAL1 − e−AL1
+ Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)]2
.

The above decompositions, i.e., Eqs (5.60) – (5.63) and (5.70) – (5.74) are not arbitrary,

because we need to make sure:

(a) F1(L1) is the background energy, which is independent of L1;

(b) F3(L1) is the fictitious interaction energy;

(c) F2(L1) + F4(L1) is the same as Eq. (5.18) up to a constant, therefore is equally

effective in determining the ground state; and in this case, we have

F2(L1) + F4(L1) =
8A2a2

L3

∞∑

k=1

[ kπ

A2 + (kπ
L

)2

]2
cos2

kπL1

L
(5.75)

+
8A4a2

L

∞∑

k=1

[ 1

A2 + (kπ
L

)2

]2
cos2

kπL1

L

+
2A2C2

L

∞∑

k=1

[ 1

A2 + (kπ
L

)2

]2
sin2 kπL1

L

+
2C2

L3

∞∑

k=1

[ kπ

A2 + (kπ
L

)2

]2
sin2 kπL1

L

= a2A · e
AL1 + e−AL1

eAL1 − e−AL1
+ a2A · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1
− 4a2

L
.

(d) F1(L1) and F3(L1) are contributed by f1.
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Now similar to the last section, we can replace the old expression for F2(L1) + F4(L1)

[i.e., Eq. (5.75)] by a finite number of trigonometric functions. By keeping only the first

terms of the summation terms in Eq. (5.64), we have

C = −2πa

L
cot

πL1

L
, (5.76)

which has the same zero point and monotonicity with Eq. (5.69). For the same reason as

discussed in the last section, we substitute Eq. (5.76) into the first term of Eq. (5.75), then

we have

F2(L1) + F4(L1) =
8a2

L
cos2

πL1

L
, (5.77)

which has the same ground state with Eq. (5.18), thus is equally effective. Surprisingly,

Eqs. (5.59) and (5.77) are the same. Figure 5.6 shows the comparisons between Method

(A) and (B) for this example by plotting the energy landscapes.
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Figure 5.6: Comparison between Methods (A) and (B) in Example 2 for energy landscapes
[i.e., Equations (5.18) and (5.77)]

We observe that F2(L1) + F4(L1) has an energy minimum at L1 = L/2. However, the

cross term shown in the expression for F4(L1) [i.e., Eq. (5.74)] has an energy maximum at

L1 = L/2. Fortunately, this term is canceled out by the cross term in F2(L1); otherwise the

energy landscape may have the shape of a Mexican hat. It is thus interesting to consider
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what will happen if A is a function of x instead of being a constant.

5.6 Example 3 – Solved by Method (A) and (B)

Now let us consider M discontinuities located at x = L1, L1 +L2, . . . , L1 +L2 + · · ·+LM

with the same energy functional as shown in Example 1 [i.e., Eq. (5.11)]. Our goal is, still,

to find the ground state when L1, L2, . . . , LM can vary. The outer boundary conditions are

Eq. (5.2); and the inner boundary conditions are f = −a (or a) on the left (or right) side of

each discontinuity.

5.6.1 Method (A)

By solving the Euler-Lagrange equation [i.e., Eq. (5.12)] on each patch, we have the fol-

lowing solution

f(x) =





− a
L1
x, x ∈ [0, L1),

− 2a
L2
x+ 2aL1

L2
+ a, x ∈ (L1, L2),

...

− 2a
Li
x+ 2a

Li
(L1 + L2 + · · ·+ Li−1) + a, x ∈ (L1 + · · ·+ Li−1, L1 + · · ·+ Li−1 + Li),

...

− a
L−(L1+L2+···+LM )

x+ aL
L−(L1+L2+···+LM )

, x ∈ (L1 + · · ·+ LM , L];

(5.78)

which is illustrated in Fig. 5.7.
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Figure 5.7: Solution to Equation (5.12) on the domain [0, L] with M discontinuities [i.e.,
Equation (5.78)]

Therefore the energy landscape is

F (L1, L2, . . . , LM) =
a2

L1

+
4a2

L2

+ · · ·+ 4a2

Li
+ · · ·+ 4a2

LM
+

a2

L− (L1 + L2 + · · ·+ LM)
.

(5.79)

To find the ground state, we solve the following equations

∂F

∂Li
= 0, i ∈ {1, 2, . . . ,M}, (5.80)

which are written explicitly as

− 1

L2
1

+
1

[L− (L1 + L2 + · · ·+ LM)]2
= 0, (5.81)

− 4

L2
i

+
1

[L− (L1 + L2 + · · ·+ LM)]2
= 0, i ∈ {2, 3, . . . ,M} (5.82)

By solving Eqs. (5.81) and (5.82), we obtain the following ground state

L1 =
L

2M
,L2 = L3 = · · · = LM =

L

M
. (5.83)
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5.6.2 Method (B)

We have

f(x) = f1(x) + f2(x), (5.84)

where

f1(x) =
∞∑

k=1

[ 4a

kπ
cos

kπL1

L
+

4a

kπ
cos

kπ(L1 + L2)

L
+ · · · (5.85)

+
4a

kπ
cos

kπ(L1 + L2 + · · ·+ LM)

L

]
sin

kπx

L
,

f(x) =
∞∑

k=1

[ 2L

(kπ)2
B1 sin

kπL1

L
+

2L

(kπ)2
B2 sin

kπ(L1 + L2)

L
(5.86)

+ · · ·+ 2L

(kπ)2
BM sin

kπ(L1 + L2 + · · ·+ LM)

L

]
sin

kπx

L
;

and the energy function

F (L1, L2, . . . , LM) = F1(L1, L2, . . . , LM) + F2(L1, L2, . . . , LM) + F3(L1, L2, . . . , LM),

(5.87)

where

F1(L1, L2, · · · , LM) =
∞∑

k=1

2

L

[
2a cos

kπL1

L
+ 2a cos

kπ(L1 + L2)

L
(5.88)

+ · · ·+ 2a cos
kπ(L1 + L2 + · · ·+ LM)

L

]2
,

F2(L1, L2, · · · , LM) =
∞∑

k=1

2

L

[ L
kπ
B1 sin

kπL1

L
+

L

kπ
B2 sin

kπ(L1 + L2)

L
(5.89)

+ · · ·+ L

kπ
BM sin

kπ(L1 + L2 + · · ·+ LM)

L

]2
,
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F3(L1, L2, · · · , LM) =
∞∑

k=1

4

L

[
2a cos

kπL1

L
+ 2a cos

kπ(L1 + L2)

L
(5.90)

+ · · ·+ 2a cos
kπ(L1 + L2 + · · ·+ LM)

L

]

·
[ L
kπ
B1 sin

kπL1

L
+

L

kπ
B2 sin

kπ(L1 + L2)

L

+ · · ·+ L

kπ
BM sin

kπ(L1 + L2 + · · ·+ LM)

L

]2
.

B1, B2, · · · , BM are functions of L1, L2, · · · , LM . By the Dirichlet’s theorem, we have

f(L1) = f(L1 + L2) = · · · = f(L1 + L2 + · · ·+ LM) = 0, (5.91)

which gives

B1 =
2

L2

− 1

L1

, B2 =
2

L3

− 2

L2

, . . . , BM =
1

L− (L1 + L2 + · · ·+ LM)
− 2

LM
. (5.92)

We can check that the above decompositions are indeed correct, therefore we can use

F2(L1, L2, · · · , LM) to determine the ground state. Following the same steps as described

in the last two sections, we can replace the old expressions for B1, B2, . . . , BM by a finite

number of trigonometric functions. Although for the time being we are unable to justify

our choice, we do find good replacements by letting B1, B2, . . . , BM satisfy the following

equations

2a cos
πL1

L
+ 2a cos

π(L1 + L2)

L
+ 2a cos

π(L1 + L2 + · · ·+ LM)

L

+ · · ·+ L

π
B1 sin

πL1

L
+
L

π
B2 sin

π(L1 + L2)

L
(5.93)

+ · · ·+ L

π
BM sin

π(L1 + L2 + · · ·+ LM)

L
= 0,
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2a cos
2πL1

L
+ 2a cos

2π(L1 + L2)

L
+ 2a cos

2π(L1 + L2 + · · ·+ LM)

L

+ · · ·+ L

2π
B1 sin

2πL1

L
+

L

2π
B2 sin

2π(L1 + L2)

L

+ · · ·+ L

2π
BM sin

2π(L1 + L2 + · · ·+ LM)

L
= 0,

· · · · · ·

2a cos
MπL1

L
+ 2a cos

Mπ(L1 + L2)

L
+ 2a cos

Mπ(L1 + L2 + · · ·+ LM)

L

+ · · ·+ L

Mπ
B1 sin

MπL1

L
+

L

Mπ
B2 sin

Mπ(L1 + L2)

L

+ · · ·+ L

Mπ
BM sin

Mπ(L1 + L2 + · · ·+ LM)

L
= 0.

Then a good replacement for Eq. (5.89) is written as

F2(L1, L2, . . . , LM) =
M∑

k=1

8a2

L

[
cos

kπL1

L
+ cos

kπ(L1 + L2)

L
(5.94)

+ · · ·+ cos
kπ(L1 + L2 + · · ·+ LM)

L

]2
,

Thus the ground state is given by

cos
kπL1

L
+cos

kπ(L1 + L2)

L
+· · ·+cos

kπ(L1 + L2 + · · ·+ LM)

L
= 0, ∀k ∈ {1, 2, . . . ,M},

(5.95)

and is exactly Eq. (5.83). Again, we can see that the largest few Fourier modes determine

the ground state.
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5.7 The Principle – Method (B)

There are three major parts of Method (B): the use of Fourier series, the regularization of

the free energy, and the preservation of finite Fourier modes.

5.7.1 The Use of Fourier Series

First of all, we have an Euler-Lagrange equation that is satisfied locally but not globally. In

another word, it is satisfied on each patch but not on the whole domain. Then we insert the

LHS of the equation (suppose the RHS is zero) into integrals as shown in Eq. (5.21), and

the information of the inner boundaries is encoded in the domain of the integrals. Then we

do integration by parts as well as glue all the integrals on each patch into one integral on

the whole domain, thus we get the Fourier coefficients of the function. Finally, the function

can be written as Fourier series, and the energy function can be expressed in terms of the

Fourier coefficients.

One interesting feature is that there is no need for the type of Fourier basis being de-

termined by the outer boundary conditions. If the basis requires the function to be zero at

the boundary (e.g., the sine series), then there will be Gibbs phenomenon for the resulting

Fourier series at the boundary, and the points extremely close to the boundary will have the

boundary values.

