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Abstract

As Charles Goodyear discovered in 1839, when he first vulcanized rubber, a
macromolecular liquid is transformed into a solid when a sufficient density of
permanent crosslinks is introduced at random. At this continuous equilibrium
phase transition, the liquid state, in which all macromolecules are delocalized, is
transformed into a solid state, in which a non-zero fraction of macromolecules
have spontaneously become localized. This solid state is a most unusual one:
localization occurs about mean positions that are distributed homogeneously and
randomly, and to an extent that varies randomly from monomer to monomer.
Thus, the solid state emerging at the vulcanization transition is an equilibrium
amorphous solid state: 1t is properly viewed as a solid state that bears the same
relationship to the liquid and crystalline states as the spin glass state of certain
magnetic systems bears to the paramagnetic and ferromagnetic states, in the sense
that, like the spin glass state, 1t is diagnosed by a subtle order parameter.

In thss article we give a detailed exposition of a theoretical approach to the
physical properties of systems of randomly, permanently crosslinked macro-
molecules. Our primary focus is on the equilibrium properties of such systems,
especially in the regime of Goodyear’s vulcanization transition. This approach
rests firmly on techniques from the statistical mechanics of disordered systems
pioneered by Edwards and co-workers in the context of macromolecular systems,
and by Edwards and Anderson in the context of magnetic systems. We begin with
a review of the semi-microscopic formulation of the statistical mechanics of
randomly crosslinked macromolecular systems due to Edwards and co-workers,
in particular discussing the role of crosslinks as quenched random variables. Then
we turn to the issue of order parameters, and review a version capable, inter alia,
of diagnosing the amorphous solid state. To develop some intuition, we examine
the order parameter in an idealized situation, which subsequently turns out to be
surprisingly relevant. Thus, we are motivated to hypothesize an explicit form for
the order parameter in the amorphous solid state that is parametrized in terms of
two physical quantities: the fraction of localized monomers, and the statistical
distribution of localization lengths of localized monomers. Next, we review the
symmetry properties of the system itself, the liquid state and the amorphous solid
state, and discuss connections with scattering experiments. Then, we review a
representation of the statistical mechanics of randomly crosslinked macromole-
cular systems from which the quenched disorder has been eliminated via an
apphcation of the replica technique. We transform the statistical mechanics into a
field-theoretic representation, which exhibits a close connection with the order
parameter, and analyse this representation at the saddle-point level. This analysis
reveals that sufficient crosslinking causes an instability of the liquid state, this
state giving way to the amorphous solid state. To address the properties of the
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amorphous solid state itself, we solve the self-consistent equation for the order
parameter by adopting the hypothesis discussed earlier. Hence, we find that the
vulcanization transition is marked by the appearance of a non-zero fraction of
localized monomers, which we compute, the dependence of this fraction on the
crosslink density indicating a connection with random graph theory and
percolation. We also compute the distribution of localization lengths that
characterizes the ordered state, which we find to be expressible in terms of a
universal scaling function of a single variable, at least in the vicinity of the
transition. Finally, we analyse the consequences of incorporating a certain specific
class of correlations associated with the excluded-volume interaction.
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There is probably no other inert substance, the properties of which excite in the
human mind, when first called to examine it, an equal amount of curiosity,
surprise, and admiration. Who can examine, and reflect upon [the properties of]
gum-elastic, without adoring the wisdom of the Creator?

Charles Goodyear, Gum-Elastic and its Varieties, with a Detailed Account of its
Applications and Uses, and of the Discovery of Vulcanization (1855).

1. Introduction and overview

In this article we aim to present a theoretical description of the physical
properties of systems of macromolecules that have been randomly and permanently
crosslinked. Our focus will be on the equilibrium properties of such systems,
especially in the regime of the vulcanization transition. By the term vulcanization
transition we mean the sharp thermodynamic phase transition occurring when the
mean density of crosslinks exceeds a certain critical value. At this critical crosslink-
density, the equilibrium state of the system undergoes a continuous transition: for
subcritical values the equilibrium state is a liquid state, in which all the macro-
molecules are delocalized; for supercritical values the equilibrium state is an
amorphous solid state, in which a non-zero fraction of macromolecules form a
macroscopic network, and spontaneously become localized, albeit about certain
random locations. Thus, our focus will be on the spontaneous emergence of the
equilibrium amorphous solid state at the vulcanization transition, and the conse-
quent properties of this unusual state.

It must be emphasized at the outset that the theoretical description of the
vulcanization transition to and properties of the amorphous solid state of randomly
crosslinked macromolecular networks presented here represents the confluence of
two pioneering contributions to the theory of condensed matter: the Deam—Edwards
theory of a single crosslinked macromolecule [1], and the Edwards—Anderson theory
of spin glasses [2].

The basic ingredients of the present approach to the physical properties of
randomly crosslinked macromolecular networks are as follows. We adopt a semi-
microscopic description of the macromolecules, in which the detailed microscopic
chemistry of the macromolecules and solvent (if any there be) feature only to the
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extent that they determine the following effective parameters: the total arclength of
each macromolecule, the persistence length (i.e. the length of the statistically
independent macromolecular segments, which we term monomers), and the
excluded-volume strength (i.e. the parameter that describes the effective repulsion
between monomers). Thus, we regard the macromolecules as extended, featureless,
flexible linear objects, each capable of exhibiting a large number of configurations,
and use classical equilibrium statistical mechanics to address the properties of
systems composed of a thermodynamically large number of such macromolecules.
We regard the crosslinks as permanent elements that constrain certain randomly
chosen monomers to remain adjacent to one another. Thus the crosslinked macro-
molecular system is a system with quenched disorder, in the sense that in addition to
the macromolecular freedoms—the so-called annealed variables, which undergo
equilibrium statistical-mechanical fluctuations—there are additional variables, those
that specify the detailed realization of the crosslinking, that do not undergo
equilibrium statistical-mechanical fluctuations. Instead, these variables—the so-
called quenched random variables—vary only between realizations of the physical
system. We treat these quenched random variables statistically, too, but account for
their quenched nature by invoking the replica technique.

We now give an overview of our basic strategy for determining the physical
properties of randomly crosslinked macromolecular networks.

We characterize the plausible equilibrium states of the system—Iliquid, globule,
crystalline solid, amorphous solid—in terms of an order parameter, designed to
discriminate between these states. This order parameter is a vastly more intricate
object than the order parameters that arise, say, in the study of ferromagnetism or
even spin glasses, and one must explore enormously larger spaces to find its
equilibrium value. By investigating a simple caricature of the amorphous solid state
we are, however, able to identify a physically well-motivated scheme for parametriz-
ing the amorphous solid state order parameter at a manageable level: via a single
number—the fraction of spatially localized monomers—and a normalized prob-
ability distribution—the statistical distribution of localization lengths of the
localized monomers.

We focus on the free energy and the order parameter for the system of interacting
macromolecular freedoms subject to the crosslinking constraints. Application of the
replica technique to these quantities allows for the elimination of the quenched
random variables; the price for this elimination is the introduction of an unusual and
rather complicated effective coupling amongst the replicated macromolecular free-
doms. Our scheme for parametrizing the order parameter leaves intact the permuta-
tion symmetry amongst the replicas. Next, we introduce a certain stochastic field, the
argument of which is replicated (real or wavevector) space, via which we transform
the replicated macromolecular description into a field-theoretic one. In this
representation, the individual macromolecules are coupled to one another only
indirectly, via their coupling to the fluctuations of the stochastic field, although the
replicas of any given macromolecule remain directly coupled to each other. Via the
introduction of a suitable external potential we demonstrate the connection between
the order parameter and the stochastic field.

In order to elucidate the physical properties of the system we adopt a mean-field
approach, which amounts to our approximating, via the saddle-point method, the
averages over the stochastic field in the field-theoretical expressions for the free
energy and order parameter. The state of the physical system then follows from the
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form of the appropriate stationary value of the stochastic field or, equivalently, from
the form of the self-consistent value of the order parameter. For mean crosslink
densities smaller than a certain critical value, of order one crosslink per macro-
molecule, there is only one stationary value, which is elementary, and the
corresponding state is the liquid state. For supercritical crosslink densities the
appropriate stationary value is most definitely not elementary, and the correspond-
ing state is the amorphous solid state. At the critical crosslink density the system
undergoes a continuous vulcanization transition from the liquid state to the
amorphous solid state.

To determine the properties of the amorphous solid state itself, we hypothesize
that the self-consistent value of the order parameter lies within the family of order-
parameter values reachable via our (severely restrictive but nevertheless physically
plausible) parametrization. Quite remarkably, this is indeed the case: our parame-
trization does not merely yield a variational approximation to the amorphous solid
state. Instead, although one has no a priori reason to suppose that it should, it
permits an exact mean-field description of randomly crosslinked macromolecular
networks to be constructed. What emerges is an amorphous solid state characterized
by a non-zero fraction of localized monomers. The precise value of this fraction
depends on the crosslink density, and vanishes continuously at the transition and in
the liquid state. This fraction depends on the crosslink density in a manner identical
to that found in random graph theory and percolation. The state is further
characterized by a crosslink-density-dependent distribution of localization lengths,
which quantifies the manner in which the localized monomers have become localized
around their random mean positions. The typical localization length diverges
continuously at the transition and in the liquid state. In the vicinity of the transition,
the distribution of localization lengths has a scaling form governed by a universal
function, which we compute. To date, we have been unable to obtain conclusive
results for the distribution of localization lengths far from the amorphous solidifica-
tion transition. The reason for this is purely technical: at a certain stage in the
development we employ a perturbative calculation, in which the small parameter is
the characteristic inverse localization length, measured in units of the radius of
gyration of a single, non-interacting macromolecule, this parameter being zero in the
liquid state, and small in the amorphous solid state only in the vicinity of the
transition.

In addition to developing a purely mean-field description of the transition to and
properties of the amorphous solid state, we incorporate a class of correlations
associated with the excluded-volume interactions. We accomplish this by treating a
certain sector of the stochastic field at the Gaussian level, rather than the saddle-
point level. What emerges from this treatment is merely a particularly simple finite
renormalization of a specific parameter of the mean-field theory, at least in three
spatial dimensions.

Approaches based on percolation theory [3] are sometimes pursued in the context
of the modelling of randomly crosslinked macromolecular networks; see [4].
However, such approaches entail only a single statistical ensemble, and hence cannot
treat the equilibration of thermal (i.e. annealed) freedoms in the presence of
quenched freedoms (crosslinks, in the present case). If the percolation ensemble is
interpreted as describing the quenched freedoms then it can account for the
appearance of an infinite network at a critical crosslink density, but it cannot
account for the thermal fluctuations, which determine the physical properties of the
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liquid and amorphous solid states. In particular the degree of localization in the
amorphous solid state and the entropic elasticity of the network cannot be calculated
from first principles in a percolation-based model, which does not distinguish
between thermal and quenched freedoms. If, on the other hand, the percolation
ensemble is interpreted as describing the thermal fluctuations of the macromolecular
freedoms then it may serve as a model for chemical gelation, in which crosslinks
continuously form and break up, but it cannot account for permanent, quenched
crosslinks.

An approach to the properties of randomly permanently crosslinked macro-
molecular systems that accounts for both thermal fluctuations and quenched
disorder has been introduced by Edwards and co-workers [1, 6, 7]. In addition to
formulating the statistical mechanics of a single randomly crosslinked macromole-
cule using the replica technique, Deam and Edwards investigated the elastic
properties of the system by invoking a variational method [1]. Ball and Edwards
investigated the incorporation of correlations, and Ball also studied certain aspects
of many-macromolecule systems [7].

The point of view that the solid state of randomly crosslinked macromolecular
networks represents an unusual, equilibrium amorphous solid state of matter was
introduced and developed in detail in [8—11). In addition, the order parameter
appropriate for detecting this amorphous solid state was introduced and explained in
these papers, and the instability of the liquid state with respect to the formation of an
amorphous solid, induced by sufficient crosslinking, was also identified there.
Extending these ideas, the transition to and certain properties of the amorphous
solid state, including its elastic properties, were obtained within the context of a
variational mean-field approach in [12]. This variational approach was improved
through an exact mean-field approach, the central elements of which were reported
in [13]. The present article is intended to provide a fairly complete exposition of this
approach to the statistical mechanics of randomly crosslinked macromolecular
networks, including a detailed account of the work reported in [12, 13].

By adopting the Deam—Edwards approach [1] and the amorphous solid order
parameter picture of [8, 9], Panyukov has made a number of contributions to the
theory of well-crosslinked macromolecular networks [14]. To accomplish these, he
considers a single linear macromolecule, randomly crosslinked, which is intended to
represent a physical network of many randomly crosslinked macromolecules. These
contributions, which are reviewed in [15], are based on the introduction of a well-
known free-field representation of a random walk [16], the resulting field being
treated at the mean-field level, along with an additional replica limit. Focusing, as it
does, on the statistical mechanics of a single, well-crosslinked macromolecule,
Panyukov’s approach is unsuitable for developing a theory of the transition between
the liquid and amorphous solid states, which occurs at crosslink densities of order
one per macromolecule.

The present approach to the physics of randomly crosslinked macromolecular
systems possesses the following distinctive virtues. First, both thermal freedoms (i.e.
the macromolecular positions) and quenched freedoms (i.e. the crosslink locations)
are incorporated, and handled appropriately, in contrast with percolative pictures.
The replica technique provides the tool for accomplishing this. In fact, the
percolative picture emerges from the present approach in the form of statistical
information concerning the presence of localized macromolecules. However, the
present approach is considerably richer, additionally yielding statistical-mechanical
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information about the (thermally fluctuating) macromolecular system. In particular,
it allows a unified treatment of liquid and amorphous solid states. Second, the
physical many-macromolecule character of the system is maintained, in contrast with
approaches that consider instead the properties of a single macromolecule. This is
particularly significant, especially in the vicinity of the solidification transition, where
the number of physical crosslinks is of order one per macromolecule, and allows us
to develop a theory of the solidification transition. Third, the present approach leads
directly to an order parameter for the amorphous solid state, which is related to that
of spin glass physics. The order parameter has a natural, physical interpretation,
which facilitates the hypothesizing of an appropriate form for it. Fourth, the physical
freedoms, namely the macromolecular configurations, appear directly throughout
the development, not being exchanged for some problem-specific formal representa-
tion. We can, therefore, be confident that the macromolecular character of the
system is retained, especially when approximations are made. Indeed, the entire
approach is very robust, so that, in addition to being of interest in the context of
vulcanized macromolecular systems, it can readily be extended to address a wide
range of other physical systems, such as crosslinked manifolds [29], endlinked
systems of flexible, semi-flexible and rigid macromolecules [73], continuous random
network models of structural glasses [70], and proteins. In addition, it should prove
possible to extend the present approach to address issues of dynamics. Moreover,
looking beyond the algebraic details, one sees a theoretical superstructure that is
rather natural, direct and perhaps even conventional, at least from the point of view
of statistical field theory. Fifth, the use of the present approach has primarily been
restricted to the mean-field level of approximation. However, it is not a variational
mean-field theory: instead the relevant saddle-point is determined exactly. This
makes the approach a particularly promising starting point for future developments,
such as the elucidation of the elastic properties and of the role of thermal
fluctuations. It should be mentioned that the full stability of the saddle-point that
we have determined has not yet been established. One current shortcoming of the
present approach arises from the technical difficulty of computing properties in the
regime of high crosslinking (e.g. deep in the amorphous solid state). This does not
limit the scope of our primary aim, viz to explore the vicinity of the transition to the
amorphous solid state. A second shortcoming is the inability of the approach, at
least in its present formulation, to respect the interlocking of closed loops of
macromolecules (discussed in section 2.2) that crosslinking can induce.

The present article is organized as follows. In the present, introductory, section
we provide an overview of the article. In section 2 we discuss the basic elements of
the model of macromolecular systems on which the present approach is based,
including the level of description of macromolecular configurations, the Edwards
measure for their statistical weights, and the notion of crosslinks as quenched
random variables. We also discuss the partition function, free energy and issues of
indistinguishability, along with the statistical characterization of the crosslinks, and
the notion of disorder averages of certain physically relevant quantities. In section 3
we develop the general subject of order parameters appropriate for the amorphous
solid and other states, discussing the properties that such order parameters should
possess. We explore a simple scenario for the amorphous solid state, which provides
physical motivation for a certain specific hypothesis that we make for the form taken
by the amorphous solid order parameter in the amorphous solid state. At this stage
we introduce the concept of gel and sol fractions and the statistical distribution of
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localization lengths associated with localized monomers. We also analyse the
symmetry properties of the ordered state, and discuss the connection between the
order parameter and the elastic scattering of neutrons. In section 4 we address the
statistical mechanics of randomly crosslinked macromolecular networks, invoking
the replica technique in order to eliminate the (quenched random) crosslink
variables. We also introduce a suitable replica-Helmholtz free energy, which is
dependent on a convenient generalized external potential. In section 5 we reformu-
late the statistical mechanics of randomly crosslinked macromolecular networks in
field-theoretic terms by introducing a certain stochastic field, which is closely related
to the amorphous solid state order parameter. In section 6 we explore the properties
of the resulting field theory within the context of a natural mean-field approxima-
tion. We exhibit the instability of the liquid state, and we compute the free energy
and self-consistent order parameter in the vicinity of the transition. We also describe
the characteristics of the amorphous solid state that emerge from this approach. In
section 7 we incorporate certain correlations associated with density-sector fluctua-
tions, and demonstrate that the results of the previous sections of this article are
robust with respect to the incorporation of these fluctuations. In section 8 we make
some concluding remarks. We have organized this article so that the main text is, to a
large degree, unencumbered by lengthy mathematical details. Wherever possible
such details have been relegated to one of eleven appendices, in which we
demonstrate in full detail how the results of the main text are established.

Perhaps the most significant property to emerge at the vulcanization transition is
rigidity with respect to shear deformations, i.e. elasticity. We are currently extending
the present work to include the elastic properties of the amorphous solid state of
randomly crosslinked macromolecular networks [17].

2. Model of the macromolecular system
2.1. Macromolecular system prior to crosslinking

We consider a system consisting of a large number N of long, flexible
macromolecules, initially identical, and contained in a large d-dimensional hyper-
cube of volume V. The macromolecules are characterized by their common arclength
L and (weakly temperature-dependent) persistence length /( < L), so that the
number of effectively statistically independent segments comprising each macro-
molecule is of order L/Z > 1. Semi-microscopic spatial configurations of the system
are characterized by the collection of spatial configurations of the macromolecules
{R,(0)}Y,, in which R,(0) is the d-dimensional position vector of the monomer an
arclength distance o from a specific end of macromolecule i, the (discrete)
macromolecule index i ranging from 1 to N and the (continuous) arclength variable
o ranging from 0 to L.

It is convenient to exchange the dimensionful position vector R and arclength o
for dimensionless versions ¢ and s via the transformation

R,(0) = (/L/d)c,(s), (2.1a)
o=Ls. (2.15)

Thus, we shall be measuring spatial distances in units of (/L/d )1/2 (i.e. the root mean
squared end-to-end distance of a free macromolecule divided by /d), and arclength
distances in units of the total arclength L. We shall measure energies in units such
that kg7 is unity.
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At the level of the present semi-microscopic description, and prior to the
incorporation of the effects of either monomer—monomer interactions or crosslinks,
we account for the connectivity of the constituent macromolecules by adopting the
Wiener measure [18-20], in terms of which the statistical weight [21] of the
configuration of the system {c,(s)} _, is proportional to exp(—H}'), where

2
22 ds’d%-cg(s)

=1

W
1

22

The subscript 1 on HY anticipates the introduction of replicas of the system, which
we shall need to make below. We shall often need to consider normalized expectation
values taken with respect to the Wiener measure, which we shall denote by the angle-

bracket pair (- - )1 , defined by
w f@c exp(—HY)--

(eh [ @eexp (——HW)

where the dots represent an arbitrary function of the configuration of the system,
and the measure

2.3)

N
ge=]] [[ det® 24
i=10gs<g1

indicates functional integration over all spatial configurations of the system, i.e. over
all configurations of the N macromolecules. The subscript 1 on (- -);" also indicates
that the average is taken only over the configurations of a single copy of the system,
also anticipating the introduction of replicas.

We account for monomer—monomer interactions in a phenomenological man-
ner, by augmenting the Wiener measure with an additional factor that has the effect
of suppressing the statistical weight of configurations in which pairs of monomers
occupy common regions of space [18—20]. To this end, we replace the Wiener
measure, equation (2.2), by the Edwards measure, in terms of which the statistical
weight of the configuration {t:,(s)},m1 is proportional to exp (—HE), where

E 1 N 41 d 2 N
HE =§ZJods|$ci(s)
=1

X : ' 1 s(d) ]
+7ZL‘“L‘” §9e(s) —en(s).  @23)

i'=1

Here, 8“(c) is the d-dimensional Dirac 8-function, and the dimensionless (real,
positive) parameter \?> characterizes the strength of the suppression of statistical
weight due to the (repulsive) excluded-volume interaction between monomers [18—
20]. The excluded-volume interaction is suitably modified so as to exclude interac-
tions between adjacent monomers on a common macromolecule (i.e. monomers for
which |s —s’| < //L). The expression for the Edwards measure in terms of
dimensionful variables is given in [22]. The system can be regarded as a melt of
macromolecules, in which case the interaction parameter A\? is intended to account
for the monomer—-monomer interaction. Alternatively, it can be regarded as a
solution of macromolecules dissolved in a good solvent, in which case A? is intended
to represent the effective monomer—monomer interaction (i.e. the bare interaction
renormalized by the monomer—solvent and solvent—solvent interactions, the solvent
degrees of freedom having been integrated out). In both cases, A2 is weakly
temperature dependent. Even at the level of mean-field theory, the excluded-volume
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interaction plays a crucial role: it partially compensates the effective monomer—
monomer attraction due to the crosslinks in just such a fashion as to maintain the
macroscopic homogeneity of the system whilst allowing for the possibility of
transition from the liquid to the amorphous solid state.

