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Control of noisy quantum systems: Field-theory approach to error mitigation
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We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate)
via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from
time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control
fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means
of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical
systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise
to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a
fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the
presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those
that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR,
we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the
“forward” and “backward” branches of the time contour are inequivalent with respect to the noise. The present
approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in
practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the
fidelity, we consider its full probability distribution. The information content present in this distribution allows
one to address more complex questions regarding error mitigation, including, in principle, questions of extreme
value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their
influence. We illustrate this MSR-SK reformulation by considering a model system consisting of a single spin-s
freedom (with s arbitrary), focusing on the case of 1/f noise in the weak-noise limit. We discover that optimal
error mitigation is accomplished via a universal control field protocol that is valid for all s, from the qubit (i.e.,
s = 1/2) case to the classical (i.e., s — 00) limit. In principle, this MSR-SK approach provides a transparent

framework for addressing quantum control in the presence of noise for systems of arbitrary complexity.
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I. INTRODUCTION

The ability to control the fate of quantum systems whose
dynamics are subject to noisy influences is a critical factor in
numerous settings, including, notably, quantum information
processing [1-3]. A typical characteristic of such systems
is that in order to control them it is necessary to couple
them to external time-varying fields that cannot themselves
be perfectly controlled and which, therefore, inevitably intro-
duce classical noise into the system. This noise, present in
the external fields, alters the time evolution of the quantum
system of interest (i.e., the system we wish to control),
typically pushing the end result away from the intended
target. The external control fields enter the Hamiltonian
governing the dynamics of the quantum system by way of
coupling directly to the system’s degrees of freedom, and
thus coupling these sources of noise directly to it. The
dynamics, including the contribution from the noisy external
fields, can be described via a Hamiltonian containing external
stochastic parameters in addition to terms describing internal
system dynamics. Although the probabilistic properties of
the stochastic parameters can be determined, it is generally
impossible to predict the values realized in any instance of the
control attempt. Even in the absence of these external control
fields, quantum systems are still generally subject to external
sources of noise, because no system is truly isolated from the
environment. Environmental noise is detrimental to the control
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mission because it inevitably leads to the unremediable loss
of information from the quantum system, due to entanglement
between system and environment degrees of freedom, leading
to quantum decoherence [4].

In the light of these remarks it is of value to identify and
understand how to design schemes capable of mitigating the
effects of noise to the greatest extent possible. Several ap-
proaches have been developed to address this issue, including
dynamical decoupling [5], dynamical control by modulation
[6,7] and, more recently, the filter function approach used in
Refs. [8,9]. The aim of the present paper is to develop an alter-
native approach to the task of quantum control in the presence
of noise. The approach is rooted in the Schwinger-Keldysh
(henceforth SK) path-integral framework [10,11], which has
frequently been invoked in treatments of quantum dynamical
systems that are not in thermodynamic equilibrium; see, e.g.,
Refs. [12,13]. The SK framework is especially well suited
for providing a transparent account of the effects of quantum
fluctuations (i.e., quantum noise) via interference between
quantum fields that propagate “forward” and “backward” in
time. Although the framework was originally developed with
closed quantum systems in mind, it can readily be modified to
account for open quantum systems that are coupled to external
fields and sources of noise.

The core idea behind the present approach is as follows.
We consider noisy quantum systems for which we possess: (i)
a complete characterization of the noise-free system via the
specification of its freedoms and a Hamiltonian that governs
them; and (ii) a complete statistical characterization of the
noise that perturbs the dynamics from its noise-free form, in
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the form of a probability distribution for the history of the
noise parameters. We take the goal of the control process
to be to guide the system as accurately as possible, i.e., to
impart upon it (as accurately as possible) some predetermined
unitary transformation, without being informed about the
instance of the noise-parameter history. We characterize the
performance of the control process—i.e., its ability to impart
a predetermined target operation upon the quantum system of
interest—via an overlap metric or fidelity, which is designed
to assess the accuracy of the process, averaged over the noise-
parameter history weighted by its known distribution. The
guiding of the system is accomplished via a time-dependent
Hamiltonian that we select from some menu; typically the
menu is incomplete, in the sense that only certain operators
are regarded as being available and the time dependence of the
classical variables that characterize these operators is restricted
by the kinds of constraints present in real experiments. An
inevitable consequence of the present framework is that the
guiding that will be ascertained will be more accurate for some
noise histories and target unitaries than for others. A strength,
however, is that it need only be determined once, for any given
noisy system and noise distribution.

We formulate the task of controlling a generic noisy
quantum system via an optimization problem, in which one
seeks the control-field history that maximizes the fidelity, i.e.,
the measure of success alluded to earlier; see also Refs. [8,9]
(although the present definition of the fidelity differs slightly
from those used in these references). The path-integral
formulation of the fidelity (which is the object of primary
interest to us) takes a form that is close to the conventional
SK path integral but has the following twist: The “‘forward-
in-time” and “backward-in-time” branches are asymmetrical
with respect to the external noise (both environmental and
due to the controls), which is present in the former branch
but absent from the latter. This is a direct consequence of the
definition we have chosen for the fidelity. By contrast, the
internal quantum noise, which originates within the system
of interest still appears symmetrically in the two branches,
as it does in the usual SK path integral. The SK formulation
of control is similar in spirit to the approach introduced by
Martin-Siggia-Rose (MSR) [14] to study classical statistical
dynamics. Once we have constructed the path integral for
our SK-type formulation of the fidelity, we integrate out the
environmental noise and thus arrive at an effective description
that is completely deterministic (i.e., noise free), to which
we can apply the tools available from field theory, such as
diagrammatic expansion and even nonperturbative methods.