5.7.2 The Regularization of the Free Energy

When computing the physical free energy, we should not do the differentiation and inte-

gration across the inner boundaries (i.e., the defect core). To take care of that, Method (A)

does the differentiation and integration on each patch, and then sum up the values of all

the integrals. By contrast, Method (B) does the differentiation and integration on the whole

domain, and then subtract all the unphysical contributions which include the fictitious core

energy, the fictitious fluctuation energy and the fictitious interaction energy. This is similar
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to the Hadamard regularization [102, 103]. For an effective use of Method (B), we need a

general criterion to determine which part in the Fourier series of the function contributes

to the unphysical energy, and therefore use the remaining part of the Fourier series for all

the later discussions. From the three examples we have shown, we see some properties of

this part of the Fourier series: (1) its first derivative is an extremely divergent sequence; (2)

it alone contributes to the background energy which is infinitely large but is independent

of the locations of the inner boundaries. Since the these examples are too specific, we are

currently unable to foresee a criterion that is suitable for a wider class of examples.

5.7.3 The Preservation of Finite Fourier Modes

The first two parts help to show that Method (B) is equivalent to Method (A). This part

establishes the fact that Method (B) has the computational advantage since it does not

require a complete solution to the Euler-Lagrange equation. The first part makes sure

that the variables representing the locations of the inner boundaries are either contained in

some trigonometric functions or some unknown functions that need to be determined by

the Dirichlet’s theorem [i.e., Eqs. (5.25), (5.64) and (5.91)]. This part implies that those

unknown functions can be replaced by a rational function of trigonometric functions [i.e.,

Eqs. (5.58), (5.76) and (5.93)], and therefore the effective free energy is related to only

finite number of Fourier modes.

So far, this is mainly an observation, because we haven’t found a general scheme to

prove this argument and it is actually not too difficult to determine the unknown functions

for simple examples such as Example 1 and 2.

In short, Method (B) has a much different perspective compared to Method (A). It is

promising that it can solve some difficult problems which Method (A) cannot do.
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CHAPTER 6

ANALYTICAL STUDY OF NEMATIC DEFECTS PART II – DEFECTS IN

TWO-DIMENSIONAL NEMATICS

For a two-dimensional nematics, the unit vector field n can be decomposed as

n = nx x̂ + ny ŷ. (6.1)

Consider a rectangular region with length L1 and width L2, the energy functional (with

one-constant approximation) is written as

F =
K

2

∫ L1

0

dx

∫ L2

0

dy
[(∂nx

∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
, (6.2)

subject to the constraints

n2
x + n2

y = 1, (6.3)

and n ≡ −n (head-tail symmetry) [1, 98]. Thus we have the following Euler-Lagrange

Equations

∂2nx
∂x2

+
∂2nx
∂y2

+
[(∂nx

∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
nx = 0, (6.4)

∂2ny
∂x2

+
∂2ny
∂y2

+
[(∂nx

∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
ny = 0. (6.5)
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In addition, we consider a particular set of homeotropic boundary conditions shown as

follows

nx(0, y) = −1 (6.6)

nx(L1, y) = 1 (6.7)

nx(x, 0) = 0 (6.8)

nx(x, L2) = 0 (6.9)

ny(0, y) = 0 (6.10)

ny(L1, y) = 0 (6.11)

ny(x, 0) = −1 (6.12)

ny(x, L2) = 1 (6.13)

which are illustrated in in Fig. 6.1. The aspect ratio is defined to be Γ = L1/L2.

L1

L2

x

y

Figure 6.1: Boundary conditions for two-dimensional nematics confined in a rectangle

The most tricky issue about this boundary value problem is that Eqs. (6.4) and (6.5)

are not satisfied on the whole domain because the outer boundary conditions (6.6) – (6.13)

force the formation of inner boundaries. As introduced in Chapter 1, the inner boundaries

include: (a) the defect core, which is characterized by |n|= 0; and (b) the branch cut, which

is due to the multi-valuedness of n caused by the head-tail symmetry. For the time being,

we are focusing solely on defects with winding number ±1 to avoid the difficulties related

to the branch cuts. There are similar studies done by Bethuel et al.; see Ref.[104]. But here
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we are trying to develop a different strategy: discussing the energy functional on the whole

domain and creating the inner boundaries during the calculation.

6.1 A Failed Attempt

One natural idea of creating the inner boundaries is to make them part of the solutions

to the boundary value problem [i.e., Eqs. (6.4) – (6.13)], however the solutions can be

too discontinuous. To resolve this issue, we are inspired by the fact that for a Heaviside

function, the location of its discontinuity is the same as the location of the zero point for its

first few Fourier modes; and zero points are very natural to be contained inside a function.

Therefore, instead of solving Eqs. (6.4) and (6.5), we are looking for solving simpler PDEs

with the locations of the zero points of its solutions coinciding with the locations of the

defect cores; and we guess the solutions to the new PDEs and the solutions to Eqs. (6.4)

and (6.5) may have the first few Fourier modes in common.

To find the new PDEs, we observe that the free energy density

Fd =
K

2

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
, (6.14)

shows up in Eqs. (6.4) and (6.5). In addition, we expect an energy “jump” when the number

of defect cores increase. Therefore we may approximate Eqs. (6.4) and (6.5) by

∂2mx

∂x2
+
∂2mx

∂y2
+ λmx = 0, (6.15)

∂2my

∂x2
+
∂2my

∂y2
+ λmy = 0; (6.16)

where λ = 2Fd/K with Fd being interpreted as the mean energy density; and m =

(mx,my) is expected to share the first few Fourier modes with n.

We use separation of variables to solve Eqs. (6.15) and (6.16) subject to the boundary
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conditions (6.6) – (6.13) by letting

mx(x, y) =
∑

i

Ai(x)Bi(y), (6.17)

my(x, y) =
∑

j

Cj(x)Dj(y). (6.18)

Then substitute Eqs. (6.17) – (6.18) into Eqs. (6.15) – (6.16), and we have

1

A

d2A

dx2
+

1

B

d2B

dy2
= −λ, (6.19)

1

C

d2C

dx2
+

1

D

d2D

dy2
= −λ. (6.20)

The boundary conditions Eqs. (6.6) – (6.13) become

∑

i

Ai(0)Bi(y) = −1 (6.21)

∑

i

Ai(L1)Bi(y) = 1 (6.22)

Bi(0) = 0 (6.23)

Bi(L2) = 0 (6.24)

Cj(0) = 0 (6.25)

Cj(L1) = 0 (6.26)

∑

j

Cj(x)Dj(0) = −1 (6.27)

∑

j

Cj(x)Dj(L2) = 1 (6.28)

We expect that zero points are isolated, therefore Ai(x), Bi(y), Cj(x) and Dj(y) are all

trigonometric functions. Thus mx and my can be written as

mx(x, y) =
∑

i

[
ai sin

(√
λ−

( iπ
L2

)2
· x
)

+ bi cos
(√

λ−
( iπ
L2

)2
· x
)]

sin
(iπy
L2

)
,

(6.29)

132



my(x, y) =
∑

j

[
cj sin

(√
λ−

(jπ
L1

)2
· y
)

+ dj cos
(√

λ−
(jπ
L1

)2
· y
)]

sin
(jπx
L1

)
,

(6.30)

where ai, bi, cj , dj are constants and they satisfy

∑

i

bi sin
(iπy
L2

)
= −1, (6.31)

∑

i

[
ai sin

(√
λ−

( iπ
L2

)2
· L1

)
+ bi cos

(√
λ−

( iπ
L2

)2
· L1

)]
sin
(iπy
L2

)
= 1, (6.32)

∑

j

dj sin
(jπx
L1

)
= −1, (6.33)

∑

j

[
cj sin

(√
λ−

(jπ
L1

)2
· L2

)
+ dj cos

(√
λ−

(jπ
L1

)2
· L2

)]
sin
(jπx
L1

)
= 1. (6.34)

Therefore we have the following solutions

mx(x, y) =
∞∑

p=0

4

(2p+ 1)π

[1 + cos

(√
λ−

(
(2p+1)π
L2

)2
· L1

)

sin

(√
λ−

(
(2p+1)π
L2

)2
· L1

) · sin
(√

λ−
((2p+ 1)π

L2

)2

· x
)
− cos

(√
λ−

((2p+ 1)π

L2

)2
· x
)]
· sin (2p+ 1)πy

L2

, (6.35)

my(x, y) =
∞∑

q=0

4

(2q + 1)π

[1 + cos

(√
λ−

(
(2q+1)π
L1

)2
· L2

)

sin

(√
λ−

(
(2q+1)π
L1

)2
· L2

) · sin
(√

λ−
((2q + 1)π

L1

)2
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· y
)
− cos

(√
λ−

((2q + 1)π

L1

)2
· y
)]
· sin (2q + 1)πx

L1

. (6.36)

It is further shown that the number of zero points to Eqs. (6.35) and (6.36) depends on the

ranges of λ, and their locations depend on the specific values of λ. Some examples are

shown in Fig. 6.2.

To verify if this method is correct, we run a finite difference algorithm (with over-

relaxation) for this rectangular domain, and consider one hyperbolic point fixed at the cen-

ter, together with two radial points located at the line y = L2/2, symmetric with respect

to the center, which is illustrated in Fig. 6.3a. Figure 6.3b shows that they tend to collapse

into a single radial point located at the center, and the only other suspicious equilibrium

state is a saddle point (possibly happens when Γ is large) with the radial point being at the

center and the two hyperbolic points being at (L1/4, L2/2) and (3L1/4, L2/2), which does

not seem to be captured by our theory after being compared with Figs. 6.2c and 6.2d.

The problem about this method is that there are many unjustified assumptions: (a) we

are not sure that boundary conditions (6.6) – (6.13) should be the same for both n and

m; (b) we do not have evidence showing that zero points of m coincide with the defect

cores of n; and (c) we are unable to justify that n and m have the first few Fourier modes

in common. The nice thing about this method is that we can watch the topology change

with the change of the values of the parameter λ, and we hope to see similar results from

a correct theory of defects in nematics. We realize that such a theory needs to be derived

more rigorously and systematically.

6.2 A Promising Attempt

The defects in a two-dimensional nematics is like a two-dimensional analogue of the ex-

amples introduced in Chapter 5. While Method (A) can only be used for numerical com-

putations, Method (B) seems quite promising for this two-dimensional example.

First, we need a local analysis for each defect core to show that all the defect cores have
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Figure 6.2: Vector field m for different values of λ
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Figure 6.3: One hyperbolic point and two radial points in two-dimensional nematics

similar properties.