We shall need to consider normalized expectation values taken with respect to the
Edwards measure, which we shall denote by the angle-bracket pair (- - )1 , defined by

(e = 12¢ exp(— HE). -
[Pcexp-HY)

where the dots represent an arbitrary function of the configuration of the system,
and once again Pc¢ indicates functional mtegratnon over all configurations of the
system. Again, the subscripts 1 on HT and (- ¥ anticipate the introduction of
replicas.

It should be noted that neither the Wiener measure nor the Edwards measure
explicitly breaks translational or rotational symmetry: the statistical weight of a
configuration remains unchanged if all the monomers are simultaneously translated
through a common amount or rotated through a common angle about a common
axis.

(2.6)

2.2. Crosslinks as quenched random variables

Our aim is to address the statistical mechanics of thermodynamically large
systems of macromolecules into which a large number of crosslinks have been
permanently introduced at random. Each crosslink has the effect of constraining two
randomly selected monomers, the locations of which were kinematically independent
prior to the introduction of the crosslink, to occupy a common spatial location. Thus
the effect of the crosslinks is to eliminate from the ensemble of configurations of the
system all configurations that do not obey the entire set of random constraints
enforced by the crosslinks. Our task is therefore to address the statistical mechanics
of macromolecular systems in the presence of a large number of random constraints.

A specific realization of the crosslinking is fully described by specifying which
randomly selected pairs of monomers are connected by each crosslink, i.e. that the
crosslink labelled by the index e serves to connect the monomer at arclength s, on
macromolecule i, to the monomer at arclength s, on macromolecule ij, for
e=1, ..., M, with M being the total number of crosslinks. Thus, only those
configurations that satisfy the constraints

¢ (s.) =cu(s,), (withe=1,...,M), o))

are retained in the ensemble. It should be noted that these constraints do not
explicitly break translational symmetry.

In principle, of course, neither the crosslinks nor the integrity of the macro-
molecules are truly permanent. However, in many physical realizations of cross-
linked macromolecular systems there is a very wide separation between the time-
scale required for the crosslink-constrained macromolecular system to relax to a
state of thermodynamic equilibrium and the much longer time-scale required for
either the crosslinks or the macromolecules to break. For such systems, and it is such
systems that we have in mind, the crosslinks and the macromolecules should be
regarded as permanent, so that the number and identity of the monomers
participating in crosslinks, {i, se; i., s }8_1, should be treated as non-equilibrating
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(i.e. quenched) random variables. The unconstrained macromolecular freedoms are
regarded as reaching equilibrium in the presence of fixed values of the quenched
variables. Thus, it is a meaningful task to address the equilibrium statistical
mechanics of permanently crosslinked macromolecular systems.

It should be remarked that the relative statistical weights of the configurations
that do satisfy the crosslinking constraints are hypothesized, at least a priori, to be
unaffected by the introduction of crosslinks. That is, the statistical weights are
proportional to exp(—H?E) for configurations satisfying the crosslinks and zero
otherwise. However, as we shall see in detail below, for a sufficiently large density of
crosslinks the translational and rotational symmetry of the equilibrium state of the
system is spontaneously broken. That is, in a given (pure) state the statistical weights
of configurations that are translations and rotations of one another are no longer
identical, and thus localization can arise. Indeed, only one member of a family of
translated and rotated configurations has a non-zero weight in a given (pure) state.
The associated transition to an amorphous solid state is precisely the transition on
which we are focusing. We remark that in the present context of amorphous
solidification, translational and rotational symmetry are spontaneously broken in
an unusual sense, in that they remain fully intact at the macroscopic level.

A second mechanism that leads to the violation of the hypothesis mentioned in
the previous paragraph arises because sufficient crosslinking is liable to give a
topological character to the system of macromolecules, at least in three spatial
dimensions, in the sense that for a given set of crosslinks there will be families of
configurations allowed by the crosslinks that are mutually inaccessible. We mean by
this that, because of the possibility of interlocking closed loops formed by
macromolecules, there will be families of configurations between which the system
cannot continuously evolve without the necessity either of the breaking of at least
one crosslink or the passage of one monomer through another. We distinguish
between constraints arising indirectly from crosslinking via the interlocking of closed
loops and constraints arising directly from the crosslinks themselves by referring to
the former as anholonomic constraints and the latter as holonomic constraints. In
principle, a statistical-mechanical approach should incorporate, at most, those
configurations that are mutually accessible, i.e. should respect both holonomic and
anholonomic constraints. The theory presented here treats the holonomic constraints
as quenched but the anholonomic constraints as annealed, therefore not incorporat-
ing the latter. We know of no explicit semi-microscopic strategy that is capable of
handling the anholonomic constraints.

2.3. Partition function _
We define the statistical-mechanical partition function Z({z, s.; i, s;}eM___l) that
characterizes the crosslinked system via

M E
Z({ie, 5e; Bt 50 Yol1) = < [189¢. () - c.;(s;))> 238

e=1 1

The product of Dirac 3-functions serves to remove from the sum over configurations
implicit in the angle brackets (2.6) any configuration that fails to satisfy the
constraints (2.7) [24], the remaining configurations contributing with weights given
by the Edwards measure (2.5). With this definition, Z({i,, s.; i’, .} ) is normal-

ized relative to the uncrosslinked system. Consequently, the free energy derived from

Copyright © 2001. All Rights Reserved.



404 P. M. Goldbart et al.

this partition function will in fact be the increase in free energy that arises upon
crosslinking. This allows us to focus on the implications of crosslinking rather than
the properties of the uncrosslinked system

At first sight, the quantity Z({ic, Se; i%, s e}e_l) in equation (2.8), which we are
calling the partition function, appears to be precisely the physical partition function
of the crosslinked system, at least relative to that of the uncrosslinked system.
However, for a straightforward reason associated with the notion of indistin A;msh-
ability, a reason that we discuss in sections 2.4 and 2.6, Z({ie, 5e; 1%, sL}or,) as
defined in equation (2.8) is not quite the correct definition of the phys1cal partmon
function. However, as we shall see, the partition function Z({i, s.; i,, s }e_l) will
turn out to be adequate for our purposes.

2.4. Indistinguishability

As first pointed out by Gibbs [23], the (conﬁgurational aspect of the) physical
partmon function for systems involving one or more species of identical constituents
is to be found by summing over all configurations of the system whilst ignoring the
issue of the distinguishability of the constituents, and subsequently dividing by an
appropriate combinatorial factor to account for the indistinguishability of the
constituents. This strategy compensates for the over-counting of configurations that
has arisen from the neglect of indistinguishability.

What are the implications of indistinguishability in the present context? For the
case of the system of N identical uncrosslinked macromolecules, the appropriate
factor is N!, and thus the physical partition function is given by

1 E

N J@c exp(—H7). 2.9
If, for the case of the crosslinked system, the appropriate factor were also N'! (which
it is not) then its physical partition function would be given by

M
1| 7o em B[] 89150 — usl), 2.10)
) e=1

and thus the relative physical partition function would indeed be given by equation
(2.8), the factors of 1/N! in the numerator and denominator cancelling.

However, the process of crosslinking alters the system from one that comprises N
copies of a single species of identical elements. Instead, the crosslinked system will
contain a variety of species, such as macromolecules that do not participate in any
crosslinks, as well as clusters of macromolecules of many types. By clusters we mean
assemblages of macromolecules that are (directly or indirectly) connected by
crosslinks or interlockings, and therefore cannot be separated by arbitrary distances.
Examples of clusters include pairs of macromolecules that part1c1pate in a single
crosslink, that crosslink being located between some specific pair of arclength
locations (say (s, ) = (0-12, 0-57)), single macromolecules crosslinked to themselves
at some specific pair of arclength locations, triplets of macromolecules connected by
two specifically located crosslinks, as well as more complicated species such as pairs
of self-crosslinked macromolecules interlocking one another.

Let us label the various possible cluster species by the indexa=1,2,3, ..., and
let a=0 label the uncrosslinked macromolecule species. Then, for a specific
realization of the disorder (i.e. the crosslinks and the interlockings) let the number
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of uncrosslinked macromolecules be vy and the number of clusters of species a be v,
[25]. Then the incorrect combinatorial factor of N! should be replaced by the correct
factor of [], v,!, this factor varying across disorder realizations. The physical
partition function for a given realization of the system is then given by

M
ﬁj@c exp (—H,E)ga(”’)(c,,(se) — ey (sh) . (2.11)

This correction of the combinatorial factor is mirrored by the absence, due to the
constraints, in the summation over system configurations of those configurations in
which macromolecules participating in a cluster are widely separated, which results
in the loss of volume factors. Together, the corrected combinatorial factor and the
loss of volume factors conspire to yield a thermodynamic free energy that is properly
extensive.

In common with much work on the physics of disordered systems, we shall not
focus on the statistical mechanics of a system having a particular realization of the
disorder. Instead we shall take a probabilistic approach, focusing on the typical
properties of randomly crosslinked macromolecular systems. To do this, we shall
need to consider the statistical distribution of crosslink locations. In fact, we shall
also allow the number of crosslinks to fluctuate across realizations.

2.5. Deam—Edwards crosslink distribution

To compute physical quantities characterizing the system of randomly cross-
linked macromolecules for a specific realization of the large set of quenched random
variables {i, s; i., s;}e‘i, is, of course, neither possible nor particularly useful.
Instead we shall focus on typical values of physical quantities, constructed by
suitably averaging them over the quenched random variables. To perform this
averaging we shall need to choose a probability distribution that assigns a sensible
statistical weight 2y ({i, s.; i,, s:,}:il) to each possible realization of the number M
and location {i,, s; i’, s;}e‘il of the crosslinks. Following an elegant strategy due to
Deam and Edwards [1], we assume that the normalized crosslink distribution is given
by

Pu({icr5ei For SCheln) = @2V 2N Z({ie, 563 1% 511

M!<exp { ‘f—NV zN: Jl dsr ds’ 89 (ei(s) — c,-:(s'))}>E,

ii'=1 0 0 1

(2.12)
where Z({i,, s¢; i’, s’e}e‘il) is given by equation (2.8), and can be regarded as probing
the equilibrium correlations of the underlying uncrosslinked liquid [26]). Such
correlations were omitted from the crosslink distribution in certain previous works
[8-11, 36], which led to difficulties in obtaining a quantitative description of the
amorphous solid state. It is not, at present, clear whether this omission is significant
for the liquid state.

The Deam—Edwards distribution can be envisaged as arising from a realistic
vulcanization process, in which crosslinks are introduced simultaneously and
instantaneously into the liquid state in equilibrium [27]. Specifically, it incorporates
the notion that all pairs of monomers that happen (at some particular instant) to be
nearby are, with a certain probability controlled by the crosslink density parameter
p?, crosslinked. Thus, the correlations of the crosslink distribution reflect the
correlations of the uncrosslinked liquid, and it follows that realizations of crosslinks
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only acquire an appreciable statistical weight if they are compatible with some
reasonably probable configuration of the uncrosslinked liquid. This good feature of
the Deam—Edwards distribution is compatible with the random, space-filling, frozen
liquid, nature of the equilibrium amorphous state that is achieved upon sufficient
crosslinking.

We allow the number of crosslinks to fluctuate in a quasi-Poisson manner,
controlled by the parameter p2. All that we shall need to know about p? is that the
mean number of crosslinks per macromolecule, which we denote by [M]/N, is a
smooth, monotonically increasing function of u? that can, in principle, be deter-
mined using the distribution 2 [28]. We remark that the control parameter p2
appears in equation (2.12) divided by N/¥. This factor is simply the (dimensionless)
density of macromolecules, which is an intensive quantity. As we shall see, this
choice leads to an equation of state that does not depend on the density of
macromolecules, at least at the level of mean-field theory. We also remark that no
delicate scaling of the control parameter is needed to achieve a good thermodynamic
limit, in contrast with the case of the Sherrington—Kirkpatrick spin-glass model [30].

As discussed in section 2.2, at least in three dimensions crosslinking confers
anholonomic topological constraints on the network as well as holonomic ones.
Thus, the statistical-mechanical tool for constructing the crosslink distribution is not
entirely correct. In principle, crosslink realizations should be labelled not only by
{ie, Se; L, s;}e‘il, i.e. by the number and arclength locations of the crosslinks, but
also by the precise topology of the realization, i.c. by the manner in which the
macromolecules thread through the closed loops made by one another. Then the
statistical weight attributed to a crosslink-and-topology realization would be better
modelled as arising from those configurations of the underlying equilibrium liquid
that not only satisfy the holonomic constraints but also the anholonomic ones. As
remarked in section 2.2, no mathematical tool yet exists for accomplishing this
refinement analytically. In other words, we are treating the random topology of the
system as annealed rather than quenched.

One should pause to notice the striking feature that at the heart of the Deam-
Edwards crosslink distribution is the partition function Z({i,, s¢; i’, s;}ﬁl) of the
crosslinked system, i.e. the crosslink distribution is itself proportional to the
partition function, the logarithm of which it is to be used to average. This fact gives
the development a structure that is rather appealing, at least from the point of view
of form. This will become especially apparent in section 4 in the context of the replica
technique, in which this distribution is generated via an additional (i.e. zeroth)
replica, the permutation aspect of the symmetry of the theory thereby being enlarged
from the permutation group &, to %1, where n is the number of replicas [31, 32).
There is, however, no physical basis for restricting attention solely to crosslink
distributions generated by the partition function identical to that of the crosslinked
system. For example, one might imagine crosslinking at a different temperature or
solvent quality, which would break the symmetry between the crosslink distribution
and the partition function of the crosslinked system; then, in the context of the
replica technique, the permutation aspect of the symmetry of the theory would
remain .%,.

2.6. Disorder averages and symmetry factors
How are we to use the Deam—Edwards crosslink distribution? As is well known,
it is generally inappropriate in disordered systems to average the partition function
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itself over the quenched random variables, as this would amount to treating the
quenched random variables as annealed variables (i.e. equilibrated variables having
the same status as the variables describing the configurations of the system that can
be accessed during equilibrium fluctuations). Rather, it is thermodynamically
extensive or intensive quantities, such as the free energy or the order parameter,
that should be averaged over the quenched random variables [33]. To illustrate this
point, consider the free energy relative to that of the uncrosslinked system, —In Z.
(Recall that we are measuring energies in units such that kg7 =1.) Then the
disordered average of the free energy per macromolecule (relative to the free energy
of the uncrosslinked system) per space dimension, which we denote f, is given by

—dNf =[In Z{i., s¢; i’ "} M), (2.13)

where the square brackets indicate a disorder average, viz

00 ¢l 1
[Or{es 5e; i, 523 ) = BOp + Z L dsy---dspy L ds|---dsy
M=

N N N N
xS 303 S Pl s 1 SYEDOM e 565 1 SHL),  214)

i=l  ae=l4=1 if=1

where Opr({ie, Se; il, s;}fil) is an arbitrary function of the realization of crosslinks.
The average over the locations of the crosslinks excludes realizations of the disorder
in which two positions on the same macromolecule located closer than a persistance
length participate in crosslinks. This can be accomplished by suitably cutting off the
arclength integrations. Inasmuch as Z is not strictly speaking the physical partition
function, f is not strictly speaking the physical free energy. In fact, from equation
(2.11) we know that the physical partition function (normalized with respect to that
of the uncrosslinked system) is given by

Z({lea se) le’ e}e—]) - H Z({’B’ se, le’ e}e—]) (2'15)
a
Thus, for the disorder-averaged physical free energy f, which is given by
—dNf = [In Z({i., 5; i’ 2}, (2.16)
we obtain
—~dNf = —dNf +InN!— [ln Hu,,!] . (2.17)
a

Now, f is an intensive quantity. However, A f, defined by

Af=f—f= —% [m(n}'v’!"’!)], (2.18)

is in general proportional to In N (for large N). The constant of proportionality is, in
general, difficult to compute: it will, however, be a small number for the case of
lightly crosslinked systems, increasing to d~! in the high-crosslinking limit, for which
all macromolecules are connected to a single cluster (for the uncrosslinked system
Af =0). Thus f(=f — Af) contains a term proportional to the logarithm of the
size of the system, i.e. is not intensive. Despite this unphysical feature of £, it is f
that we shall be computing, rather than f, because our inability to compute
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[In ], v.!] precludes us from computing f . However, the physical properties of the
system, such as the order parameter, for example, are determined by certain
disorder-averaged quantities that we shall show to be insensitive to the indistinguish-
ability factor [], v.!, and which can thus be computed in the present approach.

3. Order parameter for the amorphous solid state
3.1. General properties of the order parameter

We now discuss a certain order parameter constructed with the intention of
distinguishing between equilibrium states that are liquid (in which the monomers are
all delocalized), crystalline solid (in which a non-zero fraction are localized in a
spatially periodic fashion), globular (in which the monomers have condensed within
a spatial subvolume of the system), and amorphous solid (in which a non-zero
fraction are localized in a spatially random fashion) [8—10)]. This order parameter is
an extension, mutatis mutandis, of the order parameter introduced by Edwards and
Anderson in the context of a class of amorphous magnetic systems known as spin
glasses [2, 33].

For a specific realization of the crosslinks (i.e. prior to disorder averaging), the
approprite order parameter is given by

A . . .
N L ds(exp (iK' - ¢,(5))), (exp GK - €,(s)),, -+ (exp (W - €i(s))),,  (3.1)
i=1
forg=1,2,3, ..., none of the d-dimensional wave vectors {kl, ..., k&} being zero.

The angle brackets (- - ), indicate an average over the equilibrium state in question
for a particular realization of the disorder, indicated by the subscript x. Such
equilibrium states may correspond to situations in which the translational symmetry
of the system is spontaneously broken, in which case they are not ergodic. However,
we shall not dwell here on the possibility of further ergodicity breaking (e.g. of the
type commonly associated with the concept of replica-symmetry breaking; see [33]).
This restriction is consistent with the results presented below. For a discussion of
ergodicity breaking in systems of crosslinked macromolecular networks, see [8-11,
31}
The disorder-averaged order parameter is denoted by

N sl
2] arem i e, oy SO BCE)

For any particular positive integer g, this order parameter may be regarded as the
gth moment of the distribution of random static density fluctuations A4({ pk}) (see
[34]), which is defined by

N

1
wop =33 [ & T oo~ (exp k- oM. 33
k

i=1

where Hl denotes the product over all d-vectors k in the half-space given by the
condition k-n >0 for a suitable unit d-vector n, and the Dirac §-function
of complex argument 3.(z) is defined by 8.(z) = 8(Re z) 8(Im z), where Rez and
Im z respectively denote the real and imaginary parts of the complex number z.
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Thus,

JHT d(Re px) d(Im p) A ({ ok} Py i - - - o1
K

N 1
= [—i,-;‘ L ds (exp (iK' - €,(5))){exp GK? - €.(s) - - - (exp Gk - c.(s)»x] . (G4

To see why formula (3.1) is indeed an order parameter appropriate for
distinguishing between liquid, crystalline, globular and amorphous solid states, let
us examine its qualitative properties. First, suppose that the state is liquid. Then each
monomer (i, 5) is to be found, with equal probability, in the vicinity of any location
in the container. Consequently, the equilibrium expectation value of its density
9D[r - ci(s)]), is the constant V-1, and the Fourier transform (exp [ik - ci(s)]),
vanishes (except for the trivial case of k =0). Thus, for a liquid state the order
parameter (3.1) vanishes, all terms in the summation over monomers vanishing
identically. This corresponds to a state having full translational and rotational
symmetry.

Next, consider the case when a non-zero fraction of monomers are localized in
the vicinity of specific points in space, albeit exhibiting thermal fluctuations about
these points. In this case, for many monomers (i, s) the quantity (5@ [r— c(s)]), will
be more or less sharply peaked at some point in space and, correspondingly,
(exp [ik - €,(s)}), will not vanish identically, instead varying with k so as to reflect
the spatial localization of monomer (i, s). Then

(exp (ik - e,(5)), = exp (ik - bi() g 5(K), (€3]

where b,(s) is the site about which monomer (i, s) is localized, and (1.5 (K), which
does not vanish identically, is the Fourier transform of the density of a monomer
localized at the origin. In such a state, translational invariance is broken at the
microscopic level. However, the symmetry of the state of the system at the
microscopic level is not settled without further information.

What possibilities present themselves in the situation in which a non-zero
fraction of the monomers are localized? If the mean locations {b,(s)} of the localized
monomers are distributed randomly and homogeneously over the volume of the
system then the state is said to be macroscopically translationally invariant (MTI),
the inclusion of rotational invariance being understood. We mean by this that there
is no periodicity, or any other macroscopic feature capable of distinguishing one
equilibrium state from any global translation or rotation of it. We refer to such states
as (equilibrium) amorphous solid states. On the other hand, if the mean locations
{by(s)} of the localized monomers are distributed inhomogeneously over the volume
of the system then the state is said to break translational invariance macroscopically.
Examples of such states are the globular state [35], in which the monomers have
condensed (in space) within a subvolume of the system, and the crystalline state, in
which the mean locations of the monomers are arranged in a periodic lattice (and the
monomers may be regarded as having condensed in wave vector space).

How are the various possible states diagnosed by the order parameter? As we
showed above, the order parameter is zero for all {k, ..., k®} in a state that is
translationally invariant at the microscopic level (i.e. a liquid). On the other hand, it
will take at least some non-zero values for any state in which translational invariance
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is broken at the microscopic level. By using equation (3.5) we see that in such a state
the order parameter (3.1) becomes

N
23 [ 85 00 MIB 0D W) DGR+ I+ + 1) B GO

=1

This order parameter also provides a way to distinguish between non-liquid states
that are MTI and those that are not. In the case of an MTI state the summation of
complex phase factors will totally destructively interfere unless the wave vectors
happen to sum to zero, the random locations of the mean monomer positions
otherwise leading to random phase cancellations. Hence, the order parameter will
only fail to vanish for values of the wave vectors {k', K, ..., k¢} that sum to zero.
This property of being MTI is a fundamental characteristic of the amorphous solid
state. In the non-MTI case total destructive interference is avoided not only if the
wave vectors sum to zero but also under other circumstances. Hence, in this case the
order parameter will also fail to vanish for certain values of the wave vectors
{kl, K2, ..., k&} that do not sum to zero. To establish this, consider how formula
(3.6) transforms under a global translation by an arbitrary vector a:

N 1
%Z Jo ds p(l#)(kl)p(m)(kz) Tt ‘O(x,s)(kg) exp (i(kl + K+ + k) - by(s))

=1

—exp(i(k! + K+ -+ k&) -a)

1AL (! .
X5 L ds 01 (K)P (0 (k) - 0 (KE) exp (k' + K + - + k&) - by(s)).
=1

3.7

In situations of MTI, this transformation must leave the order parameter unchanged
for all vectors a. This enforces the condition that for MTI situations the order
parameter must vanish unless k! + k® +--- + k& =0, and thus the order parameter
becomes

1 N 1
Soplt 4k ﬁz JO ds ;5K o, (K, (3.8)
=1

where 8y 2 is a d-dimensional Kronecker 3-factor, which is non-zero only if the d-
vectors p! and p? have all components equal, in which case it has the value unity. In
this state, in contrast with the crystalline state, there is no periodicity associated with
the spatial pattern of localized monomers, and thus there will not be a collection of
reciprocal lattice vectors for which the order parameter fails to vanish. In particular,
the order parameter vanishes for g = 1. (One may equivalently regard the amor-
phous solid state as the special case of the crystalline state in which the unit cell of
the crystal is the entire sample, i.e. a realization of Schrédinger’s ‘aperiodic solid’
[36].) The equilibrium amorphous solid state is characterized by the presence of
random (i.e. non-periodic) static density fluctuations, which spontaneously break
translational symmetry at the microscopic (but not the macroscopic) level.

In the non-MTI case, either the transformation (3.7) must leave the order
parameter unchanged for a discrete lattice of vectors a, or it need not leave the
order parameter unchanged for any value of a. When there is invariance for a
discrete lattice of vectors (i.e. in the crystalline state), the order parameter must
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vanish unless k! + k* + - - - + k8 = G, where G is any reciprocal lattice vector of the
crystal (including the zero reciprocal lattice vector). When there is no vector for
which the invariance holds (i.e. in the globular state) the order parameter need not
vanish on symmetry grounds for any values of the wave vectors {k', ..., kf}.

To summarize, the values of the order parameter for the various values of g and
the wave vectors {kl, K, ..., k®} serve to distinguish between liquid, crystalline,
globular and amorphous solid states: for liquid states the order parameter vanishes
forg=1,2,3, ...; for amorphous solid states it vanishes for all wave vectors that do
not sum to zero (and thus vanishes for g = 1); for crystalline states it only vanishes
for wave vectors that fail to sum to a reciprocal lattice vector (and therefore is non-
zero for some {k', k2, ..., k¥}, even when g = 1); and for globular states it need not
vanish on symmetry grounds for any values of {k', k?, ..., k&}.

3.2. A simple idealization: generalized Einstein model

To illustrate the general properties of the order parameter, and to motivate the
specific hypothesis for the form of the order parameter described in section 3.3 and
applied in section 6, we examine a simple caricature of the amorphous solid state. We
refer to this caricature as a generalized Einstein model, by analogy with the Einstein
model of a crystalline solid adopted for the computation of the specific heat, in which
it is assumed that every atom is independently localized by an identical harmonic
potential [37]. In the context of amorphous solidification, the caricature is obtained
by asserting that a fraction (1 — g) of the monomers (the so-called sol fraction) are
delocalized, with each monomer (i, s) of the remaining fraction g (the so-called gel
fraction) being localized near a random mean position b,(s), its location exhibiting
thermal fluctuations about that mean position. We emphasize that our usage of the
terms gel and sol in this article refers solely to the issue of whether or not a monomer
is localized. Ultimately, however, we shall see that the gel fraction defined in this way
coincides with the more common architectural definition, in the sense that localiza-
tion will be seen to occur only for crosslink densities for which the network spans the
entire system. It is further asserted that the probability distribution for the
fluctuations in location of each localized monomer (7, s) about its mean position is
Gaussian and isotropic, and characterized by an inverse square localization length
7i(s). Then, if (i, s) is a localized monomer, its Fourier-transformed density would be
given by

(exp (ik - €,(5)), = exp ik - by(s)) exp (— K*/27i(s)), (39

so that the order parameter (prior to disorder-averaging) becomes

N
=T[5 + 53 [ aserp (i 31) exp (- 3 WP/2r9). @10
a=1 =1 a=1 a=1

where it is understood that the summation in the second term only includes localized
monomers.

To obtain the disorder-average of the order parameter we assume that for each
monomer (i, s) the random variables b;(s) and 7,(s) are uncorrelated. Furthermore we
assume that b,(s) is uniformly distributed over the volume ¥V and that the inverse
square localization length 7,(s) has the probability distribution p(¢). (The notion that
the state could be characterized by a statistical distribution of localization lengths
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was introduced in [10] and implemented in [13].) In this case the order parameter
becomes

4 4
(- q)alJ1 8 +4 5((;’)2‘ . J dr p(r) exp ( - ; |k“|2/2‘r). @.11)

The first term accounts for the delocalized monomers, and the second term accounts
for the localized monomers. If g = 0 then the state described by this order parameter
is the liquid state. If ¢ # 0 then it describes an amorphous solid state. The Kronecker
5 factor in front of the second term is a reflection of the MTI that characterizes the
amorphous solid state. This hypothesis is a refinement of the Gaussian hypothesis
used in a number of contexts [38]. It is useful to observe that the gel fraction g can be
extracted from the order parameter (3.1) by taking the limit of the order parameter
as {k', ..., k!} — {0, ..., 0} through a sequence for which }5_, k? =0.

3.3. Replica-order-parameter hypothesis: gel fraction and distribution of
localization lengths

Having discussed the physical order parameter capable of diagnosing equilibrium
amorphous solidification, we now anticipate the development of the replica
approach by describing the particular form that we shall hypothesize for the replica
order parameter, i.e. the order parameter that emerges from the application of the
replica technique and represents, in the replica approach, the physical order
parameter discussed in the previous two subsections of the present section. This
form is motivated by the general characterization of amorphous solidification in
terms of the gel fraction ¢ and the distribution of inverse square localization lengths
p(7) given in section 3.2. Below, in section 6, we shall show that within the context of
a certain model of randomly crosslinked macromolecular networks the form that we
now hypothesize for the replica order parameter is sufficiently broad to allow us to
provide an exact and physically appealing mean-field-level description of the
transition to and properties of the equilibrium amorphous solid state of randomly
crosslinked macromolecular networks.

As we shall see in detail in section 4, the replica representation of the physical
order parameter is given by

<NZJ ds exp( dk*-c "(s))> i (3.12)

a=0

in the replica limit, n — 0. As we shall also see there, (- M 41 denotes an expectation
value for a pure (i.e. quenched-disorder-free) system of n + 1 coupled replicas of the
original macromolecular system. Note the inclusion of degree of freedom associated
with a replica labelled by a = 0. For the sake of notational convenience we introduce
hatted vectors (e.g. k or &), which are (n+ 1)d-component vectors comprising
(n+1)-fold replicated sets of d-component vectors (e.g. the wave vectors
{x% K, .. ,K'} or the posmon vectors {c ¢!, ..., ¢"}). We define the extended
scalar product k-ébyk-é= Snok*-e® hav1ng the special cases K =k-kand
&2 = ¢-¢. In terms of this notation, the order parameter becomes

P

<%§;J‘:dsexp(i]€.éi(s))> . (.13)

n+l
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By translating formula (3.11) into the replica language, through the use of
equation (4.19), we are led to the assumption that the replica order parameter takes
on values expressible in the form

(1-gq) agg”) +q sf{,'g L dr p(r) exp (—i2/27), (3.14)

where k= Y on-ok® is a permutation-invariant d-vector built by summing the
elements of the replicated vector k, and 8(»”;"“1) =T Sgﬁ{qa. Thus, we parametrize
the order parameter in terms of the gel ffaction g and the distribution of (inverse
square) localization lengths p(r) [39]). This parametrization is severely restrictive but
physically plausible. In order for p() to be interpreted as a probability distribution
it must be non-negative. This condition is not imposed a priori, but emerges from the
stationarity condition. The ranging of 7 only over positive values reflects the fact that
inverse square localization lengths are positive. Moreover, delocalized monomers are
accounted for by the term proportional to (1 — g), so that p(7) must not contain a
Dirac 8-function-like piece at 7 = 0. The factor Sf.(d()) incorporates the MTI property
into the hypothesized form. It should be emphasiied that the hypothesized form is
invariant under the permutation of the replicated vectors {k’ k', ..., K"}, whichis a
manifestation of its replica-symmetric character.

3.4. Symmetry properties of the order parameter hypothesis

We now state explicitly the symmetry properties of the order parameter
hypothesis (3.14) that we shall use throughout the remainder of this article. As we
shall see in section 4, the effective Hamiltonian of the replica theory turns out to have
the following symmetries: (i) independent translations or rotation of the replicas, and
(ii) permutations of the replicas. In the liquid state the order parameter retains all
these symmetries. In the amorphous solid state the symmetry of the order parameter
is reduced. By invoking our hypothesis for the order parameter we are assuming that
in the amorphous solid state the residual symmetries are: (i’) common translations
and rotations of the replicas, and (ii) permutations of the replicas. In other words, in
the transition to the amorphous solid state the symmetry of independent translations
and rotations of the replicas is spontaneously broken. As a consequence of the
spontaneous breaking of certain symmetries there is a manifold of symmetry-related
values of the order parameter that describe the solid state.

In this article we have restricted our attention to order-parameter hypotheses that
are invariant under the permutations of all (n + 1) replicas (i.e. that are replica
symmetric). This mathematical restriction is equivalent to the physical condition
that, upon amorphous solidification, the (overwhelming fraction of the) system must
exhibit one member of a unique family of equilibrium states (i.e. statistical
arrangements of the macromolecules), this unique family of states being related by
global translations and rotations. Whilst the occurrence of a unique family would
not be an unreasonable consequence of crosslinking, especially in view of our
exclusion of the anholonomic constraints that crosslinking introduces into the
physical system, one might anticipate that crosslinking would cause the full physical
system to exhibit many families of states (i.e. there would be states that are not
related by global translations and rotations). Such an occurrence would be signalled
by an order parameter that is no longer invariant under permutations of the replicas
(i.e. for which replica symmetry is spontaneously broken). For discussions of these
matters, see [31] as well as [8~11]. The issue of whether or not there exists a more
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accurate treatment of randomly crosslinked macromolecular systems that would
indicate the existence of many unsymmetry-related states is a matter of ongoing
research [41].

It must, however, be emphasized that, regardless of the issue of the intactness of
permutation symmetry, the primary physical phenomenon at hand in the formation
of the equilibrium amorphous solid state is the spontaneous breaking of translation
symmetry (viz the spontaneous random localization of macromolecules). The issue
of replica-symmetry-breaking is not an alternative to translational-symmetry-break-
ing: it simply addresses whether or not a system with given realization of crosslinking
possesses one or many unsymmetry-related ways for the macromolecules to be
randomly localized. To allow for the possibility that replica-symmetry-breaking
accompanies translational-symmetry-breaking is to explore a more general class of
behaviours of the system.

3.5. Connection with scattering experiments
The order parameter that we have been addressing in the present section is, in
principle, accessible via neutron scattering experiments [42, 43], at least for the case
g = 2. In fact, the elastic part of the differential scattering cross-section (per atom)
can be written as

-l—dz—a—Sd()—lim M i ld.s'ds'v:x ( —iq - ¢;(s;0)) exp (iq - € (s'; 2))
Ndﬂ_ q _I—*OO N = 0 p q (ACS] p q 1 ]

2, N gl
+ Lol (55 asexp(—ia- s erptia- e0)) ). 619
1=1

where bcon is the average scattering length, bincon is the variance of the scattering
length, c;(s; ?) is the position of monomer s on macromolecule i at time ¢, and (- - +)
indicates a time-dependent equilibrium expectation value. The second part on the
right hand side is the incoherent contribution, and can be extracted in some cases. By
using the fact that the connected correlators vanish for ¢ — co, we see that this
second part reduces to

lbmcoh |2 AL . .
Pl 5 | dstexp(~ia- e (o)) expa- eo)), (3.16)
=170

i.e. formula (3.1) evaluated for the special case of {kl, K, ..., k}={-q,q,0, ..., 0}.
Thus, the order parameter for g = 2 is proportional to the incoherent part of the elastic
neutron scattering cross-section.

Oeser et al. [44] have measured the time persistent part of the incoherent
scattering function in neutron-spin-echo experiments. They fit their data, which
are taken in the high crosslinking limit, to a Gaussian in wave vector space
characterized by a typical length scale /, which turns out to be comparable to the
radius of gyration. A potential critique of neutron scattering experiments results
from the available time scales, of order 10 ns, which make it difficult to extrapolate
to infinite time in order to extract the time-persistent part of the autocorrelation.
This may not be a severe problem in the high crosslinking limit, in which one expects
rather small time scales associated with small distances between crosslinks. However,
it may become prohibitive for weakly crosslinked systems, which barely sustain an
infinite cluster.

Pulsed field gradient NMR (see, for example, [45]) is another experimental
technique for measuring the intermediate-time incoherent scattering function with
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a spatial and temporal resolution that is complementary to neutron scattering experi-
ments. Typical time scales in NMR experiments are of the order of milliseconds, and
length scales are restricted to be greater than 10 nm. An example of such
measurements is the detection of spatial fluctuations in swollen networks in {46).

4. Replica approach for disorder-averaged quantities

Having prepared the way by discussing the model and the construction of a
suitable probability distribution for the disorder, and defining an order parameter
capable of diagnosing the possible states of the system, we now turn to the
computation of disorder averages of important physical quantities, such as the free
energy, order parameter and certain correlators. A direct assault on this task, as it
stands, seems prohibitively difficult, but it can be rendered tractable by the use of the
replica technique [33], pioneered in the context of macromolecular networks by
Deam and Edwards [1]. In this approach, we do not consider just the original degrees
of freedom but, instead, a system comprising n + 1 interacting copies (i.e. replicas) of
it that will be labelled by the superscript @ =0, 1, ..., n. In this new system, the
quenched randomness disappears from the formulation, at the price of introducing
an inter-replica interaction.

4.1. Replica-Helmholtz free energy
In order to compute quantities such as the disorder-averaged free energy, the
order parameter and the elastic free energy [47] in a unified way, it is particularly
convenient to introduce a certain generating functional &,(u?, {U}), which we refer
to as the replica-Helmholtz free energy and define as follows:

<eXp { _%2 XN: 1 dsr ds’ zn:a(d)(c;"(s) - ci’,(s’))}

1,'=1 0 0 a=0
T A @) (o agt
xexp{W Z_ Jo dsJods ];[ 3V (eMs) — cii(s ))}
ni'=1 a=0
Vn+l N 1 w
xexp{ - ;L ds U(c,(s))}>n+l

exp (— ndN®,(1*, {U})) =

(oo {53 [Lo5[ o' 89— ert)}

ip=1J0 0
2V @ A\
Xexp { 3172:1 Jo ds JO ds’ 89 (e,(s) — eu(s ))}>1 @.1)
The expectation value (- - -),,W+1 is defined to be
JH@c"‘ exp(~HY)---
(¥, == , @.2)
J H Deexp(—HY )
a=0

i.e. an average with respect to the (n+ 1)-fold replicated Wiener measure, which is

proportional to exp (—H Y, ), where
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=330 [ alg

a=0 =1

(s) 4.3)

In analogy with magnetic systems, the properties of which one can probe by
computing the free energy as a function of an external, position-dependent, magnetic
field, it is useful in the present context to introduce the external potential U on which
&, depends. The potential U, which takes as its argument an (n + 1)-fold replicated
d-vector %, acts simultaneously on replicas of all monomers, has zero average (over
%), and plays the role of a source field. As we shall now show, knowledge of
(1%, {U Nly—o allows us to compute the disorder-averaged free emergy per
macromolecule df . Subsequently, we shall see that by (functional) differentiation
of &,(12, {U}) with respect to U we shall be able to compute the order parameter.
Furthermore, it is possible to investigate the elastic properties of the amorphous
solid state of randomly crosslinked macromolecular networks by making a Legendre
transformation with respect to U (see [47]).
The quantity Q;, defined by

= NZJ exp (ik - &(s)), (4.9

is the Fourier transform of the replicated monomer density. As we shall see in section
4.3, a certain average of Q, turns out to be the replica representation of the order
parameter. In order to generate Q; it is useful to introduce the Fourier representa-
tion of the external potential U, viz

. 1 2
U@ = WXk: Uy exp (ik - 8), 4.5)

which leads to the replacement
pntl N

1
5 L ds U (é,(s)) — zk: U:0; 4.6)

=1

in equation (4.1), so that Uy is a source for Q;. We shall, in addition, make use of
expectation values involving the weight that features in the replica-Helmholtz free
energy, equation (4.1):

/\2 N 1 1 n
< .+ -exp { -5 > J dsJo ds"> 8@ (cp(s) - cff(s'))}
a=0

L'=1 0

x exp{ M22_NV i J‘ J ds’ H 59 (e%(s) — ci(s ))}

1t'=1 0 a=0

wpal),

AN =
X exp { f;;”/il j dsJ ds’g 89 (e(s) — €3(s ))}

Copyright © 2001. All Rights Reserved.



Randomly crosslinked macromolecular systems 417

The superscript P indicates that the average is taken over a pure system; the subscript
n + 1 indicates that the system comprises n + 1 coupled replicas. In fact we shall also
find ourselves making use of the zero-potential expectation value (- - )n +1,0lu=0, for
which we introduce the special notation (- - -)E 41

The definitions given in the present subsection give the basic mathematical
objects that we shall manipulate in our formulation. As was anticipated above,
the quenched randomness associated with the random crosslinks does not appear
explicitly in these definitions, but instead a term proportional to x? appears, which
introduces a coupling between the replicas. In contrast with the case of conventional
spin glass models [33], the replica interaction couples all the replicas simultaneously,
rather than pairwise. This feature is responsible for the occurrence of an order
parameter involving a product over all the replicas, rather than pairs of replicas. For
a similar feature in the context of dilute spin glasses, see [48].

4.2. Application of the replica-Helmholtz free energy to the free energy f
We now show how knowledge of &,( uf, {0}) allows us to obtain the disorder-
averaged free energy per macromolecule df , defined in equation (2.13). To see this,
consider the quotient

exp ( — ndN®,(12, {0}))/exp ( — ndN$,(0, {0})). 4.8)
By using equation (4.1) we see that this quotient is given by

/‘l‘zV = ! 1 a af E
exp (— ndNEL(2, (O1) <exp { W:,L; Jo dsj ds gs(d)(c, () — (s ))}>n+1
exp ( — ndN®,(0, {0})) 2y N1 , \E
<exp { ‘;—Ngl Jo ds JO ds’ 5D (c,(s) ~ (s ))}>1
4.9)

Here, we have transformed the expectation values from ones weighted by the
replicated Wiener measure, equation (4.3), to ones weighted by the replicated
Edwards measure, which is proportional to exp(—HE ), in which

2ZZ] a5 5 5 Zj as [ a9 59(ez9) - e36)

a=0 1=1 a=0 i'=1

(S)

(4.10)

We indicate such expectation values by (- - )n 1> the subscript 7+ 1 indicating the
presence of replicas. Next, we replace the exponential function in the numerator of
equation (4.9) by its power series expansion, thus obtaining

exp ( — ndN®,(, {0}))
exp (— ndN®,(0, {0}))

o 2 M N 1 1 n M\ E
(S (e[ -so)
0 ) IND

= 1
= o= @1

<exp { ’f—V ZN: 1 dsjl ds’ 89 (e,(s) — c,,(s'))}>?
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By expressing the Mth power as a multiple summation and integral over products we

obtain . w w . 1
<MZ=XJI_'(%) MZ—I...W'Z_ILdle ds’ - --
exp (— ndN, (4 {0))) _ J J QI_IO 1:1 B0et o0 - el ))>
exp ( — ndN®,(0, {0})) <exp { ;;_V EN: J; dsjo ds” 5@ (e,(s) — c,'(S'))}>f

=1

4.12)

We now recognize that the expectation value in the numerator factorizes on { the
replica index to give n+ 1 factors of the partition function Z({ze, Se; 0, 8, }e_l)
equation (2.8). One of these factors, when taken together with the denominator and
remaining terms (i.e. factors other than n partition functions), reconstructs the
Deam—Edwards probability distribution, equation (2.12). Thus, by using equation
(2.14) we obtain
exp(— ndNSa(4% {0}) _ <= - 3 j‘ J‘ : f J‘ :

= ds; | ds’---] ds ds
exp (— ndN$,(0, {0})) ,;:0,1,2;1 ,MZ_I o L Ml Faa

X yM({le: se; e’ s }e-—l)z({lel sB! ;’ e e._l)n (4130)

= [Z({ie, 5¢; 1%, SLYL ). 4.13b)
By taking the logarithm of both sides, and using the expansions

=exp(ninz)=1+nlnz+ O@n?), (4.14a)
In(1 + nz) = nz + O@?), (4.14b)

valid for small n, we arrive at the relationship between the replica-Helmholtz free
energy @,(u?, {U}) and the disorder-averaged free energy per macromolecule d f of
equation (2.13):

lim (@(4, {0}) — 2a(0, {0})) = f (4.15)

4.3. Application of the replica-Helmholtz free energy to
disorder-averaged observables

In the previous subsection we discussed the application of the replica technique
to the computation of the disorder-averaged free energy. We now turn to the issue of
the computation of disorder averages of equilibrium expectation values of physical
observables as well as of disorder averages of sums of products of equilibrium
expectation values of physical observables. As we have seen in section 3, the latter
type of quantity arises in the context of the order parameter for equilibrium
amorphous solidification. This computation is accomplished by using the connection
between the replica-Helmholtz free energy @,(u?, {U}), equation (4.1), and expecta-
tion values of @, equation (4.4):

%ndm(uz, {UD = Q) 4.16)
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More generally, by (functional) differentiation of &,(u?, {U}) with respect to U we
can obtain average values for powers of the order parameter, viz
ndN&,(1%, {U}) . 1)r+l
= ndN®, (1%, {0}) + Z Z Z U, Ue Qi -+ O dmsrer (417

The subscript ¢ indicates that the correlators are connected ones [49, 50].