6.2.1 Local Analysis

For an arbitrary defect core, we choose a polar coordinate system with its coordinate sin-

gularity coinciding with it. Parametrize the unit vector field n as

n = cos θ(ρ, φ) x̂ + sin θ(ρ, φ) ŷ, (6.37)

which satisfies Eqs. (6.4) and (6.5) in the polar coordinates

∂2θ

∂ρ2
+

1

ρ

∂θ

∂ρ
+

1

ρ2
∂2θ

∂φ2
= 0. (6.38)

To determine n in the vicinity of defect core, we expand θ(ρ, φ) as

θ(ρ, φ) = θ0(φ) + ρθ1(φ) + ρ2θ2(φ) + . . . , (6.39)

assuming ρ is small. Then substitute Eq. (6.39) into Eq. (6.38), and we have the equation

for θ0(φ)

∂2θ0
∂φ2

= 0. (6.40)

Its solution is

θ0 = mφ+D, (6.41)
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where D is a constant, and m is an integer or half-integer. Equation (6.41) describes a

local property: n is symmetric near the defect core, independent of its location. This local

property is similar to the properties shared in the examples introduced in Chapter 5 where

each discontinuity jumps from −a to a, therefore we may use the same techniques from

Method (B) for a global treatment.

6.2.2 Global Treatment

Since n is a function confined in a finite rectangle, it can be expanded as sums of trigono-

metric functions shown as follows

nx =
∞∑

j1,k1=1

aj1,k1 sin
j1πx

L1

sin
k1πy

L2

(6.42)

=
∞∑

j1=1

cj1,0 sin
j1πx

L1

+
∞∑

j1,k1=1

cj1,k1 sin
j1πx

L1

cos
k1πy

L2

=
∞∑

k1=1

e0,k1 sin
k1πy

L2

+
∞∑

j1,k1=1

ej1,k1 cos
j1πx

L1

sin
k1πy

L2

,

ny =
∞∑

j2,k2=1

bj2,k2 sin
j2πx

L1

sin
k2πy

L2

(6.43)

=
∞∑

j2=1

dj2,0 sin
j2πx

L1

+
∞∑

j2,k2=1

dj2,k2 sin
j2πx

L1

cos
k2πy

L2

=
∞∑

k2=1

f0,k2 sin
k2πy

L2

+
∞∑

j2,k2=1

fj2,k2 cos
j2πx

L1

sin
k2πy

L2

.

Note that nx and ny have more than one representation. This method of Fourier series has

the ability of describing the profile of n, however there can be jump discontinuities at the

outer and inner boundaries, causing an unphysical energy. Therefore, an effective use of
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this method should always be accompanied with a proper regularization.

The next step is to derive a set of algebraic equations by substituting Eqs. (6.42) –

(6.43) into Eqs. (6.4) – (6.13). It turns out that we need only two representations. For

convenience, we choose the representations involving cj1,k1 , dj2,k2 , ej1,k1 and fj2,k2 . The

resulting equations are as follows:

−(j1π)
L2

L1

cos(j1π)− (j1π)
L2

L1

− (j1π)2

2

L2

L1

cj1,0 +

∫ L1

0

dx sin
j1πx

L1

∂nx
∂y

∣∣∣
L2

(6.44)

−
∫ L1

0

dx sin
j1πx

L1

∂nx
∂y

∣∣∣
0

+
π2

32

∞∑

m1,m2,n1,n2=1

(cj1−n1+n2,m1−m2 − cj1−n1+n2,m1+m2

−cj1−n1−n2,m1−m2 + cj1−n1−n2,m1+m2 − cj1+n1+n2,m1−m2 + cj1+n1+n2,m1+m2

+cj1+n1−n2,m1−m2 − cj1+n1−n2,m1+m2)×
(
n1n2

L2

L1

en1,m1en2,m2

+m1m2
L1

L2

cn1,m1cn2,m2 + n1n2
L2

L1

fn1,m1fn2,m2 +m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,

−(k2π)
L1

L2

cos(k2π)− (k2π)
L1

L2

− (k2π)2

2

L1

L2

f0,k2 +

∫ L2

0

dy sin
k2πy

L2

∂ny
∂x

∣∣∣
L1

(6.45)

−
∫ L2

0

dy sin
k2πy

L2

∂ny
∂x

∣∣∣
0

+
π2

32

∞∑

m1,m2,n1,n2=1

(fn1−n2,k2−m1+m2 − fn1−n2,k2−m1−m2

−fn1−n2,k2+m1+m2 + fn1−n2,k2+m1−m2 − fn1+n2,k2−m1+m2 + fn1+n2,k2−m1−m2

+fn1+n2,k2+m1+m2 − fn1−n2,k2+m1−m2)×
(
n1n2

L2

L1

en1,m1en2,m2

+m1m2
L1

L2

cn1,m1cn2,m2 + n1n2
L2

L1

fn1,m1fn2,m2 +m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,
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∫ L2

0

dy sin
k1πy

L2

∂nx
∂x

∣∣∣
L1

−
∫ L2

0

dy sin
k1πy

L2

∂nx
∂x

∣∣∣
0
− (k1π)2

2

L1

L2

e0,k1 (6.46)

+
π2

32

∞∑

m1,m2,n1,n2=1

(en1−n2,k1−m1+m2 − en1−n2,k1−m1−m2 − en1−n2,k1+m1+m2

+en1−n2,k1+m1−m2 − en1+n2,k1−m1+m2 + en1+n2,k1−m1−m2 + en1+n2,k1+m1+m2

−en1−n2,k1+m1−m2)×
(
n1n2

L2

L1

en1,m1en2,m2 +m1m2
L1

L2

cn1,m1cn2,m2

+ n1n2
L2

L1

fn1,m1fn2,m2 +m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,

−(j2π)2

2

L2

L1

dj2,0 +

∫ L1

0

dx sin
j2πx

L1

∂ny
∂y

∣∣∣
L2

−
∫ L1

0

dx sin
j2πx

L1

∂ny
∂y

∣∣∣
0

(6.47)

+
π2

32

∞∑

m1,m2,n1,n2=1

(dj2−n1+n2,m1−m2 − dj2−n1+n2,m1+m2 − dj2−n1−n2,m1−m2

+dj2−n1−n2,m1+m2 − dj2+n1+n2,m1−m2 + dj2+n1+n2,m1+m2 + dj2+n1−n2,m1−m2

−dj2+n1−n2,m1+m2)×
(
n1n2

L2

L1

en1,m1en2,m2 +m1m2
L1

L2

cn1,m1cn2,m2

+ n1n2
L2

L1

fn1,m1fn2,m2 +m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,

cos(k1π)

∫ L1

0

dx sin
j1πx

L1

∂nx
∂y

∣∣∣
L2

−
∫ L1

0

dx sin
j1πx

L1

∂nx
∂y

∣∣∣
0

(6.48)

139



−
[(j1π

L1

)2
+
(k1π
L2

)2]L1L2

4
cj1,k1 +

π2

64

∞∑

m1,m2,n1,n2=1

(cj1−n1+n2,k1+m1−m2

+cj1−n1+n2,k1−m1+m2 − cj1−n1+n2,k1+m1+m2 − cj1−n1+n2,k1−m1−m2

−cj1−n1−n2,k1+m1−m2 − cj1−n1−n2,k1−m1+m2 + cj1−n1−n2,k1+m1+m2

+cj1−n1−n2,k1−m1−m2 − cj1+n1+n2,k1+m1−m2 − cj1+n1+n2,k1+m1−m2

+cj1+n1+n2,k1+m1+m2 + cj1+n1+n2,k1−m1−m2 + cj1+n1−n2,k1+m1−m2

+ cj1+n1−n2,k1−m1+m2 − cj1+n1−n2,k1+m1+m2 − cj1+n1−n2,k1−m1−m2)

×
(
n1n2

L2

L1

en1,m1en2,m2 +m1m2
L1

L2

cn1,m1cn2,m2 + n1n2
L2

L1

fn1,m1fn2,m2

+m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,

cos(j2π)

∫ L2

0

dy sin
k2πy

L2

∂ny
∂x

∣∣∣
L1

−
∫ L2

0

dy sin
k2πy

L2

∂ny
∂x

∣∣∣
0

(6.49)

−
[(j2π

L1

)2
+
(k2π
L2

)2]L1L2

4
fj2,k2 +

π2

64

∞∑

m1,m2,n1,n2=1

(fj2+n1−n2,k2−m1+m2

−fj2+n1−n2,k2−m1−m2 − fj2+n1−n2,k2+m1+m2 + fj2+n1−n2,k2+m1−m2

+fj2−n1+n2,k2−m1+m2 − fj2−n1+n2,k2−m1−m2 − fj2−n1+n2,k2+m1+m2

+fj2−n1+n2,k2+m1−m2 − fj2+n1+n2,k2−m1+m2 + fj2+n1+n2,k2−m1−m2
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+fj2+n1+n2,k2+m1+m2 − fj2+n1+n2,k2+m1−m2 − fj2−n1−n2,k2−m1+m2

+fj2−n1−n2,k2−m1−m2 + fj2−n1−n2,k2+m1+m2 − fj2−n1−n2,k2+m1−m2)

×
(
n1n2

L2

L1

en1,m1en2,m2 +m1m2
L1

L2

cn1,m1cn2,m2 + n1n2
L2

L1

fn1,m1fn2,m2

+m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,

cos(j1π)

∫ L2

0

dy sin
k1πy

L2

∂nx
∂x

∣∣∣
L1

−
∫ L2

0

dy sin
k1πy

L2

∂nx
∂x

∣∣∣
0

(6.50)

−
[(j1π

L1

)2
+
(k1π
L2

)2]L1L2

4
ej1,k1 +

π2

64

∞∑

m1,m2,n1,n2=1

(ej1+n1−n2,k1−m1+m2

−ej1+n1−n2,k1−m1−m2 − ej1+n1−n2,k1+m1+m2 + ej1+n1−n2,k1+m1−m2

+ej1−n1+n2,k1−m1+m2 − ej1−n1+n2,k1−m1−m2 − ej1−n1+n2,k1+m1+m2

+ej1−n1+n2,k1+m1−m2 − ej1+n1+n2,k2−m1+m2 + ej1+n1+n2,k1−m1−m2

+ej1+n1+n2,k1+m1+m2 − ej1+n1+n2,k1+m1−m2 − ej1−n1−n2,k2−m1+m2

+ej1−n1−n2,k1−m1−m2 + ej1−n1−n2,k1+m1+m2 − ej1−n1−n2,k1+m1−m2)

×
(
n1n2

L2

L1

en1,m1en2,m2 +m1m2
L1

L2

cn1,m1cn2,m2 + n1n2
L2

L1

fn1,m1fn2,m2

+m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,
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cos(k2π)

∫ L1

0

dx sin
j2πx

L1

∂ny
∂y

∣∣∣
L2

−
∫ L1

0

dx sin
j2πx

L1

∂ny
∂y

∣∣∣
0

(6.51)