Now, equations (4.16) and (4.17) exhibit relationships between quantities defined
in the framework of pure systems of replicated degrees of freedom. On the other
hand, as discussed in section 3, the state of the system is appropriately diagnosed in
terms of an order parameter built from the disorder average of products of
expectation values taken in the (unreplicated) physical system. The connection
between the former (replica) quantities and the later (non-replica) quantities is
contained in the following formula, established in Appendix A, which is valid in
replica-symmetric states [33]:

(00} (O1)y -+ (Og),] = lim (Go({el DD - O{ @Dy (418)

The most important application of this connection is the case of the order parameter.
For this case, as we also show in Appendix A, equation (4.18) reduces to

hm —Si—ndNQ.(p, {U})‘ Ql)n+1

N 1
= [%; L ds (exp ik’ - €,(5))), (exp (k' - ci(9))),, - - - (exp (ik - ci(s)))x] , (4.19)

where [ = {k’, k!, ..., k5,0, ...,0}, and {k° k!, ..., k®} are kept fixed as the limit
n — 0 is taken [51]. Similar replica-limit expressions for the disorder average of
functions of the quantity (3.1) can also be obtained.

5. Field-theoretic representation

The purpose of the present section is two-fold. First, in sections 5.1 and 5.2 we
transform our representation of the physical problem from one expressed in terms of
the semi-microscopic replicated macromolecular coordinates to one expressed in
terms of generalized monomer densities. These densities are closely related to the
order parameter that, as we have seen, diagnoses the various physical states of the
system. Then, in sections 5.3 and 5.4, we obtain a field-theoretic representation by
applying a sequence of Hubbard—Stratonovich decoupling transformations [8, 9] to
the replica-Helmholtz free energy of equation (5.5). This type of decoupling strategy
was first used in the context of crosslinked macromolecular systems by Ball and
Edwards [6, 7]; see also [52].

The motivation for making these transformations is that they will provide us with
a suitable starting point for developing a mean-field description of the transition to
and properties of the amorphous solid state. Furthermore, they provide a starting
point for the analysis of fluctuations and for the investigation of the elastic
properties of the amorphous solid state (see [47]).
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5.1. Fourier representation of interactions
At this stage it is useful to introduce the following Fourier representations of the
Dirac 8-functions:

8@(e) = Illz exp (ip - €), (5.1q)
P

304+ (@) = [[ 8 = Vi+1 Z exp ( > oprec ) = V,1,+1 D exp(ip - &).
P

a=0 a=0

(5.1b)

Here bold-face wave vectors (such as p*) are d-component vectors having
components taking on the usual values associated with periodic boundary condi-
tions, i.e. all positive and negative integral multiples of 2rt/¥ /¢ (because ¥ /4 is the
length of each side of the d-dimensional cubic container of volume ¥') [26].

We now introduce a particularly convenient decomposition of the terms in a
summation over a replicated wave vector p, such as that appearing in equation
(5.1b). Consider a generic replicated vector p= {p°% p!, ..., p"}. Of the n+1
component d-vectors, establish the number 4 that are non-zero d-vectors. Then we
say that the replicated vector p resides in the h-replica sector. For example, if
$=1{0,0,¢%0,q%0,0, ...,0} with q> and q* both non-zero d-vectors then s = 2,
and we say that p resides in the 2-replica sector. The decomposition that we are
introducing amounts to separating from the summation over p the term in the 0-
replica sector (i.e. the term corresponding to p = 0={0,0,...,0}), and also
separating the terms in the 1-replica sector (i.e. terms correspondmg to those values
of p in which exactly one d-vector is non-zero). Thus we shall decompose
summations over p into contributions from (i) the O-replica sector, (ii) the 1-replica
sector, and (iii) the remainder, which we refer to as the higher-replica sector, and
which contains the hA-replica sectors for 2 < h < n+ 1. Schematically, the decom-
position can be expressed in the following way:

Z.@,,_20+ZZ .@°+Z.@ (5.2)

a=0

Here 2;‘ denotes a summation over all values of the d-vector k except that the k =0
term is omitted (i.e. it comprises terms in the 1-replica sector), 2§ denotes the value
of 2; when k is in the 1-replica sector (i.e. the ath d-vector entry in k is non-zero, all
other entries being zero), and Ek denotes a summation over replicated vectors k
residing in the higher replica sector. It will turn out to be useful for us to consider V'
to be large but (at least initially) finite, in which case it is straightforward to
implement the replica-sector decomposition, equation (5.2).

With a view to subsequent decoupling transformations, it is useful to use the
Fourier representations of the Dirac 8-functions and the replica-sector decomposi-
tion in order to re-express the Dirac d-function interactions, i.e. the non-Wiener
measure terms that couple the replicated degrees of freedom. Thus, we see that the
interaction terms in equation (4.1) can be written as
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N 1l
ZJ j ds’ZS(d)(c"(s) ci(s)
11=1 0

a=0

n 1 2
ZZ Zj ds exp (ik - €2(s)) (5.3a)
0—0 k
N 1 2
=—(n+1)+— — J dsexp (ik - ¢7(s)) (5.3b)
| 4 —1 J0
1 N ¢l 2
=—-—(n+ 1)+—EZT ‘NZLdsexp(ik- c(s)) (53¢
a=0 i=
——( +1)+——ZZT|Q° (5.3d)
a=0
b ! ’ o (d) r
2 Ldsjods 1:[5 (€%(s) — c(s")
1 N ¢l R 2
— J dsexp (ik - é,(s)) (53¢)
=1 J0
N2 Nz n , 1 N 1 . o 2
=—V,‘T+—m;¥ ’ﬁ;,[odsexp(lk.c'(s))
N2 S| LS gsoxp k- 26)| 5.3
+ 3|y 2 | dresp G- (53/)
2 2 n N 2
Vn+l ?ﬁilZZT’JLZ dsexp(ik-c:’(s))
a=0
J dsexp GE - 5| (5.3g)
2
Vn+1 Vn+lZZT|Q Vn+lz?|Qk| (5:3h)

For each of the left hand sides we have performed four steps. In the first step we have
used equations (5.14a) and (5.1 b) to re-express the Dirac §-functions. In the second
step we have performed the replica-sector decomposition, according to equation
(5.2). In the third step, we have recognized that the summands in the summations
over wave vectors of the second step are even functions of the relevant wave vector.
Furthermore, none of the summations includes a zero wave vector. Thus, in each
case the summation can be restricted to half of the relevant wave vector space,
provided a factor of two 1s included to compensate. To represent this, we have

introduced the notation Zk to denote 3" but with k restricted to the half space via
the additional condition k- n > 0 for a suitable unit d-vector n, and Zk to denote
f,; but with £ restricted to the half space via the additional condition k-7 > 0

for a suitable unit (n + 1)d-vector A. The virtue of this procedure is that in our
subsequent development it will enable us to avoid the introduction of kinematically
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non-independent fields. In the fourth and final step we have used the definition of Q;
given in equation (4.4), which in the context of the replica-sector decomposition
becomes

a_1xnf N ,
o= ﬁ; _[0 dsexp (ik - ¢(s)), (1-replica sector) , (5.4a)
%=y Z _[ dsexp (ik - &(s)), (higher-replica sector) . (5.4b)

1=1

5.2. Applications of the Fourier representation
By applying the results of section 5.1 to equation (4.1) we obtain

exp (— ndN®,(42, {U}))

N_' 2 v
(B S g A 00 - 0)
a=0 k c &

S e

where we have introduced the effective excluded-volume parameter

2
R=x_# 4

" Ny®

i.e. the bare excluded-volume parameter A\> renormalized to a smaller value by a

correction term proportional to the crosslink density parameter u2. The prefactor &,

is an unimportant constant, which arises from terms in the 0-replica sector, and is

given by
2 2772 2
_ BN XN-n N
B, = exp (_ZV" > )/exp (—2 ) ;.7

We see from equations (5.5) and (5.6) that in the l-replica sector there is a
competition between the excluded-volume interaction A> and the effect of the
crosslinking, represented by p2. If ,\2 is positive then configurations having non-
zero Qf are disfavoured (and therefore MTI is favoured), whilst if )\2 is negative then
configurations having non-zero Qf are favoured (and therefore there is a tendency to
violate MTI). As we are primarily concerned with investigating the liquid and the
amorphous solid states, both of which are MTI, we focus our attention on the regime
/\2 > 0. On the other hand, the (higher-replica sector) component of the term due to
crosslmkmg increases the statistical weight of configurations in which Q; # 0 (for k
in the higher-replica sector). As we shall see in section 6.2, the coefficient of this term,
2, is the control parameter governing the transition from the liquid state (for small
©2) to the amorphous solid state (for large 4?), as characterized by the values of the
order parameters shown in the table.

(5.6)

5.3. Hubbard-Stratonovich decoupling scheme: replica-Helmholtz free energy at zero
external potential

We now obtain a field-theoretic representation by applying a sequence of

Hubbard—Stratonovich decoupling transformations to the replica-Helmholtz free

energy, equation (5.5). We focus on the case U = 0 in the present subsection, and in
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Table. Values of the order parameter in the liquid and amorphous solid states.

Liquid state Amorphous solid state
Sector Order parameter (w1 WP2>1
One-replica (O =0 =0
Higher-replica (Q,;)L_] =0 #0

the following subsection present results that allow for non-zero U. The motivation
for these transformations is that via them all interactions between different
macromolecules are eliminated at the expense of introducing a certain additional
stochastic field to which the monomers are coupled. This strategy has the following
virtues. First, the task of summing over the configurations of the system of N
replicated macromolecules is reduced to the task of summing over the configurations
of a single replicated macromolecule, albeit one that is coupled to the stochastic field.
The monomers that constitute this replicated macromolecule remain coupled to each
other via the Wiener measure, equation (2.2), and by the stochastic field to which
they are coupled. To the extent that this summation can be performed, equation
(5.12 a) gives the replica-Helmholtz free energy in terms of functional integrals over
the stochastic fields. Second, the stochastic field itself has a natural physical
interpretation: as we shall see explicitly in section 5.4 it is related in a direct manner
to the order parameter.

The appropriate Hubbard—Stratonovich decoupling transformations are pre-
dicted on the multiple use of the following pair of integrals:

exp (—a|w]?) = (a/7) J d(Re z) d(Im z) exp (—a|z|*) exp (2ia Re zw*), (5.8a)
exp (+alw|®) = (a/7) J d(Re z) d(Im z) exp (~alz|*) exp (2a Re zw*). (5.8b)

Here w is an arbitrary complex number, a is a real and positive (but otherwise
arbitrary) number, and the integrals are taken over the entire complex z plane. We
transform each exponential term inside an expectation value in equation (5.5) (with
U = 0) by using these integrals, those havmg the coefficient )\2 or )\2 with equation
(5.8 a) and those having the coefficient ;2 with equation (5. 8b)

We define the measures 91' @T and 2, via

alo= HHT’\N (5.9)
a=0

atn= ﬁ’f ;‘—ﬂd(ke ;) d(Im 2)), (5.9b)

Dw= HT NN? 207 §(Re wi) d(Im wy), (5.90)

k

where ]_[]L denotes the product over all d-vectors k in the half-space given by the
condition k- n > 0 for a suitable unit d-vector n, and Hk denotes the product over
all (n + 1)d-vectors k in the half-space given by the condition k -/ > 0 for a suitable

unit (n + 1)d-vector 7. These definitions have convenient normalization properties
[53]:
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J@IQexp (—XﬁNZV—'E":ZHn:F) =1, (5.100)
a=0 k

J@Tn exp (— ,ﬁNV—"—Z—Tm,;]Z) =1, (5.100)
7

J@;fwexp (—XﬁNZV“‘ZTIwklz) =1 (5.10¢)
k

By using this sequence of Hubbard—Stratonovich transformations, equation (5.5)
becomes

exp (—ndN&,(i?, {0})) =

Q,J@:flﬁexp (— N2y -1 EZT |Qﬁ‘|2) J@T[) exp (— ,u2NV"'§Tl.Q,;|2)

a=0 k

n — w
X <exp (2iXﬁN2 y-! Z ZT Re 20°0F + 2M2NV‘"ZTRe -Q;;Q;;) >
E n

a=0 k +1
W
J@;rw exp (— XNy ZT Iwklz) <exp (2iX§N2V—' Zf Re w;Qa)>
K * 1
(5.11)

By examining the expectation values (: - -),,W+1 and (---)} in equation (5.11) we see
that indeed the sequence of Hubbard—Stratonovich transformations has led to the
decoupling of the N (replicated) macromolecules from each other. Moreover, as
these expectation values are products of identical factors, one for each replicated
macromolecule, we may replace them by the Nth power of an expectation value
involving a single replicated macromolecule. Thus, we see that equation (5.5) is given
by the quotient of partition functions of stochastic fields,

J.@,’[n j 2t Qexp (- ndNZ{ 2, )

exp (— ndN&,(1?, {0})) = B, , (5.12a)

J Qg wexp ( — ndNF4({wi}))

governed by the effective Hamiltonians %,({{2, 2;}) and &# den({uy}), where

ndZ (2, 2g) = 2NV S S + v S gl
i

a=0 k

—In <exp {Zi):ﬁNV'l i ZT Re 3" Jl dsexp (ik - c“(s))}
0

a=0 k

w

X exp {2y2V—":VjTRe 2 Jl ds exp (ik - é(s))}> ., (5.12b)
i 0

n+1
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nd F4"({w})
. . 1
= NNV! ZT lwx|* — In <exp {Zi)\%NV’l ZT Re w;J dsexp (ik - c(s))}>
k k 0 1

(5.12¢)

We can compute % ({125, 2;}) and F%*({wi}) perturbatively [54], order by order,
in powers of {f2§, 2;} and {wy}. This perturbative construction of the Landau-
Ginzburg—Wilson effective Hamiltonian is equivalent to that arising in many other
contexts in statistical physics.

w

5.4. Hubbard-Stratonovich decoupling scheme: replica-Helmholtz free energy at
non-zero external potential
We now turn to the general case of the replica-Helmholtz free energy, in which U
need not vanish. As with the U =0 case, it will be convenient to perform a
Hubbard-Stratonovich decoupling transformation on &,(u?, {U}). This transfor-
mation is predicated on the multiple use of the following pair of integrals, which are
generalizations of those given in equations (5.8 a) and (5.8 5):

exp (— a(lwl® — jw — jw")
= (a/7) exp (aj] ) jd(Re z) d(Im z) exp ( — a|z]* + 2ia Re zw* — ia(zj + z°7)),
(5.13a)
exp (alw|* — jw — jw*))
= (a/m) exp (~ajf) Jd(Re 2) d(Im z) exp ( — a)z|* + 2a Re zw* — a(zj + 2*7)).

(5.13b)

Here w, j and j are arbitrary complex numbers, a is a real and positive (but otherwise
arbitrary) number, and the integrals are taken over the entire complex z plane.
Following a strategy analogous to that used for the U = 0 case, we find

ndN&, (1%, {U}) = —-In B, +In j 9:{ wexp(— ndedm({wk}))

N%;; U”‘U‘ik+ ’rU U_;

—In J@IQ@TQ exp ( — ndNZ,({$X%;, %)) -

IZZ ve — ZU n) (5.14)

a=0

where the effective Hamiltonian %, is given in equation (5.125). Thus we have
transformed our description into an effective one for the fields {12}, £2;}. It should be
noted that the coefficients of the powers of {U§, U;} in the functional Taylor series
for &,(u?, {U}) are simply related to the connected correlators of {22, £2; ¢} via
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2 — 2 a a
ndeﬁ,.(u,{U})—ndein(u,{0})—2N2A222 KU+ oy 2ZU U_;

n a=0

oy ":.?ﬁzz zzz

r,s=0; (r,s)#(0,0) : =0 a,=0 k,

x ZU:: o UpUg - Up (0 - 82, ...QE’);’:_I’C’ (5.150)
k

where the expectation value (- - -),ﬁl is defined via

o j@,’[rz@m- --exp (— ndNZ({$2, ;1)
el =

(5.15b)
j 2t 091 Qexp (- ndNZQ R, 2:1)

The virtue of the present development is that it allows us to construct quantities
of physical interest, which typically involve the densities {QF, Q;} in terms of more
readily computable quantities, which involve the stochastic fields {2, 12;}. Indeed,
by using equations (4.17) and (5.15a) we see that

(O%)r 1 = —HT s (5.160)

Qoo = (2 (5.165)

Thus, by using equation (4.19) we see that we can relate the order parameter to the
expectation value of the stochastic field (2, as

N
[zlej ds (exp(ik® - €,(5))) (exp (ik' - €/())y - (eXP(ikg'cx(s)))x} = im (@) 7,1,
i=1

(5.17)

where [ = {k°, k!, . ., k%0, ..., 0}. In the following section we make explicit use of
this development in order to compute the order parameter.

6. Saddle-point approximation in the critical regime

In the preceding sections we have developed an exact, formal, field-theoretic
representation of the statistical mechanics of randomly crosslinked macromolecular
networks. In the present section we shall explore the properties of such systems,
focusing our attention on the regime of crosslink densities near to the equilibrium
phase transition from the liquid state to the amorphous solid state that sufficient
crosslinking causes. We shall do this by analysing the field-theoretic representation
at the level of mean-field theory, considering in detail expressions for the free energy
and the order parameter. Following this, in section 7, we shall consider the
implications of a certain, physically important class of fluctuations. In order to
streamline the presentation, a considerable amount of technical detail has been
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relegated to the Appendices. The main results of this section have been briefly
reported in [13].

6.1. Approximation strategy
The mean-field level of approximation follows from computing the functional
integral in the numerator of equation (5.12 a) by using the saddle-point method. This
amounts to replacing the functional integral by the value of its integrand that is
stationary with respect to variations of {{2, 2;}, so that, omitting ummportant
constants, we obtain the following approximations for &,(42, {0}), (.Q")n 10 (.Qk),, 41

and <q>n+l

¢n(l"'2’ {0}) = Z({ﬁ:, 'r_)E})’ (6.1a)
(O = ()m = &, (6.1%)
<QIE>5+1 = <'Q)E>n+1 .(_2 (6.10)

Here 2} and .(_),; make Z({2, 2;}) stationary, i.e. satisfy the stationarity
conditions

3,
= ok = 0, (62 a)
8 |y,
% = 0. (6.25)
q {‘r_’:vﬁf}

By using equation (5.12b) the stationarity conditions become

< J ar exp (iq - €%(7)) exp {21A2NV - Z ZT Re 2 J: ds exp (ik - °a(s))}

a=0
— 1 A w
X exp{Zp2 V"'ZTRe @ J ds exp (ik - E(s))} >
.Qa _ i n+l1 ’
) <exp {21A2NV -1 Z ZT Re 28 J ds exp (ik - c"‘(s))}
a=0
—_ 1 X w
X eXp {2u2 V"’Z tRe 2 J dsexp(ik - E'(s))}>
3 0 n+1
(6.3a)
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1
< J dtexp (ig - ¢(9) exp {21A2NV -1 Z ZT Re ¢ Jl dsexp (ik - c“(s))}
0

a=0 k

w
n+1

x exp{Zqu”"ETRe o r ds exp (ik - E'(s))}>
k‘ 0

<exp {21A2NV IZZTRe E dsexp(ik'c"(S))}

a=0

;=

w

X eXp {2;1.2 V‘"_STR(: Z Jl ds exp (ik - é(s))}>
i 0

(6.3)

n+l

6.2. Instability of the liquid state
In the context of the mean-field approximation, the liquid state corresponds to
;= .(—2,; = 0, which can readily be checked to solve equations (6.3 @) and (6.3 b). To
address the stability of this state we examine ({2, 12;}), equation (5.125), and
expand perturbatively about 2§ = §2; = 0 to second order in {2} and §2;. This gives

n
ndZ({25, ) = RNV 33T+ 2NV gy )| 25
a=0 k

+ VY N — 2V g (KPP + . (64)
E
The correlators necessary to calculate the terms in this expansion are computed in
Appendix B, and the function g,(Jk|*) resulting from the subsequent arclength
integrations is defined in Appendix C, and has the value

e -1k (1-k/6, fk2<]1;
—(—k2)2 4/k?, if k2> 1.

As we anticipated at the end of sectxon 5.2, the stability of the 1-replica sector is
controlled by the coefficient of the |.(2°‘] term in this expansion. This coefficient,
together with the positive definiteness of gQ(|k| ), show that provided the crosslink-
renormalized excluded-volume parameter A2, given in equation (5.6), is positive, the

1-replica sector is locally stable. Thus, the saddle-pomt value 27 is zero. The positive
definiteness of X2 requires that

go(lklz) =

34
Ny»’
i.e. that the repulsive character of the physical excluded-volume parameter A\? is
sufficiently strong to enable the system to withstand the effective tendency towards
collapse afforded by the crosslinking. Thus, we see that even at the level of mean-field
theory it is only as a consequence of the presence of the excluded-volume interaction
that the system can, at the same time, be stable with respect to collapse to the
(inhomogeneous) globular state and yet unstable with respect to the formation of the
(macroscopically homogeneous) amorphous solid state.

The stability of the higher-replica sector is controlled by the coefficient of the
lﬂkl term in the expansion, equation (6.4), i.e. by

1— W2V "go(kD), 6.6)

2>

(6.5)
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(considering, as we do, u? > 0). The two contributions to this coefficient enter with
competing signs, owing to the attractive nature of the effective term arising from
crosslinking, and thus provide the opportunity for the loss of positivity of this
coefficient. Indeed, the coefficient indicates that the liquid state will be stable for
u? <1 and unstable for u? > 1, i.e. stable only for sufficiently small crosslink
density, the factor of ¥ " in equation (6.6) being eliminated by first taking the limit
n — 0, and subsequently taking the thermodynamic limit (¥ — oo, N — oo, N/V
fixed, ,u2 fixed) [55] The least stable modes correspond to long wavelengths, k2 — 0,
for which go(|k|*) — 1 from below [56].

The linear stability analysis of the present subsection indicates that the liquid
state, as characterized by the order parameter discussed in section 3, is stable when
the mean number of crosslinks per macromolecule [M]/N is smaller than a certain
critical value M_/N, i.e. those mean crosslink densities correspondmg to u2 < 1.
However, for larger crosslink densities, ((M]/N) > (M./N), i.e. pu? > 1, the hquld
state is unstable [57], being replaced by an alternative state which, as we shall see in
the following two subsections, is an amorphous solid state, characterized by £2; # 0
but 2§ = 0. In fact, the state that replaces the liquid state will turn out to have the
property of macroscopic translational invariance (see section 3.1), so that even
though it has £2; # 0, this is compatible with and does not disturb the fact that the 1-
replica sector remains stable and that 2§ remains zero.

6.3. Free energy
We now set about exploring the nature of the amorphous solid state with respect
to which the liquid state is unstable for p2 > 1. Initially, we do this by following the
strategy outlined in section 6.1 of making %, stationary with respect to the fields (2%
and £2;. However, we are unable to parametrize the entire space of possible fields.
Instead, we consider the class of fields for which physical motivation was presented
in section 3.2 (see equation (3.14)),

2 = 0, (1-replica sector), (6.7a)
00
2 =q sf(“}, L dr p(r) exp(—K2/27), (higher-replica sector),  (6.7b)

evaluate %, for such fields, and make the resulting quantity stationary with respect to
the variational quantities, the gel fraction ¢ (a number) and the distribution of
(inverse square) localization lengths p(7) (a normalized function). This amounts to
making a variational mean-field approximation. However, as we shall sec in the
following subsection, the hypothesis we make for the saddle point will actually turn
out to contain an exact saddle point of &,

By inspecting equation (5.125) and employing equation (6.7 a) we see that there
are two contributions to the free energy: a term quadratic in 2;, and a term that can
be identified as the logarithm of the partition function of a single replicated
macromolecule coupled to §2;. The explicit details of the evaluation of these terms
when 2; is given by equation (6.7b) is presented in Appendix D. Then the
variational mean-field approximation to the free energy is given by

F_ 1 2 ~ 1 : 1) ~ min £ V3T
[ =lim &, {0}) ~ lim min FH{2, 2D min f*{q, p}, 6.8)

where we have omitted constants independent of the variational parameters g and
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p(7), and the variational free energy f ¥ {g, p} is given by
{4, p} = —L(exp(~12q) — (1 — p*q) — }°¢) In (V' /¥ 21te)
o0 00
+hit [ anpm [ anpe @ + 753
0

00

p'qur 1
+hoxput)y oL dn-as,
r=1 )

00
X J dri p(r1) - - - d7, p(77) In (% ) Det®) .4?52,). 6.9)
0

(c'f), is an (r X r)-matrix-

Here Det®) denotes the determinant of an r x r matrix, % ’

valued function of the r arclength coordinates {s,},_, and the r inverse square
localization lengths {7,}/_,, and # ) is a single such function, Qf,?, and # ) being
respectively defined in equations (F1) and (F25) of Appendix F.

As anticipated in section 2.6, in addition to intensive terms we find a non-
intensive term, proportional to In ¥, owing to the omission of the disorder average
of the Gibbs symmetry factor. The presence of the In ¥ factor signals the fact that
the configuration integral produces additional powers of V. These powers of ¥ can
only be due to degrees of freedom that are allowed to vary over the entire sample, i.e.
to the fraction of macromolecules that are delocalized. Thus this term depends on
the gel fraction ¢, but it cannot (and does not) depend on p(7), which only describes
the localized degrees of freedom. In the following subsection we shall analyse the
self-consistency condition for the order parameter directly and, although no quantity
proportional to In ¥ will appear, we will re-obtain the exact same results as in the
present subsection. This approach will be seen to have the additional substantial
virtue of demonstrating that the hypothesized form of the order parameter, equation
(3.14), used in the present section as a variational hypothesis, in fact provides an
exact saddle point of the free energy, not merely a variational approximation.

As a first step towards minimizing f V2" we regard the term proportional to In V'
as dominant, and make it stationary with respect to the gel fraction ¢. This leads to
the condition [58, 34, 13]

exp(—pig)=1-gq. (6.10)

For all values of z2? this equation has the root ¢ = 0, corresponding to the liquid
state. However, for 4 > 1 an additional root appears, emerging continuously from
g = 0 at 2 = 1, and describing the equilibrium amorphous solid state. In figure 1 we
show the dependence of the gel fraction on p2. For u? > 1, i.e. the highly crosslinked
regime, ¢ approaches unity asymptotically as g ~ 1 —exp(—g?). In the critical
regime, 0 < p? - 1<« 1, it is convenient to exchange u? for the new control
parameter ¢, defined via

w=1+¢/3, (6.11)
with 0 < e < 1. We may then solve perturbatively for ¢, obtaining
q=2¢/3+ 0(). (6.12)

Having determined the condition satisfied by ¢ we now turn our attention to the
dependence of f ¥ on the distribution p(7) of inverse square localization lengths. As
we are primarily interested in crosslink densities in the vicinity of the vulcanization
transition (i.e. 0 < € <« 1), we use the result that, to order ¢, we have g = 2¢/3. This
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Figure 1. Dependence of the gel fraction ¢ on p?: stable solution (full line); unstable
solution (dotted line).

allows us to retain in the summation over r in equation (6.9) only the terms r =2, 3
(the r = 1 term vanishing identically by the construction of #~ (). Next, we assume
that the inverse square localization lengths having appreciable statistical weight in
p(r) are also of order ¢, ie. small compared to unity, in units such that
((L/d)]/ 2 — 1, so that localization is on length scales much larger than the size of
a free macromolecule. (We shall confirm the consistency of this assumption a
posteriori) Thus, we may use the result from Appendix F to expand
In (% ) Det” gtﬁ,'}) in equation (6.9) for small {7,},_;, retaining terms to order
7,. Then we integrate over the arclength variables {s1, ..., s,} by using the results of
Appendix F. Omitting terms that are independent of p(r) we find that, to 0(e>),

- 1/2\° T+7 1 /2\? TI+7+T73
var __ _ [ &= | =z —
== (3) o ()} v (5) {m (™)),

+L(% [ nm (6.13)
12\ 3 n+n -r’ )

where the brace carrying the subscript T indicates averaging over the localization
lengths, ie. {¥(m,m, ...)}, = [y dnp(n)dnp(n)---¥(n, 7, ...), as many
lengths 71, 7, ... as feature as arguments of the arbitrary function ¥.

For future reference we note that if we suppose that the distribution of
localization lengths is sharp, i.e. has no fluctuations, so that p(r) = 8(1 — & -2,
where ¢ is the sharp value of the localization lengths, then the expression for f¥*
simplifies, becoming

v 1 [26)° 1 /21
f _ﬁ(?) ln(£2)+ﬂ(?> @’ (6.14)
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correct to O(e®). In this case, demanding that f V¥ be stationary with respect to &2

yields, to O(e),
1_J[o, if i <1,
e {26/3, if 2> 1. (6.15)

We now return to the general situation, in which the distribution of localization
lengths is not constrained to be sharp. Rather than demand that f* be explicitly
stationary with respect to p(r) itself, it is convenient to exchange its dependence on
p(7) for dependence on the Laplace transform p(7), given by

= J:o d7 p(r) exp (—71). (6.16)

The details of this exchange are deferred to Appendix H; what results is the following
expression for Y&, correct to O(c?):

fro=-t ( 2?) | F 062 +200) - exp )

1 Y edr
L (.23_6) |0°° = [-B() +3p(7) — 2 exp ()]
2
RE (%‘E) Io d#(dp/d)2. ©.17)

This expression has the virtue of being a local functional of jp(7), so that the
consequent stationarity condition will be a differential equation for 5(7). Moreover,
the (global) constraint that p(7) be normalized to unity, [{° dr p(r) = 1, is exchanged
for the (local) boundary condition $(0) = 1.
We now demand that fV* be stationary with respect to j(f), i.e. that
8 V2 /8p(7) = 0. The details of computing the functional derivative of f ¥ with
respect to p(7) are deferred to Appendix H; what results is the stationarity condition,
correct to O(e*),

§fver 2¢\% 1 % . 26\21d%
=50 —(g) = —ACE )]+( ) yrd L ()]—(?) c3 ©19)

or, equivalently,
2a

92— 1 - 00 6.19)

correct to O(e). Normalization of p(7) leads to the boundary condition 5(0) = 1. As
p(7) does not contain a 8-function contribution at 7 =0 (see [60]), p obeys the
additional boundary condition p(oo) =

Before solving the stationarity condition we note that p(r) depends para-
metrically on the crosslink density, so it would be more accurate to denote it by
p(7;€). We now introduce the scaling function #(6) in terms of which p(7; €) is given
by p(r;€) = (2/€)n(27/¢). In other words we transform the dependent and indepen-
dent variables as follows:

ep(r;€)/2 = n(6), (6.20a)
T = €f/2. (6.20b)
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In this way, up to an elementary factor, the dependence of p(r;€) on 7 and ¢ is
combined into a dependence on a single scaling variable 6 (see [61]). Then the
Laplace transform of the scaling function 7(6) is defined via

#(6) = r d8 n(6) exp (—66), (6.21)

so that °
GEE() (6.22a)
/2 = 0. (6.22b)

In terms of ﬁ(é), and neglecting O(¢) contributions, the stationarity condition then
becomes
é & = 2#(6)(1 - #(6)). (6.23)
dée ’
subject to the boundary conditions #(0) = 1 and #(c0) = 0.

We have been unable to solve this nonlinear ordinary differential equation for
fr(é) analytically. One might consider solving this differential equation numerically,
and then inverting the solution numerically to obtain 7(f) and hence p(7). Whilst this
is possible in principle, the numerical inversion of Laplace transforms is notoriously
unstable. Instead, we have found it preferable to take the inverse transform of the
differential equation analytically, and thus we obtain the nonlinear integro-differ-
ential equation and constraint for w(f),

P ]
f'zi‘;—e = (1 - O)m(6) — L 46’ w(8"yn(6 — 8"), (6.240)
Jw don@) =1, (6.24b)
0

the constraint resulting from normalization.

We shall obtain 7(f) (and hence p(7)) in section 6.5, and discuss the consequences
of the physical values of g and p(7). Before doing so, we shall adopt a different point
of view, in which we focus not on the variational extremization of the free energy but
instead on the self-consistent equation for the order parameter.

6.4. Self-consistency condition for the order parameter

In section 6.3 we enforced the stationarity of the effective Hamiltonian only with
respect to the parameters g and p(7) of our order parameter hypothesis, and not with
respect to arbitrary variations. As a consequence, we are not yet in a position to
address whether or not the resulting order parameter is a true saddle point of the
effective Hamiltonian. In the present subsection we establish that the solution that
we have found is indeed a true saddle point of the effective Hamiltonian by directly
analysing the stationarity conditions (6.3a) and (6.3 b) themselves. We emphasize
that this approach allows us to circumvent the difficulties discussed in section 2.6
that arise in the computation of the contribution to the free energy associated with
changes in the indistinguishability factors introduced by the crosslinks. The results of
this subsection have been briefly reported in [13].

We insert the hypothesis given in equations (6.7 a) and (6.7 b) into the stationarity
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conditions (6.3 @) and (6.3 b), derived in section 6.1, to obtain

(1= 0845+ %o | d7 o) exp - 27/20)

< Jl dt exp (ig - ¢(2))

0
w

n+1

X exp { Vg Z 8k o f dr p(r) exp (—k*/27) E ds exp (ik - E'(s))}>
k

w

<exp { u? V"q ZE: 8;10 J:o dr p(T) exp (—IE2 /27) J: dsexp (ilé . é(s))}>

n+1

(6.25)

Here, in both the numerator and the denominator we have relaxed the constraints on
the summations having coefficient u? by (i) doubling the range of the summations to
include the entire higher-replica sector by making use of the property of the
hypothesis £2; = 2* 4> (i) including the 1-replica sector terms (which vanish by the
MTI of the order parameter hypothesis), and (iii) inserting identical factors
associated with the O-replica sector. It should be noted that equation (6.25) also
follows from the direct application of the Weiss molecular-field method.

As shown at the end of Appendix I, evaluation of the numerator and
denominator of the right-hand side yields

(1= 98,5 + g0 L dr p(r) exp (¢/27)
00 oo 2 .r ¢l
= exp (-1 + exp (1 a)bgo | drexp(-2/2m) 3 oL | dsi - ds
r=1 -

X r dry -+ -dr p(m) - - p(ry) 8(r — T, (6.26 a)
0

1 1 2 < L
TO=%® + L1l — o) E ”115,')5’},&1 - Z «5"r+1,p%’£,2u5’}u,r+1, (6.26 b)
o= Py

where the limit » — 0 has been taken everywhere except in the dimension of §, and
where %, ), w ) and € are, respectively, defined in equations (B2), (F2a),
(F2b) and (F2c¢), and depend on {si, ..., s+1} and {m, ..., 7741}. It should be
emphasized that equation (6.26a) is not solved by any sharp distribution of
localization lengths p(r) = 8(r — £ ~2). Thus, a variational hypothesis involving a
sharp distribution gives at best a variational approximation, whereas a variational
hypothesis involving a non-sharp distribution has the potential to yield an exact
saddle point, and we shall find such an exact saddle point below, at least in the
vicinity of the vulcanization transition.

We now extract information about g and p(7) from equation (6.26 a). First, we
take the limit > — 0, via a sequence for which § = 0. In this limit, the left-hand side
becomes ¢, and on the right side each integral gives a factor of unity, yielding the
self-consistency condition for the gel fraction g,

g =1—exp(-u’g), (6.27)
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i.e. precisely the self-consistency condition for ¢ found from the free energy approach
in section 6.3 and discussed there.

Having decoupled the issue of the gel fraction ¢ from the issue of the distribution
p(t) we now return to p(7) itself. By considering equation (6.26 b) for a fixed non-
zero value of 42, and using Lerch’s uniqueness theorem for Laplace transforms [62]
we find that indeed the hypothesis solves the self-consistency condition for {{2, £2;}
provided that the distribution p(r) satisfies the condition

1 00
J dsy--- dS,+1 J dr--- dT,p(Tl) . -p(‘r,) 8(T - T,-).

0 27 T

— 2 uq
gp(r) = exp (—129) Y —;

r=1 0 0

r

(6.28)

This equation for p(r) is, for all values of u?, identically satisfied if g = 0.

We have not, thus far, made any approximations beyond that of mean field
theory. In order to render equation (6.28) tractable, we now restrict our attention to
the vicinity of the transition regime in the solid state, i.e. to values of ¢, as defined in
equation (6.11), satisfying 0 < e <« 1. This restriction allows us to assume that g is
small, and that only localization lengths much larger than the free-macromolecule
radius of gyration have an appreciable probability, i.e. p(r) only gives appreciable
weight for 0 < 7 < 1. Thus, we need retain in equation (6.28) only terms for which r
is 1 or 2, and may expand 7') to @(+%) and T? to O(7!). As discussed in Appendix
J, in terms of the scaling function m(6) introduced in equation (6.20 ), we recover
equation (6.24a) subject to the normalization condition equation (6.245b), i.e.
precisely the stationarity condition for p(7) found from the free-energy approach.

Thus, the condition that the order parameter be self-consistent turns out to be
identical to the condition that the effective Hamiltonian be stationary with respect to
variations within the subspace spanned by the hypothesized form of the order
parameter. The form for the order parameter hypothesized in equation (3.14) is not
merely a variational form but in fact gives an exact saddle point of the effective
Hamiltonian, equation (5.125).

We have obtained the equation for the gel fraction ¢, equation (6.10), and the
equations for the scaled distribution w(#), equations (6.24 @) and (6.24 b), from two
different points of view. In the previous subsection we have discussed the con-
sequences of equation (6.10) for q. In the following subsection we shall discuss the
solution of equations (6.24a) and (6.24 b) for n(6), and elaborate on the physical
consequences of our results for ¢ and p(7).

6.5. Characteristics of the amorphous solid state

For the sake of completeness we first restate the results concerning the gel
fraction g that were found in section 6.3 from the self-consistency condition on g,
equation (6.10). For all values of u? we find the solution g = 0, corresponding to the
liquid state. For 42 > 1 an additional solution appears, emerging continuously from
g =0 at p? = 1, and describing the equilibrium amorphous solid state, as shown in
figure 1. For p? > 1, ie. the highly crosslinked regime, g approaches unity
asymptotically as g ~ 1 —exp(—u?). In terms of the deviation of the crosslink
density from criticality, i.e. ¢ defined in equation (6.11), the critical regime is
0<e< 1l In this regime we may solve perturbatively for g, obtaining
q = 2¢/3 + O(€*), equation (6.12).
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Figure 2. Scaling function m(f) (full line) for the probability distribution of localization
lengths; asymptotic form for # — 0 (dotted line); asymptotic form for § — oo (broken line).

It should be noted that the stationarity condition on g, equation (6.10), is
precisely the condition obtained by ErdS6s and Rényi in the context of random
graph theory [58], which can also be interpreted as a mean-field treatment of
percolation. In particular, Erdés and Rényi showed that for a random graph of N
points and pu?>N/2 edges the probability for the fraction of points in the largest
component to differ from the solution g of equation (6.10) vanishes in the N — oo
limit. A related approach to the theory of macromolecular networks [34] has also led
to equation (6.10). This is physically quite reasonable: one would anticipate that the
transition from liquid to solid would occur when the density of crosslinks is sufficient
to create a macroscopically extended network of crosslinked macromolecules.

We now address the distribution of localization lengths via the scaling form #(6).
We have solved both the integro-differential equation (6.24 a) and the differential
equation (6.23) numerically [63, 64], and the solution of equation (6.24 a) is shown in
figure 2. As we see in this figure, the scaling function m(6) has a single maximum near
# = 1, away from which it decays rapidly. In fact, states for which 7(6) takes negative
values are not ruled out by the hypothesis, equation (3.14), but are not found as
solutions of the stationarity condition, equations (6.24 a) and (6.24 b).

We are able to obtain asymptotic properties of 7(6) analytically. The asymptotic
form m(8) ~ af 2 exp(-2/0) (for § < 1) is obtained from equation (6.24a) by
neglecting the second term on the right-hand side. Notice the essential singularity
at the origin: 7(f) vanishes very rapidly indeed as 8 — 0. The coefficient a ~ 4-554
cannot be obtained from local asymptotic analysis. Instead we have obtained it
separately by the numerical solution of equation (6.23), as discussed in [64]. The
asymptotic form n(f) ~ 3(b8 — 3/5) exp (—b) (for § > 1) is obtained by computing
the inverse Laplace transform of the approximate analytical solution of equation
(6.23) near the point § = —b, at which #(d) diverges. The coefficient b ~ 1-678 was
obtained separately by determining the (negative) value of ¢ at which the numerical

Copyright © 2001. All Rights Reserved.



Randomly crosslinked macromolecular systems 437

10 . . . .
o8} A 1
/,\ .. '.
/ N
o6} / \ ]
/ \)
o ! \
| \
| N
04} ]
I
:
[
|
02 j z
|
0.0 - . - =
00 1.0 2.0 30 4.0 5.0

k

Figure 3. Scaling function w(k) for the order parameter (full line); asymptotic form for
k — 0 (dotted line); asymptotic form for k£ — oo (broken line).

solution of equation (6.23) diverges. Notice the exponential decay of #(f) for large 6:
m(6) goes to zero quickly as § — oo. For the sake of comparison with the numerical
results, the small- and large-6 asymptotic forms for 7(6) are also shown in figure 2. A
distribution of localization lengths also features in Panyukov’s approach to the well-

crosslinked regime (see [52]).
In addition to providing the distribution of localization lengths, knowledge of

n(f) allows us to construct the order parameter £2;. By using equations (6.20 a) and
(6.20 b) in equation (3.14) we obtain

2 = (1= 2¢/3) 85 + (2¢/3) 8 (2K /€)'/?), (6.29a)
w(k) = r, dé n(6) exp (—k?/26). (6.29b)
0

Although we do not have an exact analytical expression for n(f), we can com-
pute w(k) numerically. We do this by inserting the numerical values of #(f) into
equation (6.29 b), and show the result for w(k) in figure 3. We are able to obtain
analytical asymptotic expressions for w(k). For g < 1 the result simply follows from
expanding the exponential function in equation (6.295) in powers of g, thus
obtaining

w(k) ~ 1 — gf dé 6~'n(6) +%L d9 o 2n(@) + - -- (6.300)

=1—0-44094% +0-1316¢* + ---, forg< 1. (6.30b)

We see that w(k) departs quadratically from its absolute maximum of unity at the
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origin. For k> 1 one can replace n(f) by its large-§ asymptotic form in equation
(6.29 b) to obtain

Ink’
o~ (G

27

1/2
_ 172 .
) exp ( — (2bk?) )(1 +40(2bk2), 7+

~-), fork > 1.