−
[(j2π

L1

)2
+
(k2π
L2

)2]L1L2

4
dj2,k2 +

π2

64

∞∑

m1,m2,n1,n2=1

(dj2−n1+n2,k2+m1−m2

+dj2−n1+n2,k2−m1+m2 − dj2−n1+n2,k2+m1+m2 − dj2−n1+n2,k2−m1−m2

−dj2−n1−n2,k2+m1−m2 − dj2−n1−n2,k1−m1+m2 + dj2−n1−n2,k2+m1+m2

+dj2−n1−n2,k2−m1−m2 − dj2+n1+n2,k2+m1−m2 − dj2+n1+n2,k1+m1−m2

+dj2+n1+n2,k2+m1+m2 + dj2+n1+n2,k2−m1−m2 + dj2+n1−n2,k2+m1−m2

+dj2+n1−n2,k1−m1+m2 − dj2+n1−n2,k2+m1+m2 − dj2+n1−n2,k2−m1−m2)

×
(
n1n2

L2

L1

en1,m1en2,m2 +m1m2
L1

L2

cn1,m1cn2,m2 + n1n2
L2

L1

fn1,m1fn2,m2

+m1m2
L1

L2

dn1,m1dn2,m2

)
= 0,
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∞∑

j1=0

ej1,k1 =
2

k1π
[(−1)k1 − 1] (6.52)

∞∑

j1=0

(−1)j1ej1,k1 =
2

k1π
[1− (−1)k1 ] (6.53)

∞∑

k1=0

cj1,k1 = 0 (6.54)

∞∑

k1=0

(−1)k1cj1,k1 = 0 (6.55)

∞∑

j2=0

fj2,k2 = 0 (6.56)

∞∑

j2=0

(−1)j2fj1,k1 = 0 (6.57)

∞∑

k2=0

dj2,k2 =
2

j2π
[(−1)j2 − 1] (6.58)

∞∑

k2=0

(−1)k2dj2,k2 =
2

j2π
[1− (−1)j2 ] (6.59)

see Appendix B for a detailed derivation.

By counting arguments, Eqs. (6.44) – (6.59) have infinite solutions (each has infinite

terms), each of which corresponds to a defect structure. Also note that if Eqs. (6.44) –

(6.51) do not have the nonlinear terms, then there is only one solution, which is consistent

with the fact that the boundary value problem of the Laplace equation has a unique solution;

see Appendix E for an example.

Next, in order to obtain the energy function, we need to substitute Eqs. (6.42) – (6.43)

into Eq. (6.2). However, first we need to figure out which representation of nx corresponds

to which representation of ny. By a calculation of Eqs. (6.44) – (6.59) involving only

the Fourier modes with 0 ≤ j1, j2, k1, k2 ≤ 2, we suspect that sin(jπx/L1) cos(kπy/L2) –

representation for nx corresponds to cos(jπx/L1) sin(kπy/L2) – representation for ny, and

cos(jπx/L1) sin(kπy/L2) – representation for nx corresponds to sin(jπx/L1) cos(kπy/L2)

– representation for ny; see Appendix D. Therefore, we obtain the energy function which

is written as

F =
K

4
L1L2 ·

{ ∞∑

j1=1

c2j1,0

(j1π
L1

)2
+

1

2

∞∑

j1,k1=1

c2j1,k1

[(j1π
L1

)2
+
(k1π
L2

)2]
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+
∞∑

k2=1

f 2
0,k2

(k2π
L2

)2
+

1

2

∞∑

j2,k2=1

f 2
j2,k2

[(j2π
L1

)2
+
(k2π
L2

)2]}
; (6.60)

or

F =
K

4
L1L2 ·

{ ∞∑

j1=1

d2j2,0

(j2π
L1

)2
+

1

2

∞∑

j2,k2=1

d2j2,k2

[(j2π
L1

)2
+
(k2π
L2

)2]

+
∞∑

k1=1

e20,k1

(k1π
L2

)2
+

1

2

∞∑

j1,k1=1

e2j1,k1

[(j1π
L1

)2
+
(k1π
L2

)2]}
. (6.61)

Equations. (6.60) and (6.61) should have the same values, therefore we are actually consid-

ering two copies of the same system.

So far we have completed Step 1 of Method (B), which is to write the vector field n and

energy function in terms of Fourier series. Two important observations from this step are:

(a) finite number of algebraic equations (6.44) – (6.59) represent infinite number of defect

structures from which we can pick up the ground state in the later work; (b) two copies of

energy functions (6.60) – (6.61) should be obtained simultaneously.

For Step 2: the regularization of the free energy, and Step 3: the preservation of finite

fourier modes, the difficulties still remain with regard to how to deal with Eqs. (6.44) –

(6.59). Just like its one-dimensional analogues introduced in the last chapter, we guess that

the largest few Fourier modes in this two-dimensional system can determine the ground

state.
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CHAPTER 7

CONCLUSIONS

The major theme of this work is the treatment of the defect core in the Oseen-Frank for-

malism of uniaxial nematics. Mostly, the defect core is treated as either a boundary or a

coordinate singularity. We have adopted the first treatment in the numerical study of defect

transitions in the nematic bridges with cylindrical, waist-like and barrel-like shapes, with

the use of finite difference method (with the successive over-relaxation method).

(1) For the cylindrical bridge, our results confirm the existence of different types of

equilibrium defect structures: hyperbolic point, hyperbolic ring, radial point (small ring)

and radial ring, originally discovered in the work by Liang and Chen [42], with a clarifica-

tion that the radial point is difficult to obtain and a radial small ring may be considered as a

radial point in experimental observations. Moreover, the phase diagram we have obtained,

which has a better accuracy, confirms the existence of three out of four defect transitions

mentioned in their original work, which are: hyperbolic point – hyperbolic ring, radial

defect – hyperbolic point and radial defect – hyperbolic ring transitions; yet it misses the

radial point – radial ring transition. This is explained by our analysis of the energy land-

scapes: there are two equilibrium states representing point and ring respectively for the

hyperbolic defects, however there is only one equilibrium state representing either point

(small ring) or ring for the radial defects.

(2) For the waist-shaped and barrel-shaped bridges, we have constructed one exam-

ple for each and have observed that some qualitative features in the cylindrical bridge,

such as the types of the equilibrium defect structures and defect transitions, are still main-

tained regardless of the shapes. As for the quantitative features, we have observed that

the convexity and concavity of the shapes have a great influence on the position of the

radial defect – hyperbolic defect transition line, however the position of the hyperbolic
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point – hyperbolic ring transition line is affected much less obviously. We have further

compared our numerical results with the experimental data provided by Ellis et al. (see

Ref. [45]) on the hyperbolic point – hyperbolic ring transition for the waist-shaped bridge

made of 5CB. Our numerical computation shows that the transition happens at the aspect

ratio Γ = 2.58 ∼ 2.61 which falls into the 2.7± 0.3 range observed from the experiments.

However, the two treatments mentioned above impede a general analytical theory of

defects in nematics. We wonder if a defect core can be created within the Oseen-Frank for-

malism during the calculation of Euler-Lagrange equation or the energy functional, which

is one of the advantages of the Landau-de Gennes formalism where the defect core can

be created as the emergence of biaxial nematic state in a tiny region. To test the feasibil-

ity of this idea, we have conducted a numerical experiment by using a special multigrid

method on the study of equilibrium defect structures in the cylindrical bridge. Instead of

merely increasing the efficiency as the multigrid method usually does, the modified version

is expected to contain the crudest information of the defect core to on the coarsest grid and

fine down the location of the defect core on a finer grid. Without exhaustive search, this

algorithm directly produces the four equilibrium defect structures.

To construct an analytical theory, we have first experimented on the one-dimensional

analogue where the defect cores are represented by the jump discontinuities. Method (A),

which corresponds to the first treatment mentioned before, treats the jump discontinuities

as inner boundaries and solves the boundary value problem in each patch. We regard the

results obtained by Method (A) as physically correct and use them to test the correctness

of new methods. Then we have developed Method (B), which expands the solutions in

terms of Fourier series with unknown coefficients, treats the jump discontinuities as part

of the solutions we need to obtain. We have observed that the correct energy function

from Method (B) can be obtained by properly throwing away an infinitely large part. We

have also noticed that the resulting regularized energy function is equally effective with a

finite number of its Fourier modes for the purpose of determining the ground state, and the
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number of Fourier modes is equal to the number of discontinuities. Then we have applied

Method (B) to study two-dimensional nematics confined in a rectangle. Considering one-

constant approximation, we have derived a finite set of equations which can represent an

infinite number of defect structures with the winding number for each defect core to be±1.

Further work involves how to select the ground states from these defect structures, how to

prove our speculation that a finite number of Fourier modes may determine the equilibrium

defect structures, and how to include the defect cores with winding number ±1/2. We

hope that our attempts can provide a new perspective for the analytical study of defects in

nematics.
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APPENDIX A

DERIVATION OF EQUATION (5.43)

F1(y, L1) can be written as

F1(y, L1) =

∫ y

0

(df1
dx

)2
dx (A.1)

=

∫ y

0

( ∞∑

k=1

4a

L
cos

kπL1

L
cos

kπx

L

)2
dx

=
4a2

L2

∞∑

k1,k2=1

[ L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

+
L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

+
L

(k1 + k2)π
cos

(k1 − k2)πL1

L
sin

(k1 + k2)πy

L

+
L

(k1 + k2)π
cos

(k1 + k2)πL1

L
sin

(k1 + k2)πy

L

]
.

The first summation term in Eq. (A.1) can be further written as

∞∑

k1,k2=1

L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

(A.2)

= lim
N→∞

N∑

k1=k2=1

L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

+ 2 lim
N→∞

N∑

k1>k2=1

L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

;
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where
N∑

k1=k2=1

L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

= N · y, (A.3)

and

N∑

k1>k2=1

L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

(A.4)

=
N∑

k1=2

k1−1∑

k2=1

L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy
L

=
N∑

k1=2

k1−1∑

k2=1

∫ ∞

0

dv e−
k1−k2
L

πv · 1

2

(
ei
k1−k2
L

πL1 + e−i
k1−k2
L

πL1

)
· 1

2i

(
ei
k1−k2
L

πy − e−i k1−k2L
πy
)

=
L

2π

∫ ∞

1

dx

{
− 1

x(x2 − 2x cos π(L1+y)
L

+ 1)2

[
x2 sin

π(2L1 + 2y)

L

− 2x sin
π(L1 + y)

L
− x−N+3 sin

π(N + 1)(L1 + y)

L
+ 2x−N+2 sin

πN(L1 + y)

L

− x−N+1 sin
π(N − 1)(L1 + y)

L

]
− 1

x(x2 − 2x cos π(y−L1)
L

+ 1)2

[
x2 sin

π(2y − 2L1)

L

− 2x sin
π(y − L1)

L
− x−N+3 sin

π(N + 1)(y − L1)

L
+ 2x−N+2 sin

πN(y − L1)

L

− x−N+1 sin
π(N − 1)(y − L1)

L

]
+ (N − 1)

sin π(L1+y)
L

1− 2x cos π(L1+y)
L

+ x2

+ (N − 1)
sin π(y−L1)