(630¢)

We see that w(k) decays exponentially to zero for large k. For the sake of comparison
with the numerical results, the small- and large-k asymptotic forms for w(k) are also
shown in figure 3.

To summarize, as shown in section 6.2, the liquid state of a system of randomly
crosslinked macromolecules becomes unstable when the mean number of crosslinks
per macromolecule [M]/N is increased beyond a certain critical value M;/N,
corresponding to p? = 1. At this critical point the system exhibits a continuous
phase transition from the liquid state to the amorphous solid state. As shown in
sections 6.3 and 6.4, this solid state is characterized by a gel fraction ¢, which grows
from a value of zero at the critical point with the classical exponent 3 = 1 (see [66]):
g~en~p*—1~(M]— M)/N. The amorphous solid state is further characterized
by the statistical distribution of localization lengths 2¢ —p(£~2). In the vicinity of the
transition the dependence of this distribution on the control parameter ¢ and the
(inverse square) localization length 7 is determined by a universal scaling function (of
a single variable) 7(f), i.e. p(t) = (2/€)x(27/€). This universality guarantees that 7(6)
need only be computed once for all near-critical crosslink densities. As already
mentioned in the present subsection, m(f) has a single maximum, away from which it
decays rapidly. Hence, the fraction of localized monomers that are localized on
length scales much larger than e1/2 is exceedingly small. Our result for p(r) also
predicts that the fraction of localized monomers with localization lengths much
smaller than ¢/ is also exceedingly small. This provides an a posteriori confirma-
tion of the internal consistency of the perturbation expansion in powers of £ =2 upon
which our results rely. However, the detailed form of the distribution for localization
lengths much smaller than ¢~/2 (e.g. for localization lengths of the order of the
radius of gyration of a free macromolecule) is unreliable because such localization
lengths are not within the range of validity of the perturbation expansion. The rapid
decay of p() away from its maximum guarantees that its moments are finite. This
character, together with the scaling form of p(r) ensures that the moments scale in
the following manner: [¢2"] ~ (((M] — M:)/N)™*'. Furthermore, as the distribu-
tion has single maximum it is sensible to define a typical localization length &y
associated with the most probable localization length. This length &, obeys the
scaling relation &yp ~ (p? — 1)"1/2, Thus, a simple, reasonable approximation to the
true distribution p(r) would be a sharp distribution, e.g. 3(7 — €/2).

We have seen in section 6.4 that the order parameter hypothesized in section 3.3
and determined in sections 6.3 and 6.4 is a solution of the stationarity condition for
the free energy equation (6.3 b). This is in contrast with the hypothesis analysed in
[12), in which it was assumed that ¢ =1 and p(§~2) = 8(¢ =2 —£72) (i.e. that all
monomers share a common localization length). The hypothesis of [12] does not
satisfy the stationarity condition, and therefore only provides a variational bound on
the free energy. That our result for the order parameter is a saddle point of the free
energy, rather than merely a variational bound, is a feature of considerable
significance. The consequent exact vanishing of the linear term in the expansion of
the effective Hamiltonian, equation (5.125), in powers of the departure from the
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known stationary value streamlines further analysis of, for example, linear stability,
fluctuations, correlations, and response to perturbations [47].

6.6. Comparison with numerical simulations

Extensive numerical simulations of both macromolecular melts and well-cross-
linked macromolecular networks have been performed by Grest and Kremer, and
others; for a review see [67]. On the other hand, until the recent work of Barsky and
Plischke [68], relatively little attention had been devoted to simulations of the regime
in which the number of crosslinks is comparable to the number of macromolecules
(i.e. the vicinity of the liquid-to-amorphous solid transition). It should be remarked
that from the computational point of view this is a daunting regime. In their
simulations, Barsky and Plischke observe a continuous transition from the liquid
to the amorphous solid state, and extract a universal scaling function describing the
distribution of localization lengths. Whilst their numerical results are in strong
qualitative agreement with the analytical predictions described in the present article,
thus providing support for the theoretical picture of amorphous solidification
discussed here, there appear to be quantitative differences. At present, the precise
origin of these differences is unclear: a possible source is the relatively short length of
the macromolecules used in the simulations, for which mean-field theory is expected
to require substantial fluctuation corrections over a moderately wide range of near-
critical crosslink densities.

7. Incorporation of density-sector correlations

Until now we have entirely neglected fluctuations in the fields 2§, £2; and wy in
the computation of the functional integrals in the numerator and denominator of
equation (5.11). Instead we have approximated the functional integrals by the
stationary values of their integrands. This amounts to making a mean-field
approximation, in which correlations between fluctuations of the fields are neglected.

As a consequence of this strategy, the excluded-volume interaction has played a
subsidiary role: its presence has been required, in order to maintain the stability of
the physical system with respect to the formation of macroscopically inhomogeneous
states, e.g. via crystallization or collapse (which would be detected by their non-zero
value of the order parameter in the 1-replica sector), even at crosslink densities large
enough to destabilize the liquid state with respect to macroscopically translationally
invariant states (i.e. equilibrium amorphous solids). However, having accomplished
this by guaranteeing the stability of the l-replica sector, the excluded-volume
interaction has played no further role. Indeed, the precise value of the excluded-
volume parameter A does not even feature in the mean-field free energy of either the
liquid state or the equilibrium amorphous solid state (in the same way that the
exchange coupling constant of a magnetic system does not feature in the mean-field
free energy of the paramagnetic state). Thus, amongst the correlations that we have
entirely neglected are those between fluctuations of the density of the system, i.e.
correlations between the 1-replica sector fields £2§.

There are two reasons why we should seek to improve the theory by incorporat-
ing density—density correlations, at least at some level. (It should be pointed out that
Ball and Edwards have undertaken the task of incorporating correlations in their
approach to crosslinked macromolecular systems [6, 7].) First, at least at high
densities, the resulting screening of the excluded-volume interaction gives an
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accurate treatment of interaction effects [19]. Second, such correlations would reflect
the statistical tendency for the macromolecules to avoid one another. This would
have the effect of introducing a statistical preference for configurations in which
macromolecules stay apart, and a barrier between topologically distinct configura-
tions. Thus, one might imagine the following scenario. In a given realization of the
supercritically crosslinked system without the correlations associated with self-
avoidance there is no statistical bias against macromolecules passing through one
another. Thus there is no apparent mechanism for creating distinct ways for the
macromolecules to localize themselves, and the system would exhibit a single family
of (translational- and rotational-symmetry-related) solid equilibrium states. If, on
the other hand, correlations are incorporated, then there can be at least statistical
barriers between symmetry-unrelated ways for the macromolecules to become
localized, e.g. topologically distinct interweavings of the macromolecules. Thus,
one might anticipate a situation in which the incorporation of correlations allows the
system to exhibit symmetry-unrelated equilibrium states, a scenario that could be
revealed through the mechanism of the spontaneous breakdown of the permutation
symmetry amongst the replicas. Certain ideas in this direction have been explored in
[31]. For a discussion of related issues in the context of spin glasses, see [33].

7.1. Free energy

We now set about the task of computing the quotient of functional integrals,
equation (5.12 a), with improved accuracy, in order to incorporate the effect of the
excluded-volume interaction. With regard to the functional integral in the numerator
our strategy will be to treat the l-replica sector in the Gaussian approximation,
resulting in an improved effective Hamiltonian for the higher-replica sector field (2,
which we then treat at the mean-field level. The functional integral in the
denominator will also be treated in the Gaussian approximation. We assume that
at the relevant saddle points of the improved effective Hamiltonian the order
parameter (2; will continue to have the property of being MTI, as described in
section 3.1.

To implement this strategy, we expand %, equation (5.125), to quadratic order
in the 1-replica sector field 2§ for an arbitrary value of the higher-replica sector field
§2;, except for the restriction that £2; be MTI. Thus we obtain

#z =t ) 2/‘2—T 1 . w
nd ({8, ) ~ Wz |92 —In <exp { WZ Re Q;J ds exp (ik - c(s))}>
% i 0 n+1
+ 3 Y e + Ry vgE B + o),
a,a’'=0 k
(7.1a)
1 1 ,
< J drexp(iq - c"‘(t))J dt’exp(—iq-¢c* ("))
0 0
— 1 w
X exp {2u2 V‘”E tRe 2 J dsexp (ik - 6'(s))}>
, : 0 n+l
g:& = — lk A W y
<exp {2p2V-"ZTRe o J ds exp (ik - é(s))}>
i 0 n+1
(7.1b)
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in which v = N/V denotes the number of macromolecules per unit volume. Note
that all terms linear in {2, as well as most terms that are quadratic in {2} vanish by
virtue of the MTI property of §2;. The f2,-dependent correlator & ea’ js discussed
further, below, and is computed for a specific form of £2; in Appendix K. Similarly,
we expand & 47, equation (5.12 ¢), to quadratic order in the field wk, obtaining

nd# 9 ({w)) & K 3T (1 + vgo(Iklenl, (7.2a)
k

1 1 w

alal) = ( [ arexpa-c) [ ar exp(-a-ea) . @20
1
The basic Debye correlator go(lqlz) is computed in Appendix C. Next, we substitute
the approximations to % and & %", quadratic in {2} and wy respectively, into
equation (5.12 g), and perform the resulting Gaussian integrations over 2§ and wy.
These we do for each value of k in the numerator and denominator, by noting the

normalizations, equations (5.10a) and (5.10¢), and applying the well-known result

n n
JH d(Re z%) d(Im z%) exp ( -y z“'xf;a’z“’)
a=0 a,a’=0 Det,, K4
- - = , (7.3)
N 1ot Det,, oA
JHd(Re z%)d(Imz%exp | — Z z* A" 2®
a=0 a,a’=0

in which «/; and &/, are arbitrary Hermitian complex-valued (n+ 1) x (n+ 1)
positive-definite matrices and Det, denotes a (replica-space) determinant of an
(n+ 1) x (n + 1) matrix. Hence we obtain

exp (— ndN@,(4%, {0)) ~ %, j@Tnexp ( - %f*lrzgz
k

4Nk <exp{2V_l‘:z’rRe Q;Edsexp(ilé-é(s»}>w )
£

n+1

x I;[T A + Rvgo(k[2) / I;[f Det,, (I + vy, (7.4)

where I, is the (n + 1) x (n + 1) identity on the replica indices.

Now, our aim is to compute the free energy f, equation (2.13), and to do this we
shall need the difference &,(u2, {0}) — &,(0, {0}), as we see from equation (4.15).
Thus, in addition to &,(u?, {0}), which we have just obtained at the Gaussian level
of approximation, we shall also need &,(0, {0}) at the Gaussian level of approxima-
tion. This can readily be obtained from equation (7.4) by setting p? to zero

throughout, except in the measure .@TQ, equation (5.95b), and in the coefficient of
the quadratic term in the exponent: —(Npu?/ V")f,; |.Q,€|2. Then the logarithmic term

vanishes, #g® becomes 3°®gy(lk|?), and X2 becomes A2, and the functional
integration can be performed by using the normalization equation (5.9 5), all u?-
dependence cancelling from the result. Thus, we find

exp [-ndN®,(0, {0})] ~ exp (—n)\’Nv/2) / H’f A+ Xugy(KP).  (7.5)
k
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By forming the difference @,( p {0}) &,(0, {0}) we thus arrive at the following
expression for [Z({ie, se;i’, 5°} )", in which 1-replica sector density fluctuations
are incorporated at the Gaussian level, as indicated by the superscript gdf on %

(2({ie, 0381, 511 )] J@Trz exp (= ndNFE({Q.)), (7.6 6)

—_— —_ w
ndF ({0} = ,’ﬁ—ZTlﬂélz —In <exp { %‘—;ZTRe Q;ZJ; ds exp (ik - E(S))}>
k k

n+1

o 2 2
+LZTln Det, ( I + )\,,V‘?kz ) _ _I_Z‘I' In (1 + )‘ol’go(|k|2)). (1.6b)
vV 4 1+ Nugy(kP?)/ vV 4 1+ Nugo(|k|%)

Following the same line of reasoning made in section 6.3, we shall now make a
variational mean-field approximation for the remaining functional integral. To do
this, we evaluate the effective Hamiltonian (7.6 b) using the hypothesis for §2; given
in equation (6.7 b). As was the case 1n section 6.3, this leads to an expression for the
effective Hamiltonian in terms of g and p(r), which we subsequently make stationary
with respect to g and p(7).

The next step in computing [Z({ie, Se; 1L, s’e}fil)"] concerns the evaluation of the
determinant on the replica indices, Det, in equation (7.65). This can readily be
accomplished provided we make the assumption that we only consider values of 2;
that are invariant under the permutation of replica indices (i.e. are replica
symmetric). This is indeed the case for the form hypothesized in section 3.3. With
this restriction, % takes the form

g3’ = 8% Hy + (1 — 8°%)hy, X))
which, for a given value of k, has eigenvalues

Hy + nhy, with degeneracy 1, (78a)
Hy, — hyx, with degeneracy n, (7.8b)

so that I, + A2v% has eigenvalues
1+ Nuv(Hy + nhy), with degeneracy 1, (7.9a)
1+ Xﬁu(Hk — hy), with degeneracy n. (7.9b)

Hence, we find that the determinant in equation (7.6 ) is given by

( g+&mk)=ﬂ+ﬁwm+wmﬂ+ﬁﬂm‘mw. (7.10)

1+ Xvgo(|k) (1 + Xvg(lkH)™

It should be noted that this e ?ression has implicit dependence on n through Hy, Ax
and A2 but not through g,(|k|").

Our next step involves making use of the fact that we shall ultimately be taking
the replica limit, » — 0. With this in mind, we make the expansions, valid for small »,

Copyright © 2001. All Rights Reserved.



Randomly crosslinked macromolecular systems 443

Ho=HO +nH] + 00?), (7.11a)
= h® +nk) + 0(m?), (7.11b)
X =N+n(@P/v)yInV + 00, (7.11¢)

and note that H f(o) = go(|k|2) (as shown in Appendix K). By inserting these
expansions into equation (7.10), taking the logarithm, and expanding for small n
we obtain

oD, (L2 Ko )-m (1 X%vgo(|k|2))
"\ 1+ Xgy(kP) 1+ Mgo(k|)

© | O\, 270 o2 7r(©) _ 4(0)
( vRHO + H )+,LOH an)+nln(1+,\0u(Hk f* ))+0(n2)_
14+ 2vHO 1+ XNugy(|k|*)

(7.12)
Next, we insert equation (7.12) into equation (7.6 b), thus obtaining

2
ndF {2 ~ im v + #_ZHQEP

A w
<exp { Z S tRe 2 J exp (ik - é(s))}>
n+l
ER ¥ VAo(h‘k‘” HP) + p2go(kD) ln ¥
2> ( T+ Rvao(IkP) )

1ot [ 1 Rugo(K) — AY)
2> 1“{ 1+ Mwgo(kP)

which is to be made stationary with respect to 2, of the form ?6 .7b) on which # &8
depends both explicitly, and also implicitly, through hk and H,’. It should be noted
that in obtaining this expression for # 8% ({2; l) we have made use of the result,
established in Appendix K, that H{" = go(|k| ), without which the limit n — 0
would not exist.

We now evaluate # 8 ({12;}) for £2; given by equation (6.7 5). The second and
third contributions to the right side of equation (7.13) are mean-field contributions,
which have already been discussed in section 6, and which are computed in Appendix
D. The fourth and fifth contributions are fluctuation corrections, resulting from the
incorporation of 1-replica sector density fluctuations: it is upon these that we now
focus. By reorganizing equation (7.13) and omitting contributions that are indepen-
dent of both the gel fraction ¢ and the distribution p(7) we obtain

} +0(r?), (7.13)

f¥{q. p} = lim FE ({2} (7.144)
n—
- 1 H(l) h(O
— fvar{q’p} + 1‘ k 'l'
dv V; 1 + gogo(|k®) d" VZ 1+ gogo((k|®)
+——Stm [1 ook ] (7.145)
vV 1+ oogo(IkI*) 1 '
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where og = X%N V= X%u. next, we recall that from equation (6.10) we know that ¢
is small in the vicinity of the transition. This, together with the observation that
terms for which k = 0 are to be omitted from the fluctuation contributions, and that
h(o) ~ q (from equation (K 6) of Appendix K), shows that we may expand the last
terrn in equation (7.14 b) as a power series in A, ), which yields

F¥ig,pt = F (g, p} + 5 5 > (L@)z
’ AV A 1+ aog(kPD)  2dvV 47 \ 1+ aoge(kP)
1 i ( ool )3 4
— + O . 7.15
5072 \Tragaid) 7@ .19

We now examine the ﬂuctuatlon corrections in equation (7.15) in detail.
Equation (K 6) shows that hk contains factors of the form exp(—k?/7). For
localization length distributions p(r) that give appreciable weight only to 7 ~ €, we
can assert that, where present, such factors effectively eliminate contributions from
wave vectors larger in magnitude than ./e. Thus, the two terms in equation (7.15)
that involve h{") respectively scale with € in d dimensions as e2*%/2 and €+%/2, and
thus are negligible for d > 2 and d > 0, respectively. On the other hand, H ﬁ)
contains no such factors. In fact, the factorization of H M into 7- and k-dependent
pieces exhibited in equatlon (K 5) enables us to identify the contribution to equation
(7.15) associated with H (1) 35 a renormalization of the coefficient of one particular
term in f V¥ {q, p}, namcly

T n
ﬁu‘rﬁ{ﬁ} ~(1+fs)ﬁu"q2{n§m}, (7.16a)
where the renormalization parameter & is given by
g =57 609 1 ET g1(|k|2) - gx(k) ) (7.16b)
vV 1+ aogo(lk|*)

Now, in Appendix C, the functions ao(k[2), g1(/k|*) and g,(|k|?) are computed. From
the asymptotic properties of these functions we find that the renormalization of the
coefficient & is finite for —2 < d < 4, it being infrared divergent for d < —2 and
ultraviolet divergent for d > 4. Thus, we find that in the physically relevant three-
dimensional case the 1-replica-sector Gaussian density fluctuations simply give a
finite renormalization of a coefficient in the variational free energy.

This renormalization has no effect on the behaviour of ¢ as a function of y2,
which undergoes precisely the transition at u? = 1 that it undergoes at the mean-field
level. Moreover, the only effect of this renormalization on p() as a function of
p?, in the vicinity of the transition at p? =1, is the finite rescaling:
p(1) = (2/e)n(21/€) — (2/€")ym(27/€"), where €' = ¢/(1 + &). However it must also
be recognized that the relationship between the control parameter p? and the mean
number of crosslinks per macromolecule [M] is modified by the fluctuation
corrections. Thus, once the typical localization length is rescaled, the properties of
the system are as found in section 6.5. Note, however, that although the location of
the transition as measured by 4 is unaltered, the relationship between p? and [M]/N
is changed by the incorporation of fluctuations; therefore, the location of the
transition as measured by [M] is altered.
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8. Concluding remarks

As Charles Goodyear discovered in 1839 [69], the introduction of a sufficient
density of permanent, random crosslinks causes a macromolecular liquid to be
transformed into an amorphous solid, in which a non-zero fraction of macro-
molecules have spontaneously become localized. This system is a disordered system,
in the sense that it comprises both thermally equilibrating as well as quenched
random variables (i.e. the crosslink locations). In the present article we have
presented a theoretical description of the physical properties of systems of macro-
molecules that have been randomly crosslinked. Our focus has been on the
equilibrium properties of such systems, especially in the regime of the vulcanization
transition.

The qualitative picture of randomly crosslinked macromolecular systems that
emerges has the following primary features. For sufficiently few crosslinks, the
equilibrium state of the system is liquid, thermal fluctuations causing all macro-
molecules to wander throughout the entire container given sufficient time (i.c. all
macromolecules are delocalized). For sufficiently many crosslinks, the equilibrium
state of the system is an amorphous solid state. In this state a non-zero fraction of
macromolecules are self-consistently localized, exhibiting thermal fluctuations in
location only over a certain distance scale, which we refer to as a localization length
and which varies randomly from monomer to monomer. At a critical density of
crosslinks, of order one per macromolecule, there is a continuous thermodynamic
phase transition from the liquid state to the equilibrium amorphous solid state. The
amorphous solid state is most unusual: the mean positions of the localized
monomers are homogeneously random, exhibiting no periodicity whatsoever. The
state is characterized by the fraction of monomers that are localized, together with
the statistical distribution of their localization lengths. The symmetry properties of
the amorphous solid state are striking. Microscopically, the amorphous solid state is
one in which translational symmetry is spontaneously broken, certain monomers
becoming localized about fixed mean positions, in contrast with the liquid state.
Macroscopically, however, the amorphous solid state retains the translational
symmetry of the liquid state, owing to the homogeneous randomness of the mean
positions of the localized monomers. (Technically, this shows up as the macroscopic
translational invariance of the value of the order parameter in the amorphous solid
state.) This state bears the same relationship to the liquid and crystalline states as the
spin glass state of certain magnetic systems bears to the paramagnetic and
ferromagnetic states, in the following sense: the local static density fluctuations in
the amorphous solid state correspond to local static magnetization fluctuations in
the spin glass state. In both cases these fluctuations vanish, if averaged over the
entire sample, and hence cannot serve as a global order parameter. Thus, moments
of the static fluctuations higher than the first must be considered. In fully connected
long-range spin glasses the distribution of these static fluctuations is Gaussian (in the
replica symmetric theory), so that the second moment—the Edwards—Anderson
order parameter—characterizes the state of the system completely. In contrast, in the
amorphous solid state under consideration here, we find that all moments are equally
important. Such non-Gaussian statistics are also encountered in strongly diluted
long-range spin glasses [48], which show a percolation transition as described by
equation (6.10).

To construct our picture of their physical properties, we have developed a ficld-
theoretic representation of the statistical mechanics of randomly crosslinked
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macromolecular systems. The order parameter capable of distinguishing between the
various candidate states (liquid, amorphous, crystalline solid and globular) naturally
emerges from this representation. The presence of quenched as well as annealed
variables has been addressed by invoking the replica technique. We have derived the
saddle-point equation from the effective Hamiltonian of this field-theoretic repre-
sentation, this equation being equivalent to the self-consistent mean-field equation
satisfied by the order parameter. Whilst it is not apparent how one might obtain the
most general solution for the order parameter, we have proposed a physically
motivated form for it, which allows for the possibilities of a liquid state and an
amorphous solid state. This form is parametrized by the fraction of localized
monomers, together with the statistical distribution of localization lengths. In fact,
this form turns out to yield an exact solution of the saddle-point equation. It should
be noted that we are only able to proceed with the calculation in the vicinity of the
amorphous solidification transition, where the typical localization length is sub-
stantially larger than the radius of gyration of an isolated non-self-interacting
macromolecule. In a refinement of this approach, we have incorporated a certain
physically relevant class of correlations, associated with macromolecular repulsion,
at the Gaussian level of approximation. No qualitative changes in our results stem
from this refinement.

The quantitative picture of randomly crosslinked macromolecular systems
that emerges from our field-theoretic representation has the following primary
elements. At the mean-field level of approximation there is, for any crosslink
density, a saddle point of the effective Hamiltonian that corresponds to the
liquid state. However, for crosslink densities greater than a certain critical value,
this liquid state is unstable. At this critical crosslink density a new saddle point
of the effective Hamiltonian bifurcates continuously from the liquid-state saddle
point. This new saddle point, which is characterized by a non-zero gel fraction and
a specific distribution of localization lengths, corresponds to the amorphous
solid state. The transition between the liquid and amorphous solid states is therefore
continuous: in particular, the gel fraction and the inverse square of the typical
localization length both increase from zero linearly with the excess of the cross-
link density from its critical value. Moreover, the entire distribution of (inverse-
square) localization lengths has a scaling form determined by a universal function
of a single variable (which only need be computed once for all near-critical
crosslink densities). Detailed results for the gel fraction and the distribution of
localization lengths have been given. Thus, we see that what emerges is a quantitative
picture of the amorphous solid state that confirms the qualitative picture proposed
roughly a decade ago.

There are several other contexts in which one can make use of the circle of ideas
that we have been using to explore the physical properties of randomly crosslinked
macromolecular systems. First, one can apply them to a wide class of random-
network-forming systems. Indeed, a straightforward extension [29] of the present
work yields a theory of randomly crosslinked manifolds (i.e. higher-dimensional
analogues of linear macromolecules [71, 72]). Similarly, one can address macro-
molecular networks formed via a random endlinking (rather than crosslinking)
process, in which one end from each of several randomly selected macromolecules
are linked to one other [73]. One can also consider networks formed via the (freely-
jointed) endlinking of rigid or semi-flexible rods [73], subjects that are of particular
relevance to certain biological structures.
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This circle of ideas has also been used to develop a statistical-mechanical theory
of continuous random (atomic or molecular) networks, and thus to develop a view of
the structural glass transition [70]. In this case, what emerges is a picture of glass
formation in which atomic or molecular units are (permanently chemically) bonded
together at random, so as to develop an infinite network. Not only do the
translational freedoms of the units become localized but so also do the orientational
freedoms.

A particularly interesting problem arises in the context of NMR data on protein
folding. The basic question is this: how much phase space is reduced due to a given
number of constraints on the relative positions of certain monomer pairs [74]? We
also mention the formal analogy between such questions and Gardner-type
calculations in the field of neural networks [75]. Here, again, the basic issue is the
reduction of phase space by quenched random constraints, even the distribution of
randomness being generated in close analogy with the Deam—Edwards distribution,
which leads to the same formal construction of (n + 1)-fold replicated systems.

Finally, we raise the fascinating and difficult issue of the dynamical properties of
randomly crosslinked macromolecular systems. In particular, it would be interesting
to develop a semi-microscopic theory of the viscosity of the liquid state, and its
divergence at the onset of solidification, as well as of the dynamics of the solid state
itself. Our semi-microscopic approach is well suited to the application of the
dynamical Lagrangian methods [76] that have been developed to address the
dynamics of spin glasses [77].
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Appendix A. Replica representation of disorder-averaged observables

In this Appendix we demonstrate how to evaluate the disorder average of
products of equilibrium expectation values by using the replica technique. This
complements the demonstration, given in section 4.2, of the connection between the
disorder-averaged free energy f and the replica-Helmholtz free energy &,.

Consider the disorder average of the product of g equilibrium expectation values
of physical observables, i.e. [(O1), -+ (0g),] (the meaning of the expectation value
(-~ -)X is discussed in section 3.1, immediately after equation (3.1)). In terms of sums
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over disorder realizations and microscopic configurations this quantity is given by

(01), -+ (0,),] = [U(X) try exp (- H1)A1(x)01 - - - o(x)~ ltrg exp (— H,) 4,000,
* o)™ tr exp (—H)A1(0) -+ o(x) ™" tr exp (— Hy) Ay (%)
A1)

Here, tr; denotes the trace (i.e. sum) over the configurations of one copy (or replica)
of the system, without regard for distinguishability (i.e. without dividing by any
symmetry factor), and tr, denotes a similar trace over another copy, etc. The factor
o(x)( =[], va!) denotes the exact indistinguishability factor appropriate for the
specific realization of the disorder and, accordingly, takes on values between N'!
and unity. A;(x) implements the constraints on the first copy of the system, being a
factor that is unity for configurations of the first copy that satisfy the constraints x,
and zero otherwise. Ay(x) indicates a similar factor for the second copy, etc. The
factor exp(—H)) indicates the weight for configurations of the first copy, and
similarly the factor exp (—H,) indicates the weight for the second copy, etc. We
now introduce a further (n—g) factors o(x) !trexp(—H)A(x) in both the
numerator and denominator, which gives

()™ trx exp (~H1)A1()0: - - - o(x) ™" tr, exp (— H;)A,(x)0,
[(01) .. (0 ) ] — XU(X) trg+l exp (_ g+1)Ag+l(X) U(X) ! tr’l exp (_ ,,)A,,(X)
X X o)™ tr1 exp (—H)A1(x) - - - ()" trn exp (— Ha)An(30)

A2

In principle, this quantity is defined only for integral n > g, for which values of n it is
constant. However, in the replica approach we regard n as a continuous variable,
and formally determine this constant value by computing its limit as n — 0. Thus, we
obtain

[(01>x e (Gg)x]
= limtr, exp (— H1) 410001 -~ try exp ( Hg) A, 000, trs1 exp (— Hys1)Ag (6)

- - tr, exp (_ Hn)An(X)]’ (A 3)

where we have used the fact that lim,_, [tr exp (- H)A(x)]” = 1. As we have seen in
section 2.5, in the context of macromolecular networks the disorder distribution is
generated by the partition function itself, which is represented via the inclusion of an
additional replica. In fact, it turns out that the naturally emerging order parameter
involves the expectation value of variables associated with this additional replica, as
we see in section 3. Such expectation values may be regarded as introducing
additional x-dependent factors into our disorder averages, e.g.

[Q(X)(@1>x T (@9>x]
= },i}}(l)le(x) try exp (- H1)A1(X)01 - - - trg exp (— Hy) Ag(x) 0y trg41 €xp (— Hyi1)Ag11 ()

- tr, €Xp (_ Hn)An(X)] (A 4)

By using equation (A 4) and the Deam—Edwards distribution, equation (2.12), in a
manner analogous to that used in the context of the free energy in section 4.2, we
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arrive at the result

<@o{°?(s)}(91{°zl(s)}"'00{"?(5)}
F‘z_V X ! ’ - @(pa(c) — ('
xexp{ N > jodsjods !;[08 (c2(s) — €4(s ))}>,,+1

g 2y N (1 1 on E
(ool Sr g ol oo -sco)

(A5)

E

[60)(O1)y -+ (O)] =

n+1

where (0p), = 6(x)-

We now focus on a particularly important example of a disorder-averaged
observable, viz the amorphous solid order parameter, equation (3.2). This quantity
is obtained as the special case of equation (A 5) for the choices

0(x) = (exp Gk’ - ci(s))y
Ql = e (ikl.- c.(s)), (A6)
0, = expGk-c(s).
By using equation (A 5) for this case we see that
13L ! " - )
[ RCORIORCICRIONRC IS o))
=1
2 N 1 1 n E
(oo {47 > | o] & T[89er0 - )}
— lim =1 0 Y a=0 n+l (A 7(1)
n—0 #2V N gl 1 , n @) s E ’
(ool 35 oo, o Lo - e ..

where Q; is defined in equation (4.4), and [= {k°, k', ...,K,0, ...,0}. As was
anticipated in section 3.3, the order parameter probes not only the g physical copies
of the system but also the additional copy used to generate the crosslink distribution.

Appendix B. Wiener correlator
In this Appendix we derive the basic correlator associated with the Wiener
measure,

r w r
. 1
<°"P<“ka‘°(sp))> =8|(>d)z’ K, SXP <_§ Z yPP'kP'kp’), B1)
p=1 1 et pp'=

where &, is a function of the pair of arclength coordinates s, and s, defined via

& pp' = Min (sp, 5p')- B2)
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In terms of the Wiener measure, the correlator is given, up to normalization, by

<exp (— i; k, - c(s,,))> J@c exp ( - —J ds|e(s)| ) exp ( —i Z k, c(sp))

p=1
(B3)

where the overdot denotes a derivative with respect to s. We express the configura-
tion of the macromolecule in terms of the posxtlon of the end at s = 0, together with
the tangent vector €(s) via c(s) = ¢(0) + fo ds’ e(s")8(s — s'), where 6(s) is the
Heaviside 6-function. Then the measure D¢ given by 2¢ dec(0), and the correlator
becomes proportional to

Jdc(O) exp ( —ic(0)- ; k,,) J PDé exp ( - %E dslé(s)lz)

1 r
X exp (— iL ds &(s) - ; k,0(s, — s)). (B4)

B?' performing the integral over ¢(0) we obtain the Kronecker 3-function factor
o 5 . By performing the integrals over the tangent vectors ¢(s) we obtain the
p=l

Gauss1an factor

exp ( - Z k, -k, J ds ds’ 6(s, — $)0(s, — s")8(s — s')) i (B5)

p,p '=1

By performing the arclength integrals, and by setting to zero the wave vectors
{k,,};,=I in order to establish the correct normalization factor, we obtain the Wiener
measure correlator equation (B1). It should be noted that because
min (s,, 5,7) = 3(sp + 5pr) — 1|5, — 57|, and because of the Kronecker §-function
factor, the exponent of the Wiener measure correlator can also be expressed as
2 or=1 Ko - Kprls, — 5,11 /4.

Appendix C. Debye function and related functmns
In this Appendix we give the basw Debye function go(lkl ), as well as the two
related functions g;(|k|?) and g,(|k|?). The Debye function go([k[?) is defined as the
integral over arclength variables of the Wiener correlator equation (B 1) for the case
r=2and -k =k; = k:

1 1
gk = j dsy dsa{exp {ik - (e(s1) — eV = L dsy dsa exp (2] — 52//2)

_exp(=K*/2) — (1 - kz)N{l—k2/6, if <1,
1dk2? 4/k?, if &> 1.

C1H

The function g1(|k| ) is defined as

1 .
1/15, ifK <1,
gl(lklz) = JO dsy dsz ds3 exXp (—k2|s1 - S2|/2)(—y1,3 + ,72’3)2 ~ { lé/k6, if k2 > 1.

(€2
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The function g,(|k|?) is defined as

1
g2 (k) = L dsy dsy dss exp (=K |st — $21/2/(~ F13 + F23)~ S 14 + F24)
{2/45, if k2 < 1,
32/3k5, if k2> 1.

In d =3 the relevant correction due to Gaussian density fluctuations involves the
quantity g,(|k|?) — g,(|k|?), the asymptotic behaviour of which is given by

2 2 1/45, if k2 <1,
k) - aaify ~ { 105, HE ST 4

(C€3)

Appendix D. Effective Hamiltonian evaluated for the order parameter hypothesis
D.1. Quadratic contribution
We now compute the contribution in the n — 0 limit to the effective Hamil-
tonian, equation (5.12 b), that is quadratic in £2;, for the specific form of (2; given in
equation (3.14). No approximations will be made. To this end we focus on the
quantity

}1111(1,,—1%; 121" 1)
Inserting (2, from equation (3.14), we obtain
2 = 2 1 = 2
WZHQE' =7 21
£ 2
1 S 00 00 a
=== | dnpm)| dnp(n)sexp(— R +77Y)/2)
v i 0 0 k.0

=g J:o dr J:o dry p(11) j: dr p(r) 8(r — (L + 7)Y
X 57 3 8 exp (—#2/2r) D20

k

We now add and subtract the terms in the 0- and 1-replica sectors in order to relax
the constraint on the summation over k indicated by the overbar on the summation
symbol. In fact, owing to the factor of 8?&, the summand vanishes for k in the
1-replica sector, so that we obtain '

2 = 2 0 o0
W;TLQEIZ = —%+q2.[0 dedTl p('n)L dm p(r2) 8(r — (7'1_1 + 72'1)_1)
x VLZSS’; exp (—k2/27). (D2b)
£

We now focus on the remaining, unconstrained summation on the right hand side of
equation (D 25), which we compute via the following steps. First, we introduce an
integral representation of Sf.(d()), namely

n
Sg‘izll/JVdcexp (ic-Zk"’), (D3)

a=0
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where the integral is taken over the volume V. Then we convert the summation over
k into an integral by using

1 o
mz...ﬁjak..., (D4
>

where dk = [T —odk* and Ak = (27r)'d dk, and the integral is taken over the entire k
space. Thus we obtain

%ng exp (—k2/27) = Jdle exp (—122/27)] dcexp <1c Z k"')
i

a=0

n+1
= J de { Jdk exp (k- k/27) exp (ik - c)}
v
= (r/2m)r+1d/2 J dcexp(—(n+ 7c-c/2)
v

= (r/2m)**(1 + n)=¥2, (D5)

where we have used the Gaussian integral and, in the last step, have assumed that
=12 « V14 for inverse square localization lengths that are given significant weight
by the distribution p(7), equation (3.14). Thus we find

2 < 2 00 00 oa B
k

x (r/2m)"2(1 4 n)~92. (D6)

As we shall need this quadratic term only in the vicinity of n = 0, we expand for
small » using equation (4.14 a), and by taking the n — 0 limit we obtain

L 2/d
lim—l-iZ:TI.Q;;|2=g J dTlP(Tl)J dmz p(12) In (%( +750)” ) ®7)
i

D.2. Logarithmic contribution

We now compute the contribution in the » — 0 limit to the effective Hamilto-
nian, equation (5.125), that can be identified as the partition function of a single
macromolecule coupled to £2; for the specific form of §2; given in equation (3.14).
The calculation will be undertaken as a perturbation expansion in the typical inverse
square localization length, to first order in this quantity. Thus, we focus on the
quantity

w

<exp {2p2V-"§TRe o Jl ds exp (if - E'(s))}> . (D8)
= 0

n+1

First, we observe that {2, has only been introduced for k-A>0,as follows from the
discussion after equatlon (5.5). We are therefore free to introduce 2; for k-A<Oat
our convenience, and we do so via the definition

=2, fork-a<o0. (DY)

This allows us to eliminate the Re operation and to extend the range of the
summation in equation (D 8), which becomes
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—_— 1 . w
<exp {“ZV_"Z‘QEJ dsexp(—ik - 6(s))}> . D10)
£ 0 n+l
Next, we insert £2; from equation (3.14), which gives
P 00 1 . w
<exp {uqu"‘ZS @ L dr p(r) exp (k2 /27) L dsexp (— ik - E(s))}> : (D11)
; ! n+

We now add and subtract the terms in the 0- and 1-replica sectors to the summation
over k in order to relax the constraint mdlcated by the overbar on the summation
symbol. In fact, owing to the factor of 5, the summand vanishes for % in the 1-
replica sector, so that we obtain

exp iy exp {qr = 383 [ arpte)
k

k0’

w

xexp(—l€2/2'r)rdsexp(—ile-é(s))}> . (D12)
0

n+1

The next step is to make the power series expansion of the exponential in the
expectation value, and make r-fold use of the integral representation of the
Kronecker 8-function

8&2 = Il/Jy decexp(ic - k), D13)

in which the c-integral is taken over the volume ¥V, to obtain

w
exp (12qV ")<exp {2;1. V- ZTRe Q*j dsexp (ik - c(s))}>

n+l1

E
X dc1 dc, . - -
3 X | G e (136, 3
r— £, ok p=1 a=0
j dny p(n)- - d7, p(ry) exp( Z Zl ks | )
P a=0
J <exp( —i Z Z ke - “(s,,)) > . (D 14)
p=1 a=0 +1
The remaining expectatlon value in equation (D 14),

(exp(—iY, =1 Ea_o ? c"‘(s,,)))n +1» factorizes on the replica index, giving
[Tocolexp (—iX,_ k3 c(s,,)))l Each factor in this product is of the form of the
expectation value computed in Appendix B, in terms of which we express the
remaining expectation value in equation (D 14). The result contains an (n + 1)-fold
product of Kronecker 8-functions, which we replace with the integral representation

Hsf)”’zpl = ij --dm" exp (—IZm Zk") (D15)

a=0

in which each of the (n + 1) m-integrals is taken over the volume V. Next, we convert
the summations over {kl, ok, } to integrations by using equation (D4) r times,
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after which the summation on the right hand side of equation (D 14) becomes

1 &g [} © 1 de; de, 0
W; 5 Jo ds,---ds,L dnp(n)---dr,p(f,)l—,jy7~-—V—Ldm .. dm”
n n . n r o N 1 r ; n N N
X Jdkl ---dk, exp (1Zka (cp—m )) exp (_E Z Qi},zkp . kp,>
a=0 p=1 p.p'=1 a=0
1 S&p¥q (! o0 1 de; de,
—-Wml r! Jodsl'-'dsr‘[o dTlp(T])'"dTrp(Tr)T/‘j'V7" 7
x { J dm jdkl .. -dk, exp <iz k, - (c, — m))
Vv p=1
1§~ 40 !
X exp (—5 Zlapp,kp.k,,,>} . (D 16)
pp'=

Here, 922'3, is an (r x r)-matrix-valued function of the r arclength coordinates {s,},_,
and the r inverse square localization lengths {7, },_,, defined in equation (F 1). We
now focus on the quantity in this expression that is raised to the (n + 1)th power.

By performing the Gaussian integrations, first over {k, ..., k.} and then over m,
we obtain

o 1< g
Jydm Jakl ---dk, exp (1; k, - (c, — m)) exp ( ~3 Zlgff,g,kp . kp,)

pp'=

1 & ,
= (27-‘-)-(r—1)d/2(1//‘ ) Det™ g(r))—dlz exp ( -3 E: (gf’g, - c,,:), D17
pp'=

where we have introduced the (r x r)-matrix-valued function € () of the r arclength
coordinates {s,}._, and the r inverse square localization lengths {7,},_;, which is
built from #, equation (F 1), in a manner described in Appendix F. The Gaussian
integrals in equation (D 17) are convergent, owing to the positive definiteness of the
eigenvalue spectrum of #) and of #~ () for finite 7. By inserting the result (D 17)
into expression (D 16) we obtain

1 & p¥g (! J°° 1 de; de,
3k [, asieeeds [ am ptry--an s | S

= @) D2 () Dt gy expy (_ "_Jif_l 3 €Y, c,,,).

(D18)

The quantity % () is built from 2, equation (F1), in a manner described in
Appendix F.