L

1− 2x cos π(y−L1)
L

+ x2

}

N→∞−−−→ L

2π

∫ ∞

1

dx

{
− 1

x(x2 − 2x cos π(L1+y)
L

+ 1)2

[
x2 sin

π(2L1 + 2y)

L
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− 2x sin
π(L1 + y)

L

]
− 1

x(x2 − 2x cos π(y−L1)
L

+ 1)2

[
x2 sin

π(2y − 2L1)

L

− 2x sin
π(y − L1)

L

]
+ (N − 1)

sin π(L1+y)
L

1− 2x cos π(L1+y)
L

+ x2

+ (N − 1)
sin π(y−L1)

L

1− 2x cos π(y−L1)
L

+ x2

}

=
L

2π

{
−
[

sin π(L1+y)
L

cos π(L1+y)
L

4 sin2 π(L1+y)
2L

− cos2 π(L1+y)
L

sin π(L1+y)
L

+
π

2
· sin π(L1+y)

L
cos2 π(L1+y)

L

|sin π(L1+y)
L
|3

− arctan
( sin2 π(L1+y)

2L

|sin π(L1+y)
2L

cos π(L1+y)
2L
|

)
· sin π(L1+y)

L
cos2 π(L1+y)

L

|sin π(L1+y)
L
|3

]

+

[
− 1

2 sin π(L1+y)
L

+
π

2|sin π(L1+y)
L
|sin π(L1+y)

L

− arctan
(

tan
π(L1 + y)

2L

)
· 1

sin2 π(L1+y)
L

]

−
[

sin π(y−L1)
L

cos π(y−L1)
L

4 sin2 π(y−L1)
2L

− cos2 π(y−L1)
L

sin π(y−L1)
L

+
π

2
· sin π(y−L1)

L
cos2 π(y−L1)

L

|sin π(y−L1)
L
|3

− arctan
(

tan
π(y − L1)

2L

)
· cos2 π(y−L1)

L

sin2 π(y−L1)
L

]
+

[
− 1

2 sin π(y−L1)
L

+
π

2|sin π(y−L1)
L
|sin π(y−L1)

L

− arctan
(

tan
π(y − L1)

2L

)
· 1

sin2 π(y−L1)
L

]

+ (N − 1)×
[
π

2
· sin π(L1+y)

L

|sin π(L1+y)
L
|
− arctan

(
tan

π(L1 + y)

2L

)]

+ (N − 1)×
[
π

2
· sin π(y−L1)

L

|sin π(y−L1)
L
|
− arctan

(
tan

π(y − L1)

2L

)]}
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=
L

2π
×





[
−N · πy

L
− cos

π(L1+y)
2L

2 sin
π(L1+y)

2L

− cos
π(y−L1)

2L

2 sin
π(y−L1)

2L

]
, if 0 < y < L1

[
Nπ −N · πy

L
− cos

π(L1+y)
2L

2 sin
π(L1+y)

2L

− cos
π(y−L1)

2L

2 sin
π(y−L1)

2L

]
, if L1 < y < L

The second summation term in Eq. (A.1) can be further written as

∞∑

k1,k2=1

L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

(A.5)

= lim
N→∞

N∑

k1=k2=1

L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

+ 2 lim
N→∞

N∑

k1>k2=1

L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

where

N∑

k1=k2=1

L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

(A.6)

=
N∑

k=1

y · cos
2kπL1

L
=
y

2
· cos 2NπL1

L
− cos 2(N+1)πL1

L

1− cos 2πL1

L

− y

2

and

N∑

k1>k2=1

L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

(A.7)

=
N∑

k1=2

k1−1∑

k2=1

L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy
L

=
N∑

k1=2

k1−1∑

k2=1

∫ ∞

0

dv e−
k1−k2
L

πv · 1

2

(
ei
k1+k2
L

πL1 + e−i
k1+k2
L

πL1

)
· 1

2i

(
ei
k1−k2
L

πy − e−i k1−k2L
πy
)
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=
L

2π

∫ ∞

1

dx

{
− 1

x
(
x2 − 2 cos π(y−L1)

L
+ 1
)(
x2 − 2 cos π(y+L1)

L
+ 1
)
[
x2 sin

2π(y + L1)

L

− x sin
π(y + 3L1)

L
− x sin

π(y + L1)

L
+ sin

2πL1

L

− x−N+3 sin
(N + 1)π(y + L1)

L
+ x−N+2 sin

(N + 1)π(y + L1)− π(y − L1)

L

+ x−N+2 sin
Nπ(y + L1)

L
− x−N+1 sin

Nπ(y + L1)− π(y − L1)

L

]

− 1

x
(
x2 − 2 cos π(y−L1)

L
+ 1
)(
x2 − 2 cos π(y+L1)

L
+ 1
)
[
x2 sin

2π(y − L1)

L

+ x sin
π(3L1 − y)

L
− x sin

π(y − L1)

L
− sin

2πL1

L

− x−N+3 sin
(N + 1)π(y − L1)

L
+ x−N+2 sin

(N + 1)π(y − L1)− π(y + L1)

L

+ x−N+2 sin
Nπ(y − L1)

L
− x−N+1 sin

Nπ(y − L1)− π(y + L1)

L

]

− 1

2x
(
x2 − 2 cos π(y−L1)

L
+ 1
)(

1− cos 2πL1

L

)
[
− x sin

π(y + 3L1)

L

+ x sin
π(y + L1)

L
+ sin

4πL1

L
− sin

2πL1

L
+ x sin

π(y − L1) + 2(N + 1)πL1

L

− x sin
π(y − L1) + 2NπL1

L
− sin

2(N + 1)πL1

L
+ sin

2NπL1

L

]

− 1

2x
(
x2 − 2 cos π(y+L1)

L
+ 1
)(

1− cos 2πL1

L

)
[
x sin

π(3L1 − y)

L
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+ x sin
π(y − L1)

L
− sin

4πL1

L
+ sin

2πL1

L
+ x sin

π(y + L1)− 2(N + 1)πL1

L

− x sin
π(y + L1)− 2NπL1

L
+ sin

2(N + 1)πL1

L
− sin

2NπL1

L

]}

N→∞−−−→ L

2π

∫ ∞

1

dx

{
− 1

x
(
x2 − 2 cos π(y−L1)

L
+ 1
)(
x2 − 2 cos π(y+L1)

L
+ 1
)

·
[
x2 sin

2π(y + L1)

L
− x sin

π(y + 3L1)

L
− x sin

π(y + L1)

L
+ sin

2πL1

L

]

− 1

x
(
x2 − 2 cos π(y−L1)

L
+ 1
)(
x2 − 2 cos π(y+L1)

L
+ 1
)
[
x2 sin

2π(y − L1)

L

+ x sin
π(3L1 − y)

L
− x sin

π(y − L1)

L
− sin

2πL1

L

]

− 1

2x
(
x2 − 2 cos π(y−L1)

L
+ 1
)(

1− cos 2πL1

L

)
[
− x sin

π(y + 3L1)

L

+ x sin
π(y + L1)

L
+ sin

4πL1

L
− sin

2πL1

L
+ x sin

π(y − L1) + 2(N + 1)πL1

L

− x sin
π(y − L1) + 2NπL1

L
− sin

2(N + 1)πL1

L
+ sin

2NπL1

L

]

− 1

2x
(
x2 − 2 cos π(y+L1)

L
+ 1
)(

1− cos 2πL1

L

)
[
x sin

π(3L1 − y)

L

+ x sin
π(y − L1)

L
− sin

4πL1

L
+ sin

2πL1

L
+ x sin

π(y + L1)− 2(N + 1)πL1

L
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− x sin
π(y + L1)− 2NπL1

L
+ sin

2(N + 1)πL1

L
− sin

2NπL1

L

]}

=
L

2π
×





[
π
2
· y
L
− π

2
· y
L
· sin

(2N+1)πL1
L

sin
πL1
L

+
cos

(2N+1)πL1
L

+cos
πL1
L

4 sin
πL1
L

ln
(

1−cos π(y−L1)
L

1−cos π(y+L1)
L

)]
, if 0 < y < L1

[
π
2

(
1− y

L

)
·
(
− 1 +

sin
(2N+1)πL1

L

sin
πL1
L

)
+

cos
(2N+1)πL1

L
+cos

πL1
L

4 sin
πL1
L

ln
(

1−cos π(y−L1)
L

1−cos π(y+L1)
L

)]
, if L1 < y < L

The third summation term in Eq. (A.1) can be further written as

N∑

k1,k2=1

L

(k1 + k2)π
cos

(k1 − k2)πL1

L
sin

(k1 + k2)πy

L
(A.8)

=
N∑

k1,k2=1

∫ ∞

0

dv e−
k1+k2
L

πv · 1

2

(
ei
k1−k2
L

πL1 + e−i
k1−k2
L

πL1

)
· 1

2i

(
ei
k1+k2
L

πy − e−i k1+k2L
πy
)

=
L

π

∫ ∞

1

dx
1

x
(
x2 − 2x cos π(y+L1)

L
+ 1
)(
x2 − 2x cos π(y−L1)

L
+ 1
) ·
[
x2 sin

2πy

L

− x sin
π(y + L1)

L
− x sin

π(y − L1)

L
− x−N+2 sin

(N + 1)π(y + L1) + π(y − L1)

L

− x−N+2 sin
Nπ(y − L1) + 2πy

L
+ x−N+1 sin

(N + 1)π(y + L1)

L

+ x−N+1 sin
Nπ(y + L1) + π(y − L1)

L
− x−N sin

Nπ(y + L1)

L

+ x−N+1 sin
Nπ(y − L1) + π(y + L1)

L
+ x−N+1 sin

(N + 1)π(y − L1)

L
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− x−N sin
Nπ(y − L1)

L
+ x−2N+2 sin

2(N + 1)πy

L

− x−2N+1 sin
2(N + 1)πy − π(y − L1)

L
+ x−2N sin

2Nπy

L
− x−2N+1 sin

2Nπy + π(y − L1)

L

]

N→∞−−−→ L

π

∫ ∞

1

dx
1

x
(
x2 − 2x cos π(y+L1)

L
+ 1
)(
x2 − 2x cos π(y−L1)

L
+ 1
) ·
[
x2 sin

2πy

L

− x sin
π(y + L1)

L
− x sin

π(y − L1)

L

]

= − L

4π
· cos πL1

L

sin πL1

L

ln
(1− cos π(y−L1)

L

1− cos π(y+L1)
L

)
+





y
2
, if 0 < y < L1

y−L
2
, if L1 < y < L

The fourth summation term in Eq. (A.1) can be further written as

N∑

k1,k2=1

L

(k1 + k2)π
cos

(k1 + k2)πL1

L
sin

(k1 + k2)πy

L
(A.9)

=
∞∑

k1,k2=1

∫ ∞

0

dv e−
k1+k2
L

πv · 1

2

(
ei
k1+k2
L

πL1 + e−i
k1+k2
L

πL1

)
· 1

2i

(
ei
k1+k2
L

πy − e−i k1+k2L
πy
)

=
L

2π

∫ ∞

1

dx

{
1

x
(
x2 − 2x cos π(y+L1)

L
+ 1
)2

[
x2 sin

2π(y + L1)

L
− 2x sin

π(y + L1)

L

− 2x−N+2 sin
(N + 2)π(y + L1)

L
+ 4x−N+1 sin

(N + 1)π(y + L1)

L

− 2x−N sin
Nπ(y + L1)

L
+ x−2N+2 sin

(2N + 2)π(y + L1)

L
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− 2x−2N+1 sin
(2N + 1)π(y + L1)

L
+ x−2N sin

2Nπ(y + L1)

L

]

+
1

x
(
x2 − 2x cos π(y−L1)

L
+ 1
)2

[
x2 sin

2π(y − L1)

L
− 2x sin

π(y − L1)

L

− 2x−N+2 sin
(N + 2)π(y − L1)

L
+ 4x−N+1 sin

(N + 1)π(y − L1)

L

− 2x−N sin
Nπ(y − L1)

L
+ x−2N+2 sin

(2N + 2)π(y − L1)

L

− 2x−2N+1 sin
(2N + 1)π(y − L1)

L
+ x−2N sin

2Nπ(y − L1)

L

]}

N→∞−−−→ L

2π

∫ ∞

1

dx

{
1

x
(
x2 − 2x cos π(y+L1)

L
+ 1
)2

[
x2 sin

2π(y + L1)

L

− 2x sin
π(y + L1)

L

]
+

1

x
(
x2 − 2x cos π(y−L1)

L
+ 1
)2

[
x2 sin

2π(y − L1)

L

− 2x sin
π(y − L1)

L

]}

=
L

2π
×





[
πy
L

+
cos

π(y+L1)
2L

2 sin
π(y+L1)

2L

+
cos

π(y−L1)
2L

2 sin
π(y−L1)

2L

]
, if 0 < y < L1

[
πy
L
− π +

cos
π(y+L1)

2L

2 sin
π(y+L1)

2L

+
cos

π(y−L1)
2L

2 sin
π(y−L1)

2L

]
, if L1 < y < L

Then we substitute Eqs. (A.3) and (A.4) into Eqs. (A.2), and substitute Eqs. (A.6)

and (A.7) into Eq. (A.5). And then we substitute Eqs. (A.2), (A.5), (A.8) and (A.9) into
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Eq. (A.1), and we can finally obtain Eq. (5.41).
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APPENDIX B

DERIVATION OF EQUATIONS (6.44) – (6.51)

Assume there is one point defect with winding number 1 located at the point (L
(1)
1 , L

(1)
2 )

in the rectangle [0, L1] × [0, L2] as illustrated in Fig. B.1. Then consider nx on the patch

(0, L
(1)
1 )× (0, L

(1)
2 ), we have

L1

L2

x

y

(L
(1)
1 , L

(1)
2 )

Figure B.1: The four patches and one defect core

∫ L
(1)
1

0

dx

∫ L
(1)
2

0

dy
(∂2nx
∂x2

+
∂2nx
∂y2

)
sin

j1πx

L1

sin
k1πy

L2

(B.1)

= sin
j1πL

(1)
1

L1

∫ L
(1)
2

0

dy sin
k1πy

L2

· ∂nx
∂x

∣∣∣
L
(1)
1

+ sin
k1πL

(1)
2

L2

∫ L
(1)
1

0

dx sin
jπx

L1

· ∂nx
∂y

∣∣∣
L
(1)
2

− j1π

L1

cos
j1πL

(1)
1

L1

∫ L
(1)
2

0

dy sin
k1πy

L2

· nx(L(1)
1 , y)

159



− k1π

L2

cos
k1πL

(1)
2

L2

∫ L
(1)
1

0

dx sin
j1πx

L1

· nx(x, L(1)
2 ) +

L2

L1

· j1
k1

cos
k1πL

(1)
2

L2

− L2

L1

· j1
k1
−
(j1π
L1

)2 ∫ L
(1)
1

0

dx

∫ L
(1)
2

0

dy nx sin
j1πx

L1

sin
k1πy

L2

−
(k1π
L2

)2 ∫ L
(1)
1

0

dx

∫ L
(1)
2

0

dy nx sin
j1πx

L1

sin
k1πy

L2

;

and,

∫ L
(1)
1

0

dx

∫ L
(1)
2

0

dy nx

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
sin

j1πx

L1

sin
k1πy

L2

=
∑

m1,m2,n1,n2

( 4

L1L2

)2[ ∫ L
(1)
1

0

dx

∫ L
(1)
2

0

dy (B.2)

· nx sin
j1πx

L1

sin
n1πx

L1

sin
n2πx

L1

sin
k1πy

L2

sin
m1πy

L2

sin
m2πy

L2

]

·
[
n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n2πx2
L1

cos
m2πy1
L2

)

+ n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n2πx2
L1

sin
m2πy1
L2

)
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+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n2πx2
L1

cos
m2πy1
L2

)]
.

On the patch (0, L
(1)
1 )× (L

(1)
2 , L2), we have

∫ L
(1)
1

0

dx

∫ L2

L
(1)
2

dy
(∂2nx
∂x2

+
∂2nx
∂y2

)
sin

j1πx

L1

sin
k1πy

L2

(B.3)

= sin
j1πL

(1)
1

L1

∫ L2

L
(1)
2

dy sin
k1πy

L2

· ∂nx
∂x

∣∣∣
L
(1)
1

+ sin(k1π)

∫ L
(1)
1

0

dx sin
j1πx

L1

· ∂nx
∂y

∣∣∣
L2

− sin
k1πL

(1)
2

L2

∫ L
(1)
1

0

dx sin
j1πx

L1

· ∂nx
∂y

∣∣∣
L
(1)
2

− j1π

L1

cos
j1πL

(1)
1

L1

∫ L2

L
(1)
2

dy sin
k1πy

L2

· nx(L(1)
1 , y) +

k1π

L2

cos
k1πL

(1)
2

L2

∫ L
(1)
1

0

dx sin
j1πx

L1

· nx(x, L(1)
2 )− L2

L1

· j1
k1

cos
k1πL

(1)
2

L2

−
(j1π
L1

)2 ∫ L
(1)
1

0

dx

∫ L2

L
(1)
2

dy nx sin
j1πx

L1

sin
k1πy

L2

−
(k1π
L2

)2 ∫ L
(1)
1

0

dx

∫ L2

L
(1)
2

dy nx sin
j1πx

L1

sin
k1πy

L2

;

and,

∫ L
(1)
1

0

dx

∫ L2

L
(1)
2

dy nx

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
sin

j1πx

L1

sin
k1πy

L2

=
∑

m1,m2,n1,n2

( 4

L1L2

)2[ ∫ L
(1)
1

0

dx

∫ L2

L
(1)
2

dy (B.4)
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· nx sin
j1πx

L1

sin
n1πx

L1

sin
n2πx

L1

sin
k1πy

L2

sin
m1πy

L2

sin
m2πy

L2

]

·
[
n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n2πx2
L1

cos
m2πy1
L2

)

+ n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n2πx2
L1

cos
m2πy1
L2

)]
.

On the patch (0, L
(1)
1 )× (L

(1)
2 , L2), we have

∫ L1

L
(1)
1

dx

∫ L
(1)
2

0

dy
(∂2nx
∂x2

+
∂2nx
∂y2

)
sin

j1πx

L1

sin
k1πy

L2

(B.5)

= sin(j1π)

∫ L
(1)
2

0

dy sin
k1πy

L2

· ∂nx
∂x

∣∣∣
L1

− sin
j1πL

(1)
1

L1

∫ L
(1)
2

0

dy sin
k1πy

L2
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· ∂nx
∂x

∣∣∣
L
(1)
1

− L2

L1

· j1
k1

cos(j1π) +
L2

L1

· j1
k1

cos(j1π) cos
k1πL

(1)
2

L2

+ sin
k1πL

(1)
2

L2

∫ L1

L
(1)
1

dx sin
j1πx

L1

· ∂nx
∂y

∣∣∣
L
(1)
2

+
j1π

L1

cos
j1πL

(1)
1

L1

∫ L
(1)
2

0

dy sin
k1πy

L2

· nx(L(1)
1 , y)− k1π

L2

cos
k1πL

(1)
2

L2

∫ L1

L
(1)
1

dx sin
j1πx

L1

· nx(x, L(1)
2 )

−
(j1π
L1

)2 ∫ L1

L
(1)
1

dx

∫ L
(1)
2

0

dy nx sin
j1πx

L1

sin
k1πy

L2

−
(k1π
L2

)2 ∫ L1

L
(1)
1

dx

∫ L
(1)
2

0

dy nx sin
j1πx

L1

sin
k1πy

L2

;

and

∫ L1

L
(1)
1

dx

∫ L
(1)
2

0

dy nx

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
sin

j1πx

L1

sin
k1πy

L2

=
∑

m1,m2,n1,n2

( 4

L1L2

)2[ ∫ L1

L
(1)
1

dx

∫ L
(1)
2

0

dy (B.6)

· nx sin
j1πx

L1

sin
n1πx

L1

sin
n2πx

L1

sin
k1πy

L2

sin
m1πy

L2

sin
m2πy

L2

]

·
[
n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n2πx2
L1

cos
m2πy1
L2

)
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+ n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n2πx2
L1

cos
m2πy1
L2

)]
.

On the patch (L
(1)
1 , L1)× (L

(1)
2 , L2), we have

∫ L1

L
(1)
1

dx

∫ L2

L
(1)
2

dy
(∂2nx
∂x2

+
∂2nx
∂y2

)
sin

j1πx

L1

sin
k1πy

L2

(B.7)

= sin(j1π)

∫ L2

L
(1)
2

dy sin
k1πy

L2

· ∂nx
∂x

∣∣∣
L1

− sin
j1πL

(1)
1

L1

∫ L2

L
(1)
2

dy sin
k1πy

L2

· ∂nx
∂x

∣∣∣
L
(1)
1

+ sin(k1π)

∫ L1

L
(1)
1

dx sin
j1πx

L1

· ∂nx
∂y

∣∣∣
L2

− sin
k1πL

(1)
2

L2

∫ L1

L
(1)
1

dx sin
j1πx

L1

· ∂nx
∂y

∣∣∣
L
(1)
2

− L2

L1

· j1
k1

cos(j1π) cos
k1πL

(1)
2

L2

+
L2

L1

· j1
k1

cos(j1π) cos(k1π)

+
j1π

L1

cos
j1πL

(1)
1

L1

∫ L2

L
(1)
2

dy sin
k1πy

L2

· nx(L(1)
1 , y) +

k1π

L2

cos
k1πL

(1)
2

L2

·
∫ L1

L
(1)
1

dx sin
j1πx

L1

· nx(x, L(1)
2 )−

(j1π
L1

)2 ∫ L1

L
(1)
1

dx

∫ L2

L
(1)
2

dy nx sin
j1πx

L1

sin
k1πy

L2

−
(k1π
L2

)2 ∫ L1

L
(1)
1

dx

∫ L2

L
(1)
2

dy nx sin
j1πx

L1

sin
k1πy

L2

;
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and,

∫ L1

L
(1)
1

dx

∫ L2

L
(1)
2

dy nx

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
sin

j1πx

L1

sin
k1πy

L2

=
∑

m1,m2,n1,n2

( 4

L1L2

)2[ ∫ L1

L
(1)
1

dx

∫ L2

L
(1)
2

dy (B.8)

· nx sin
j1πx

L1

sin
n1πx

L1

sin
n2πx

L1

sin
k1πy

L2

sin
m1πy

L2

sin
m2πy

L2

]

·
[
n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n2πx2
L1

cos
m2πy1
L2

)

+ n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n2πx2
L1

cos
m2πy1
L2

)]
.