Next we perform the integration over {¢y, ..., ¢, }. This integration is not quite
Gaussian, instead being quasi-Gaussian, owing to the presence of a single zero mode,
the eigenvalue spectrum of () containing a single zero eigenvalue, the remaining
r — 1 eigenvalues being positive definite. The presence of this zero mode can readily
be ascertained by observing that from the definition of ¥, equation (F2c), we
identically have E;,=1 € gg, =0, i.e. the normalized r-vector (1,1, ..., 1)//r is an
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eigenvector of € 0 with zero eigenvalue. The necessary quasi-Gaussian integral is
computed in Appendix E. By using it, equation (D 18) becomes
1 o0

WZ“} j dsy ---ds, rdn p()--- dr, plr)(2my -0l

x (W O Det® @)y "4/2(n 4 1)~¢-Dd2(~14r () Det) g Det) ¢ 1)=4/2,
(D19)

where Det") € indicates the quasi-determinant of €, i.e. the product of all the
non-zero eigenvalues of € ") (see [78]). We now make use of the result, established in
Appendix G, that the factor r~1% ) Det) %) Det® ¢® is identically unity. Thus,
equation (D 19) is simplified, becoming

1°°2rr

1 00
w'q
W; 5 Lds,.--ds,jo dn p(n)- - -dr p(ry)

x (27r)—(r—l)nd/2(,#/-(r) Det(r) g?(r))—nd/2(n + 1)—(r—l)d/2. (D 20)
We take this expressmn and insert it into equation (D 14) to obtain an expression for

(exp {212 V‘"Zk Re 2} fo dsexp (ik - c(s))}),, +1 that is valid for » > —1. By expand-
ing this result for small n, we finally obtain the desired quantity:

.2 2 —n N * ! A
l%;gln <exp {2;; vV ”;TRe P L ds exp (ik - c(s))}>

o L 2r r
= (exp (-429) — (1 = W) In (V /) 2me) — exp () Y-

w

n+l

1 00
x J dsl---ds,J d7y p(n1) -+ - d7 p(r7) In (% @) Det® ). (D21)
0 0

Appendix E. Quasi-Gaussian integration
Consider the following integral,

1 1 <
T/_Ld.;;l...dc,exp(—5z:‘6(),c,, c,,)exp(—lzc,, ) (ED

pp'=1 p=1

taken over r copies of the volume ¥, in which %) has as its sole non-positive definite
eigenvalue the zero eigenvalue corresponding to the r-eigenvector (1, 1, ..., 1)//r.
We shall need both the general case, in which the sources {J,}}_, are arbitrary, and
also the special case, in which the sources {J ,,} — all vanish. By working in a basis in
which ¢ is diagonal and assuming that V is suﬁic1ently large (or, equivalently that
no non-zero eigenvalue of € ) is arbitrarily small) one finds that this quasi-Gaussian
integral is given by

r— et (7 r)\— 1 & 2 r
r42@m)r =D Det € y~/2 exp (—5 > %’f,g,a,,-a,,,) S5~ 4y ED
pp'=1 Rl

where € ") is the quasi-inverse of €, i.e. the eigenvector expansion of the inverse of
% from which the term corresponding to the zero eigenvalue has been omitted (see
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[78]). Similarly, as mentioned in Appendix D2, Det®”) € indicates the quasi-
determinant of € (see [78]). The factor of r%/2 is subtle, but is familiar from the
context of so-called collective coordinates. It arises from the fact that owing to the
presence of the zero eigenvalue there are d integration directions for which
convergence is not controlled by a Gaussian integrand. Not only do the correspond-
ing integrations yield a volume factor, they also each yield a factor of \/r by virtue of
the limits on them determined by the form of the corresponding eigenvector. For the
special case in which the sources {J,},_, all vanish, we have

lV J dey---de,exp (_% 3 €Y, c,,,) _ r4Pn) VD) @)z,

P
pp'=1

(E3)

Appendix F. Perturbation expansion at long localization lengths: free energy
Consider the quantity £, an (r x r)-matrix-valued function of the r arclength
coordinates {s,},_, and the r inverse square localization lengths {7,},_,, given by
RO, =7 80 + P s (F1)

where & is given by equation (B 2). We have found it useful to construct from #¢)
several auxiliary quantities:

D=3 (@M, (F2a)
p'=1

w EZ%;'), (F2b)
p=1

€0 =@M, QU /0. (F20)

We shall need to develop perturbative expansions in {7n},_, of
In(# ® Det® 20) to linear order and of ¥ to quadratic order. To this end,
we introduce the (r x r) identity matrix % M= 8,0, and make the definition

R, =77 8y, (F3)
so that (#{)!| oot = Tp 8ppr- First, we consider In Det") 2):

In Det® 2 = In Det® (% (()') + &)
= Det? 20 - (#O + @) #)
=InDet® 2 + In Det® (O + @) - &)
= InDet® 20 + TI In (£ + @) - &)

- (HTJI) + T (@) S+ )
p=1

=- Z In7,+ Y 7L pp + O, (F4)
p=1 1

p=
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where Tr" denotes the trace of an r x r matrix. Second, we consider (2))™!. From
equation (F1) we have 20 =& + &, from which follows the Dyson-type
equation

@) =@ - @) s @) (F5)
Iterating the Dyson-type equation once and then truncating gives
RN, = T80y — T T T + O(T). (F6)
By using this result in equations (F2a) and (F 2 b) we obtain
”Ilf,’) =T,—T, Z Sop' Tols (F1a)
=1
w ) —ZT - Z ToSopTor + O(T). (F7b)
pp'=1

Third, we use equations (F4) and (F75) to obtain

r

Z To , Z ToTpp' Tp!
In(# ® Det® #0)) =In (”f‘ ) + (ery;,,, - L) +0(). (F8)
I/ = e

=1 o=1

Finally, by using equations (F 6), (F 74) and (F 7 b) in equation (F2c¢) we obtain

ToTp!
¢! = (T,,a,,,,,— LU )

Ta

o=1

Zr:’ry(%p' + .%y) Z Ty Jdw!

v=1 v'=1
T =TTy T T
o=1 =1

In reducing the free energy (6.9) to the form (6.13) we have used, inter alia, the
perturbation expansion (F 8). In this way, the free energy reduces to an assembly of
terms each being a functional of p(7). Each term has a coefficient determined by
integration over the arclength variables {s;, ...,s,} of integrands arising from
factors of %, defined in equation (B 2), which depend on the arclength variables.
The necessary integrals are readily expressed in terms of the following ones:

+ [ — TpSop! Tpt =+ ToTpr ] + (0(1'3). (F9)

1 1 1
j dsy %, =j dsy min (s1, s1) =j dsi sy = 1/2, (F104)
0 0

1 1 1 S
J dsl] d52:5’i2—j dSIJ dS2m1n(S1,S2)— J d31J dSzS2=1/3. (FlOb)
0 0 0 0

Appendix G. A useful identity
We make repeated use of the identity
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rlw ) Det® 20) Det®) ¢ =1, (G1)

where 2, ) and € are, respectively, defined in equations (F 1), (F25) and
(F2¢) of Appendix F. To derive this identity, we evaluate the following quantity
(which arises, for example, in equation (D 16)) in two ways:

Jdmjﬁkl dk,exp(Zk (c,,—m))exp(——z.%(’)k k)

pp'=1
G2
First, by integrating over {c,}, p=1> then over {k,}’_;, and then over m we obtain the

result: unity. Second, by integrating over {k,,} 1> then over m, and then, by using
the quasi-Gaussian integral equation (E 3), over {cp} _1» We obtain the result

1w ) Det®) 20 Det® ¢ )~4/2, (G3)

and hence the identity, equation (G 1).

Appendix H. Laplace representation of free energy
In this Appendix we describe in detail how to exchange the dependence of the
three contributions to f var equation (6.13), from p(7) to its Laplace transform j(7).
We begin by noting two 1ntegrals

Inr= f g (exp (—7) — exp (—77)), (H1a)
= r d exp (—77). (H1b)

The latter integral is elementary; the former is an example of a Frullanian 1ntegra1
(see [79]). We use equation (H 1 ) to express the first contribution to fyar

{1;1 (:%7_—22) }T = {ln(n +m)—In(n) - In(n)},

= [ dn ptm) jw dra p() r O exp(P) — exp (= #(n + )
0 0 o 7T
+exp(—77) + exp (—7m))
= [ (= +25) — exp (-, (H24)

where the braces {---}, were defined immediately following equation (6.13). By
following the identical strategy, we use equation (H1a) to express the second
contribution to V¥ as

{ln (Mﬂ.) } = {ln(n +m+m)—In(n) —ln(m) - In(m)},

17273

= [T (=567 + 390) ~ 2030 (- (H20)

0

To express the third contribution to v in terms of j(7) we make use of equation
(H 15). This yields
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{ _nn_ }T = :oo dm p(n) J dep(Tz)

n+mn

+7'2

- '0 dn p(n)nj dr, p(rz)rzj d7 exp (- #(ry + 1))

= | d#(dp/d7)>. (H2¢)
v 0

We now take the functional derivative with respect to p(7) of these three
contributions to f¥?*. Being local, the first two are straightforward to compute,
respectively yielding

) n+mn . 2 PR
. {xn( - )}T‘¥(1 — B, H30)

8 TI+7T+T3 3 s
0] {ln ( — ) } = ;(1 - p(HP). (H3b)

To evaluate the functional derivative with respect to P(F) of the third contribution to
f V& requires an integration by parts. The integrated piece vanishes because p(7) is to
be varied at neither # =0 nor 7 = oo, due to the boundary conditions. Thus we
obtain for the third contribution to f 2"

3 nm &%
8,3(+){n+r2},‘ 237 (H30)

Appendix I. Order-parameter weighted averages
In this Appendix we focus on the computation of the following quantity, defined
for arbitrary / and /’:

< J drexp(—il - &) r dt’ exp (—il" - &(1")
0 0

w

X exXp {pqu“" Z J; dsexp(—ik - é(s))Sf-:‘)) J:o dr p(7) exp(—Ez/2T)}> . 1y

n+1
In addition, we make two applications of it. We proceed by expanding the
exponential, which yields
w

< J l drexp(—il - &) Jl dt’ exp (—il" - 6(t’))>
0

n+l

I
x Z Ha(d) exp( Z k2)
p 1
w

x <exp(— i- o) exp (0" sonaNexp (i3 -hy-660) ) . @2
p=1

n+1

Next, we observe the factorization of the Wiener measure correlators on the replica
index, use the explicit result for this correlator given in Appendix B, use integral
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representations for the Kronecker 8-functions [equations (D 15) and (D 13)], and
convert summations to integrals by using equation (D 4), thus obtaining

1
5(."".+:” j dtj dt' exp (|t — t'|?)
0

1 & u2rqr 1 00 1 0 "
+WZ p j ds; ---ds,+zj d'rlp('rl)---dT,p(T,)I—/JVdcl ---de, Ldm ---dm
r
Jdkl ak, exp( Zc,, Ek") exp (—1Zm (I“+I'“ +Zk;))
a=0 a=0 p=t
N 1 n o n r
X exp (— Zkﬁ/%p) exp ( - EZ Z k- k;‘,‘,,S’,’,,,r) exp ( - Z E 1. k‘;'%»l,p)
p=1 a=0 p,p'=1 a=0 p=1
X €Xp ( - Z Z re. k;$+2,p) exp (—‘;‘i 2% s1,+1) EXP ("'%i 2 Krar42)
a=0 p=1
X €Xp (—i i’ r+1,r+2)- (13)
We now recognize that the integrals over {m*},_, and {k{, ..., k¥'},_, factorize on

the replica index, giving

8("7,“)] dtj dt’ exp (—|t — t'|i*) + V"Z# j dsy -- d-'>'r+2J0 dn p(n1) - - - d7 p(7y)

sy

172 17n
X exp (=3 " Fri1r41 — 51 L2 — 1 'S 42) = J de;---de,

xﬁ{j dedkl-ndk,exp (iz::c,,-kp) exp(—im-(l°+l'°‘+zr:k,,))

a=0 p=1
xexp( Zk /27-,,) exp (—— Z k, kp,y;,p)
pp'=1
X exp (— Z 1*. k,,.?;+1,p) exp ( — Z Ie. kp.5/:+2,p) } a4
p=1 p=1

At this stage we focus on the factorized integrals over {k3}  and m* occurring under
the product. As they are Gaussian integrals they can straightforwardly be performed
(we prefer to integrate over {k7},_, first and m* second), yielding

@r)~C-D2(4 ) Det® g y=412 exp (— 1= + 2> /29° )

xexp( Z €0 (e, +il°Fin,p + il r+2,p)'(¢,o'+i|a9?+1,p'+il’°‘.%+2,p'))
p,p’ 1

i [+4 . r 4[24 b [fs4
X exp ( - W(I + 1. le%g)(cp +il*%4,, +il’ 5¢+2m))’

as)
where ), # ) and ) are respectively defined in equations (F2a), (F2b) and
(F 2¢). Next, we insert the result of integrating over {k"‘} =1 and m® into equation
(I4) and focus on the remaining integrals over {c,}, p=1- Just as we encountered in
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Appendix D, this integration is not quite Gaussian, instead being quasi-Gaussian,
owing to the presence of a single zero in the eigenvalue spectrum of ¢). The
necessary quasi-Gaussian integral is computed in Appendix E. By using it, equation
(I14) becomes

1 1
(nd+d) 1 Ny 2
51.”,’6 L dr Jo dt’ exp (—|t — ¢'|I%)

1 S urg’ 1 00
+ Sg-)i’ Nz E %‘L dsi - -dsp42 Jo dry p(r1)- - - d7 p(7)
’ r=1 y

X (23)—(r-1)nd/2(n,,/ ) Det® g(r))-nd/Z (n+ 1)—(r—l)d/2
x (" 9 ) Det® &) Det) g y-d/2

X exp {(W )y~ Z 0”5,’)(i2=5¢+1,p + ilz'y;+2,p +1- il('%'f-l,p + 5’;+2,p))}
=1
x exp (- (i2-5¢+1,r+1 + iay?+2,r+2 +2f- i,$+l,r+2)/2)

’ r
172 () 1§ 0]
X €xp (71 Z € o Fri1,pF 10 + 51 E: € opFrr2pFr2p
pp'=1 pp'=1

+ i il Z ggz’ r+l,p'y;'+2,p') exp(— (iz + " + 2i i')/ZW(r)))
pp'=1

X exp ( —m+ D)"Y €0 1F 1, +VHi2) - (1S + i’s¢+z,p')/2). (16)
pp'=

We have simplified this result by making use of the identity given in equation (G 1) of

Appendix G. We have further simplified it by observing that as @) is the quasi-

inverse [78] of ¥ (sec Appendix F and [78]), the relevant zero-mode being

1,1, ..., 1)//r, we have

0. (g(r)|ppl =8, — rl (17a)

(g(') .(2(’) .(g(') =(g(’)_ (I7b)

In addition, we have used the fact that there is a single zero mode to ascertain that
Det® (n + 1)€?) = (n+ 1)~ Det® ¢,

As our first application of equation (I6), we set / =/’ =0, thus obtaining a
normalization factor that we shall use subsequently:

r!

1 & #qur 1
1+WZ Jo ds; - - -ds,+2rdn p(n)---dm p(r,)
r=1 0

x (2n)—(r—l)nd/2(,#/-(r) Det(r) g(r))—ndﬂ(n + 1)—(r—l)d/2. (I 8)

As our second application of equation (I6) we compute the right hand side of
equation (6.25) by forming the quotient of equation (I6) with /' = 0 and equation
(I8). By making use of the identity equation (G 1) and taking the limit n — 0 we
obtain equations (6.26 @) and (6.26 b).
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Appendix J. Perturbation expansion at long localization lengths: order parameter
In this Appendix we compute the perturbative expansions of 7'(!) and r®@
needed to compute the right hand side of equation (6.28). By using the definitions
(B2), (F2a), (F2b) and (F2¢), we find

rM = (‘7’1_1 + 51— S2|)_1 =n-—|s1— Szl‘flz + @(TB)’ J1a
TP =1 +m+0(7). (J1b)

By inserting these results into equation (6.28), and using equation (6.27), we
obtain

1 00
ap() = (1 — g L dsy dsz L, dm p(ry) 8(r — 71 + 7251 — 2])
1 00 4
+ Lt jo dsy s, dsy L dny p(n) dra plr) 8(r =1 — 1) + 0. (32)

Next, we expand the Dirac S-function, &(r—m +7ils1 — %))~
8(r — 1) + 73|51 — 52|8’(r — 1), and perform the 7 and s integrals. (Equivalently,
we take the Laplace transform of equation (J2), expand the resulting exponential
function, perform the 7 and s integrals, and back-transform the resulting nonlinear
ordinary differential equation.) Finally, we transform to the scaling form w(d)
defined in equation (6.20 a), and observe that it satisfies equation (6.24 a).

Appendix K. Correlator for one-replica sector fluctuations

In this Appendix we compute the quantity %, defined in equation (7.1 b) for £2;
taking the form given in equation (3.14). Ultimately, we shall be concerned with the
behaviour at small n of the diagonal and off-diagonal elements of ¥q via the
quantities H " and A{") defined in equations (7.11a) and (7.115).

First, we note that by using the invariance under k — —k of the hypothesis for
§2;, equation (3.14), along with the adding and subtracting of terms in the O-replica
sector, so as to relax the constraints on the summations 7:,; in the exponents in the
numerator and denominator of equation (7.1 ), we arrive at the form

1 1
<J drexp (iq - €*(2)) J dt' exp(—iq- ¢*'(t")
0 0

00 w
X €Xp {uqu‘" Z ]: dsexp (— ik - &(s)) 85-(‘;)) L dr p(1) exp (—132/27')}> 1
! c n+
:a = : 1 . 00 . w
<exp { prav "y L dsexp ( — ik - &(s)) ffg Jo d7 p(7) exp (K2 /27)}> 1
E n+

K1)

Second, we set [ = {—q,0, ..., 0} and ["={q,0, ..., 0} to obtain the replica-
diagonal elements of the numerator correlator in equation (K 1):
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2 1 & Mqur 1 00
go(lal) + 377 > " L dsi - -+ dspy2 L dr p(n1) - - d7 p(73)
r=1 )

% (2n)—(r—l)nd/2(,#/ ) Det™® Q(r))—nd/Z(n + 1)_(,_1),1/2

X exp { -3 ((9r’+1,r+1 + Fi2pi2 — 2K 11 542)

n ! ,
~ g 2 C K+ Faa ) g + -5¢+2,p')) } X 2)
pp'=1

Third, we set / = {—9,0,0, ...,0} and i'= {0,q,0, ..., 0} to obtain the replica-off-
diagonal elements of the numerator correlator in equation (K1)

1 & #2rqr 1 0
81(3_’__;2 r! Jo dsi---dsrez Jo dn p(n)- - - dr, p(7y)
x 2r)~ D24y () Detr) gp(Iy=nd/2( 4 1y~(r-D/2
2 2
X exXp { — % ((-9;+l,r+l + $+2,r+2) + W - —’W 5] ; 0]{2’) (x+l,P + 5¢+2,p)

n
n+1

r 2 L
Z ‘éf,rp)r(y?+l,p$+l,p’ + F2pFri2,p) — n+l Z (6’1(2’ ’+1,p'y;+2,P’> }
pp'=1 pp'=1

X3)

Next, by using the denominator, equation (I8), and respective numeratorsj
equations (K 2) and (K 3), we build the diagonal and off-diagonal elements, H S
and hio) » of 9y, equation (K ). At this stage, all dependence on 7 is explicit. Thus, by
making series expansions in n about n =0 of the denominator and respective

numerators we are able to identify H ao)’ H £l) and hf‘o) of equations (7.114) and
(7.11 ) (for q # 0):

HY = gy(lqP, (K4a)

0 2r,r ¢l
HY =exp1’9)y 2 r|q Jo dsy -+~ dsre2 €xp (—¢*lsr41 — Sp42]/2)
r=2 :

X L dr p(r1) - - d7 p(13)

X(@/2) Y €= For1p + Fir )L+ Fiaa ), (K 4b)
pp'=1

©) 2 g
hy’ =exp(—pu q); o

1 00
J ds ---ds,+2J dn p(m1) - - -d7 p(1)

0 0
1 1 1 < )
XeXpy — qz 2 (L1 + Fio )+ o WZ ””,, (Fr1,0+ F42,)
=1
- Y €t | K40)

pp'=
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Here we have restricted our attention to q # 0, which is all that is necessary, and
have used the fact that €(!) vanishes identically.

As a final component of this Appendix, we expand H 9) and hao), assuming that
the gel fraction g and the inverse square localization lengths to which p(7) gives
appreciable weight are both asymptotically of order e (< 1), which is appropriate in
the vicinity of the transition, as we can verify a posteriori. The accuracy to which
H q') and hS,"’ must be computed can be established by observing the manner in which
they appear in equation (7.15), from which we see that f#4{q, p} can be computed
to O(e%) by computing H M to 0(e?) and hQ to O(e).

We first focus on Hy’. As we see from equation (F9), ¢ 2‘2, is of order 7, so that
we need retain only the r = 2 term in equation (K 4 5). Thus, to sufficient accuracy
we obtain

1
H =4 | dn dsuexp (-l —sul/2)

1 2
TpTp'
X L ds; ds» Z (—-9’3,;) + y4,p)(_'5’3,p' + y4.ﬂ){TP6PP' - rp 2 }
pp'=1 Z T
o=1
= 1e{ 22} 2aial) - aata x5)
n+mnj),

where the braces {- - -}, were defined immediately following equation (6.13) and the
functions g1(|q|2) and gz(|q|2) are given by elementary integrals defined in Appendix
C. Note the convenient factorization into q-dependent and p(7)-dependent terms.

Last, we focus on h.(‘o), for which we also need only retain terms with r < 2.
However, the r = 1 term is not identically zero and, as it carries only a single power
of g, care must be taken to compute it with appropriate accuracy. (In practice, the
absence of matrix algebra renders the perturbative calculation of (93(‘))‘1 and
quantities built from it straightforward.) Thus, to sufficient accuracy, we obtain

1
KO = (1 - p*tq{exp —¢*/m)}, L dsy dsy dss exp (- ¢°(s2 — 51| + Is3 — 51)/2)
1
+ %M“'qz{exp( - @/(n+ 7)) L dsy ds; dss ds exp (— g°(s3 +54)/2)

2 2
X eXp (— Fr+m)72 Z rpr,,fypp:) exp (q2(‘r1 + )7} z T(Fsp + .9’4,,,)} )

pp'=1 =1

(K 6)
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