Then on the whole rectangle [0, L1]× [0, L2], we sum up Eqs. (B.1), (B.3), (B.5), (B.7),
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and the result is

∫ L1

0

dx

∫ L2

0

dy
(∂2nx
∂x2

+
∂2nx
∂y2

)
sin

j1πx

L1

sin
k1πy

L2

(B.9)

=
L2

L1

· j1
k1
· [−1− cos(j1π) + cos(k1π) + cos(j1π) · cos(k1π)]

−
[(j1π

L1

)2
+
(k1π
L2

)2]
·
∫ L1

0

dx

∫ L2

0

dy nx sin
j1πx

L1

sin
k1πx

L2

.

We sum up Eqs. (B.2), (B.4), (B.6), (B.8), and the result is

∫ L1

0

dx

∫ L2

0

dy nx

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
sin

j1πx

L1

sin
k1πy

L2

=
∑

m1,m2,n1,n2

( 4

L1L2

)2[ ∫ L1

0

dx

∫ L2

0

dy (B.10)

· nx sin
j1πx

L1

sin
n1πx

L1

sin
n2πx

L1

sin
k1πy

L2

sin
m1πy

L2

sin
m2πy

L2

]

·
[
n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n2πx2
L1

cos
m2πy1
L2

)

+ n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n2πx2
L1

sin
m2πy1
L2

)
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+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n2πx2
L1

cos
m2πy1
L2

)]
.

Similarly, consider ny on the whole rectangle [0, L1]× [0, L2], and we have

∫ L1

0

dx

∫ L2

0

dy
(∂2ny
∂x2

+
∂2ny
∂y2

)
sin

j2πx

L1

sin
k2πy

L2

(B.11)

=
L1

L2

· k2
j2
· [−1 + cos(j2π)− cos(k2π) + cos(j2π) · cos(k2π)]

−
[(j2π

L1

)2
+
(k2π
L2

)2]
·
∫ L1

0

dx

∫ L2

0

dy nx sin
j2πx

L1

sin
k2πx

L2

;

and,

∫ L1

0

dx

∫ L2

0

dy ny

[(∂nx
∂x

)2
+
(∂nx
∂y

)2
+
(∂ny
∂x

)2
+
(∂ny
∂y

)2]
sin

j2πx

L1

sin
k2πy

L2

=
∑

m1,m2,n1,n2

( 4

L1L2

)2[ ∫ L1

0

dx

∫ L2

0

dy (B.12)

· ny sin
j2πx

L1

sin
n1πx

L1

sin
n2πx

L1

sin
k2πy

L2

sin
m1πy

L2

sin
m2πy

L2

]

·
[
n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 nx cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n1πx1
L1

cos
m1πy1
L2

)
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·
(∫ L1

0

dx1

∫ L2

0

dy1 nx sin
n2πx2
L1

cos
m2πy1
L2

)

+ n1n2

( π
L1

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n1πx1
L1

sin
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny cos
n2πx2
L1

sin
m2πy1
L2

)

+m1m2

( π
L2

)2
·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n1πx1
L1

cos
m1πy1
L2

)

·
(∫ L1

0

dx1

∫ L2

0

dy1 ny sin
n2πx2
L1

cos
m2πy1
L2

)]
.

Equations (6.4) and (6.5) imply that Eq. (B.9) + Eq. (B.10) = 0 and Eq. (B.11) +

Eq. (B.12) = 0. Then by Eqs. (6.42) and (6.43), we obtain two algebraic equations in terms

of aj1,k1 , bj2,k2 , cj1,k1 , dj2,k2 , ej1,k1 and fj2,k2 . To get more algebraic equations, we follow the

above procedures for the bases sin(jπx/L1) cos(kπy/L2) and cos(jπx/L1) sin(kπy/L2).

Eventually, we obtain Eqs. (6.44) – (6.51). Also, note that these algebraic equations do not

contain L1
1 and L1

2, and the above derivation does not depend on the number and locations

of defect cores.
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APPENDIX C

SOME THOUGHTS ON THE SOLUTIONS OF EQUATIONS (6.44) – (6.59)

Equations. (6.42) and (6.43) imply that nx and ny have more than one representation. How-

ever, we are unsure of which representation of nx corresponds to which representation of

ny in the decomposition of the unit vector field n. Because it is a rather qualitative feature,

some “bold” moves on Eqs. (6.44) – (6.59) may be expected. We experiment with these al-

gebraic equations and restrict the number of Fourier modes by letting 0 ≤ j1, j2, k1, k2 ≤ 2

(assuming other Fourier modes are vanishingly small), then Eqs. (6.44) – (6.59) simplify

to

−π
2

2

L2

L1

c1,0 +
[( π
L1

)2
+
(2π

L2

)2]L1L2

4
c1,2 (C.1)

+
π2

64
(9c1,0 − 12c1,2)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

32
(6c1,1)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

64
(12c2,0 − 16c2,2)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(6c1,0 − 3c1,2)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4c2,1)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4c2,1)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(6c1,0 − 8c1,2)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)
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+
π2

32
(4c1,1)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

64
(8c2,0 − 4c2,2)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(4c1,0 − 2c1,2)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

−4π
L2

L1

− 2π2L2

L1

c2,0 +
[(2π

L1

)2
+
(2π

L2

)2]L1L2

4
c2,2 (C.2)

+
π2

64
(6c2,0 − 8c2,2)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

32
(4c2,1)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

64
(8c1,0 − 12c1,2)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(4c2,0 − 2c2,2)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4c1,1)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4c1,1)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(9c2,0 − 12c2,2)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

32
(6c2,1)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

64
(8c1,0 − 4c1,2)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)
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+
π2

64
(6c2,0 − 3c2,2)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

−π
2

2

L2

L1

d1,0 +
[( π
L1

)2
+
(2π

L2

)2]L1L2

4
d1,2 (C.3)

+
π2

64
(9d1,0 − 12d1,2)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

32
(6d1,1)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

64
(12d2,0 − 16d2,2)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(6d1,0 − 3d1,2)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4d2,1)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4d2,1)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(6d1,0 − 8d1,2)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

32
(4d1,1)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

64
(8d2,0 − 4d2,2)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(4d1,0 − 2d1,2)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;
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−2π2L2

L1

d2,0 +
[(2π

L1

)2
+
(2π

L2

)2]L1L2

4
d2,2 (C.4)

+
π2

64
(6d2,0 − 8d2,2)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

32
(4d2,1)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

64
(8d1,0 − 12d1,2)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(4d2,0 − 2d2,2)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4d1,1)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4d1,1)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(9d2,0 − 12d2,2)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

32
(6d2,1)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

64
(8d1,0 − 4d1,2)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(6d2,0 − 3d2,2)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

−π
2

2

L1

L2

f0,1 +
[(2π

L1

)2
+
( π
L2

)2]L1L2

4
f2,1 (C.5)
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+
π2

64
(9f0,1 − 12f2,1)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

64
(12f0,2 − 16f2,2)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

32
(6f1,1)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(6f0,1 − 8f2,1)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4f1,2)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4f1,2)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(6f0,1 − 3f2,1)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

64
(8f0,2 − 4f2,2)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

32
(8f1,1)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(4f0,1 − 2f2,1)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

−4π
L1

L2

− 2π2L1

L2

f0,2 +
[(2π

L1

)2
+
(2π

L2

)2]L1L2

4
f2,2 (C.6)

+
π2

64
(6f0,2 − 8f2,2)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

64
(12f0,1 − 16f2,1)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)
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+
π2

32
(4f1,2)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(9f0,2 − 12f2,2)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4f1,1)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4f1,1)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(4f0,2 − 2f2,2)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

64
(4f0,1 − 4f2,1)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

32
(6f1,2)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(6f0,2 − 3f2,2)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

−π
2

2

L1

L2

e0,1 +
[(2π

L1

)2
+
( π
L2

)2]L1L2

4
e2,1 (C.7)

+
π2

64
(9e0,1 − 12e2,1)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

64
(12e0,2 − 16e2,2)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

32
(6e1,1)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(6e0,1 − 8e2,1)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

174



+
π2

32
(4e1,2)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4e1,2)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)

+
π2

64
(6e0,1 − 3e2,1)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

64
(8e0,2 − 4e2,2)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

32
(8e1,1)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(4e0,1 − 2e2,1)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

−2π2L1

L2

e0,2 +
[(2π

L1

)2
+
(2π

L2

)2]L1L2

4
e2,2 (C.8)

+
π2

64
(6e0,2 − 8e2,2)

(L2

L1

e1,1e1,1 +
L1

L2

c1,1c1,1 +
L2

L1

f1,1f1,1 +
L1

L2

d1,1d1,1

)

+
π2

64
(12e0,1 − 16e2,1)

(L2

L1

e1,2e1,1 + 2
L1

L2

c1,2c1,1 +
L2

L1

f1,2f1,1 + 2
L1

L2

d1,2d1,1

)

+
π2

32
(4e1,2)

(
2
L2

L1

e2,1e1,1 +
L1

L2

c2,1c1,1 + 2
L2

L1

f2,1f1,1 +
L1

L2

d2,1d1,1

)

+
π2

64
(9e0,2 − 12e2,2)

(L2

L1

e1,2e1,2 + 4
L1

L2

c1,2c1,2 +
L2

L1

f1,2f1,2 + 4
L1

L2

d1,2d1,2

)

+
π2

32
(4e1,1)

(
2
L2

L1

e2,2e1,1 + 2
L1

L2

c2,2c1,1 + 2
L2

L1

f2,2f1,1 + 2
L1

L2

d2,2d1,1

)

+
π2

32
(4e1,1)

(
2
L2

L1

e1,2e2,1 + 2
L1

L2

c1,2c2,1 + 2
L2

L1

f1,2f2,1 + 2
L1

L2

d1,2d2,1

)
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+
π2

64
(4e0,2 − 2e2,2)

(
4
L2

L1

e2,1e2,1 +
L1

L2

c2,1c2,1 + 4
L2

L1

f2,1f2,1 +
L1

L2

d2,1d2,1

)

+
π2

64
(4e0,1 − 4e2,1)

(
4
L2

L1

e2,1e2,2 + 2
L1

L2

c2,1c2,2 + 4
L2

L1

f2,1f2,2 + 2
L1

L2

d2,1d2,2

)

+
π2

32
(6e1,2)

(
2
L2

L1

e1,2e2,2 + 4
L1

L2

c1,2c2,2 + 2
L2

L1

f1,2f2,2 + 4
L1

L2

d1,2d2,2

)

+
π2

64
(6e0,2 − 3e2,2)

(
4
L2

L1

e2,2e2,2 + 4
L1

L2

c2,2c2,2 + 4
L2

L1

f2,2f2,2 + 4
L1

L2

d2,2d2,2

)
= 0;

e0,1 + e1,1 + e2,1 = − 4

π
(C.9)

e0,2 + e1,2 + e2,2 = 0 (C.10)

e0,1 − e1,1 + e2,1 =
4

π
(C.11)

e0,2 − e1,2 + e2,2 = 0 (C.12)

c1,0 + c1,1 + c1,2 = 0 (C.13)

c2,0 + c2,1 + c2,2 = 0 (C.14)

c1,0 − c1,1 + c1,2 = 0 (C.15)

c2,0 − c2,1 + c2,2 = 0 (C.16)

f0,1 + f1,1 + f2,1 = 0 (C.17)

f0,2 + f1,2 + f2,2 = 0 (C.18)

f0,1 − f1,1 + f2,1 = 0 (C.19)

f0,2 − f1,2 + f2,2 = 0 (C.20)

d1,0 + d1,1 + d1,2 = − 4

π
(C.21)

d2,0 + d2,1 + d2,2 = 0 (C.22)

d1,0 − d1,1 + d1,2 =
4

π
(C.23)

d2,0 − d2,1 + d2,2 = 0 (C.24)

To obtain a solution to Eqs. (C.1) – (C.24), let us first restrict the number of Fourier
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modes further by letting 0 ≤ j1, j2, k1, k2 ≤ 1, then Eqs. (C.9) – (C.24) give us





d1,1 = e1,1 = − 4

π

c1,0 = c1,1 = d1,0 = e0,1 = f0,1 = f1,1 = 0

c2,0 = c1,2 = c2,1 = c2,2 = 0

d2,0 = d1,2 = d2,1 = d2,2 = 0

e0,2 = e1,2 = e2,1 = e2,2 = 0

f0,2 = f1,2 = f2,1 = f2,2 = 0

(C.25)

which also satisfies Eqs. (C.1), (C.3) – (C.5), (C.7) and (C.8), but does not satisfy Eqs. (C.2)

and (C.6). That means we need to include the Fourier modes with at least one of the indices

177



j1, j2, k1, k2 being 2. It is not difficult to show that one solution can satisfy





d1,1 = e1,1 = − 4

π

c1,0 = c1,1 = d1,0 = e0,1 = f0,1 = f1,1 = 0

c1,2 = c2,1 = d1,2 = d2,1 = e1,2 = e2,1 = f1,2 = f2,1 = 0

L2

L1

· f0,2 −
L1

L2

· c2,0 =
π

2
·
(L1

L2

− L2

L1

)
· c2,0 · f0,2

L2

L1

· e20,2 −
L1

L2

· d22,0 =
(π2

2
− 1
)
·
(L1

L2

− L2

L1

)
· d2,0 · e0,2

π · d2,0 − c2,0 · e0,2 =
(L1

L2

)2
· c2,0 · d2,0

9

16
π2 ·

(L2

L1

e20,2 +
L1

L2

c22,0 +
L2

L1

f 2
0,2 +

L1

L2

d22,0

)
= 4π

L2

L1

· 1

c2,0
+
(

3π2 − 7

2

)
· L2

L1

+
(
π2 − 7

2

)
· L1

L2

c2,0 = −c2,2, d2,0 = −d2,2, e0,2 = −e2,2, f0,2 = −f2,2
(C.26)

If L1 = L2 = L, then considering the fact that the unit vector field n should be identical on
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the two copies, we find one solution to be





d1,1 = e1,1 = − 4

π

c1,0 = c1,1 = d1,0 = e0,1 = f0,1 = f1,1 = 0

c1,2 = c2,1 = d1,2 = d2,1 = e1,2 = e2,1 = f1,2 = f2,1 = 0

c2,0 = −c2,2 = f0,2 = −f2,2 ≈ −1.88

d2,0 = −d2,2 = e0,2 = −e2,2 = 0

(C.27)

Substitute Eq. (C.27) into Eqs. (6.42) – (6.43), and we have





nx ∼−
4

π
cos

πx

L
sin

πy

L

ny ∼−
4

π
sin

πx

L
cos

πy

L

(C.28)

and,





nx ∼ −1.88 · sin 2πx

L
+ 1.88 · sin 2πx

L
cos

2πy

L

ny ∼ −1.88 · sin 2πy

L
+ 1.88 · cos

2πx

L
sin

2πy

L

(C.29)

which are shown in Fig. C.1.

Apparently, Equations (C.28) and (C.29) are not the correct solutions to our problem

[in another word, they are not the solutions to Eqs. (6.44) – (6.59)], because they do not

satisfy the constraint shown in Eq. (6.3). However, they are likely to be the first Fourier

modes of the complete Fourier series (up to a possible change of the coefficients). This
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speculation comes from the above calculation process: when we add a higher-frequency

mode to Eqs. (6.44) – (6.59) [restricted to finite number of lower-frequency modes], the

original nonzero lower-frequency modes may still be nonzero, and the original zero lower-

frequency modes may still be zero. We also speculate that these first Fourier modes deter-

mine the location of the defect core, and the rest of the Fourier modes make sure Eq. (6.3)

is satisfied. If our speculations are correct, then Eqs. (C.28) and (C.29) correspond to two-

dimensional nematics confined in a square with the defect core being at the center.

0 0.2 0.4 0.6 0.8 1
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(a) First copy [i.e., Equation (C.28)]
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0.8
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(b) Second copy [i.e., Equation (C.29)]

Figure C.1: The first Fourier mode of the unit vector field n

Furthermore, from this particular example, we suspect that sin(jπx/L1) cos(kπy/L2) –

representation for nx corresponds to cos(jπx/L1) sin(kπy/L2) – representation for ny, and

cos(jπx/L1) sin(kπy/L2) – representation for nx corresponds to sin(jπx/L1) cos(kπy/L2)

– representation for ny.
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APPENDIX D

METHOD (B) FOR A SIMPLE TWO-DIMENSIONAL EXAMPLE

Consider a charge-free rectangular region with fixed values of electric potential on the

boundary as illustrated in Fig. D.1, and we want to know the electric potential inside the

rectangle [105]. This boundary value problem is formulated explicitly as follows.

L1

L2

x

y

U=0

U=0

U=1U=-1

Figure D.1: Boundary conditions for the electric potential

The electric potential U satisfies Laplace’s Equation

∂2U

∂x2
+
∂2U

∂y2
= 0, (D.1)

subject to the following boundary conditions

U(0, y) = −1 (D.2)

U(L1, y) = 1 (D.3)

U(x, 0) = 0 (D.4)
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U(x, L2) = 0 (D.5)

By the method of separation of variables, we have

U =
4

π
·
∞∑

k=0

1

2k + 1
·

sinh (2k+1)πx
L2

− sinh (2k+1)π(L1−x)
L2

sinh (2k+1)πL1

L2

· sin (2k + 1)πy

L2

. (D.6)

By Method (B), we first write U in terms of Fourier series, i.e.,

U =
∑

j,k

aj,k sin
jπx

L1

sin
kπy

L2

. (D.7)

Then by the same procedure introduced in Chapter 5, we have

∫ L1

0

dx

∫ L2

0

dy
(∂2U
∂x2

+
∂2U

∂y2

)
sin

jπx

L1

sin
kπy

L2

= 0 (D.8)

=⇒ L2

L1

· j
k
· [−1− cos(jπ) + cos(kπ) + cos(jπ) · cos(kπ)]

−
[(jπ
L1

)2
+
(kπ
L2

)2]
· L1L2

4
· aj,k = 0.

Therefore,

U =
∑

j,k

( 2

L1

)2
· j
k

[(jπ
L1

)2
+
(kπ
L2

)2]−1
(D.9)

× [−1 + cos(kπ)− cos(jπ) + cos(jπ) cos(kπ)] · sin jπx
L1

sin
kπy

L2

.

Similarly, U can also be written as

U =
∞∑

j=1

cj,0 sin
jπx

L1

+
∞∑

j,k=1

cj,k sin
jπx

L
cos

kπy

L2

; (D.10)

and we have the following algebraic equations

− (jπ) · L2

L1

· cos(jπ)− (jπ) · L2

L1

− (j1π)2

2
· L2

L1

· cj,0 (D.11)
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+

∫ L1

0

dx sin
jπx

L1

· ∂U
∂y

∣∣∣
L2

−
∫ L1

0

dx sin
jπx

L1

· ∂U
∂y

∣∣∣
0

= 0

cos(kπ)

∫ L1

0

dx sin
jπx

L1

· ∂U
∂y

∣∣∣
L2

−
∫ L1

0

dx sin
jπx

L1

· ∂U
∂y

∣∣∣
0

(D.12)

−
[(jπ
L1

)2
+
(kπ
L2

)2]
· L1L2

4
· cj,k = 0

cj,0 +
∞∑

k=1

cj,k = 0 (D.13) cj,0 +
∞∑

k=1

(−1)k · cj,k = 0 (D.14)

Then U can also be written as

U =
∞∑

m=1

[
2L1

(mπ)2L2 · coth πmL2

L1

− 2

mπ

]
· sin 2mπx

L1

+
∞∑

m,n=1

16

L1L2 · coth πmL2

L1

(D.15)

×
[(2mπ

L1

)2
+
(2nπ

L2

)2]
· sin 2mπx

L1

cos
2nπy

L2

.

Here, Equations (D.6), (D.9) and (D.15) are equivalent. However, due to the possible

Gibbs phenomenon at the boundary, when we substitute Eq. (D.9) or (D.15) into the energy

functional

E =

∫ L1

0

dx

∫ L2

0

dy
[(∂U

∂x

)2
+
(∂U
∂y

)2]
, (D.16)

we get an infinitely large value. According to the previous discussion, it is expected that

the correct value can be acquired after a proper regularization.
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