Via our approach, we show that the optimization procedure
used to maximize the fidelity naturally gives rise to an
action principle, which leads to equations of motion for the
control-field history. The solution of these equations is a
continuous deformation of the control scheme relevant to the
noise-free case. As one continuously increases the strength of
the noise, the optimal control scheme continuously deforms,
parametrically, away from the noise-free scheme. The noise-
free scheme typically presents an arbitrary number of schemes
to choose from. By adopting any one of these schemes and
continuously increasing the strength of the noise, we sweep
through a continuous family of control schemes, with members
of the family being parametrized by the noise strength.
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Different choices of noise-free schemes typically correspond
to different sets of winding numbers, as we show below. Each
family can then be labeled by its set of winding numbers,
which are invariant under these continuous deformations. In
common with more familiar action principles, the present
approach has the advantage of allowing the straightforward
implementation of many classes of constraints, including
those naturally appearing in experiments, via the Lagrange
multiplier technique. The path-integral formalism also pro-
vides a natural starting point for developing a semiclassical
approach to the task of controlling noisy quantum systems,
in which quantum effects are introduced as a refinement of
an underlying classical process. The literature is extensive on
controlling noisy classical systems, as it is on the control of
two-level quantum systems (i.e., qubits), which constitute the
extreme quantal case. Inter alia, the formalism we develop
here serves to bridge the gap between these two extremes—a
regime that has been left relatively unexplored, to date.

Finally, we address the full probability distribution of the
fidelity, as induced by the noise. This is a question that
to the best of our knowledge has not been focused on, to
date, in the literature on error mitigation in quantum control
scenarios. To obtain this distribution, we make use of a
standard route (see, e.g., Ref. [15]), which involves first
computing the characteristic function corresponding to the
fidelity distribution, from which all moments and cumulants
of the fidelity follow. With full knowledge of the characteristic
function, it is conceptually a simple matter of inversion to
find the probability distribution; for the case of weak noise,
we obtain an explicit analytical expression. Having the full
probability distribution allows one, in principle, to address
more complicated questions, such as how to minimize the
likelihood of rare (but perhaps catastrophic) events in the
control mission, as well as related questions from the realm
of extreme value statistics (see, e.g., Ref. [16]); we leave such
questions to future work.

We illustrate our approach by analyzing some concrete
examples in detail. We specifically develop the formalism for
a single quantum spin S, keeping the spin quantum number
s arbitrary. We couple the spin to external control fields in
order to achieve a target operation, and allow the spin to be
under the influence of noise (from the environment or the
control fields or both) with the statistics of the noise presumed
known. Although we develop the formalism with this specific
system in mind, we note that it can be readily generalized to
more elaborate systems, including interacting systems such as
spin chains and ultracold atomic gases. We also note that the
SK path integral, if formulated in terms of coherent states,
provides a natural starting point for a semiclassical expansion.
This is a useful feature, if one is interested in studying control
problems for systems where the semiclassical expansion gives
an excellent approximation to the full quantum dynamics (e.g.,
ultracold bosonic gases [17]).

Continuing with the case of a single spin, we use our
formalism to find the fidelity and the corresponding optimized
control fields for various choices of noise distributions, with
a special focus on 1/f noise sources, which arise in many
systems of interest [18]. For the specific case of a single spin,
we find results for arbitrary s, ranging from the qubit limit
(s = 1/2) up to the classical limit s — oo.
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The paper is organized as follows. In Sec. II we give a
discussion of the general setting that we shall be concerned
with, and also review the various questions that we shall be
exploring in detail. In Sec. III we formulate the control problem
in terms of a modifed SK approach, and apply it to the case
of a single spin S of arbitrary spin quantum number s in the
presence of noise. We also construct the expression for the
fidelity and find the optimal control scheme for the case of
weak 1/f noise and constraints being imposed on the strength
of the control fields. Finally, we find the expression for the
full probability distribution associated with the fidelity for
this specific case. In Sec. IV we summarize our results and
briefly discuss future directions. The technical details for the
derivation of our formalism are mostly relegated to appendixes
for the sake of the clarity of the presentation, and will be
referred to where relevant.

II. ELEMENTS

Our task is to control a given quantum system—specifically,
we wish to complete a predetermined unitary transformation,
which we call the rarget unitary operator Ur, upon the
quantum state. The state is not necessarily known ahead
of time. In order to accomplish this, we invoke external
time-dependent control fields, which couple directly to the
system degrees of freedom and are used to steer the quantum
system in such a way that, at the end of some transit time 7, the
quantum system has evolved to a final state that is equivalently
described by Ur in the sense that the net effect of the two is
the same.

The quantum system we wish to control is not generally
isolated. It is coupled to an external environment and is thus
subject to environmental noise. In addition, there may be
fluctuations in the control fields themselves (i.e., originating
in the devices used to generate these fields), which provide
another source of noise. The net effect originating from all
sources of noise will generally interfere with the control
scheme. Assuming one chooses the control fields such that
one obtains a unitary equivalent to Uy at the end of the transit
time t in the absence of noise, these same control fields will
generally give rise to a unitary transformation that differs
from Ur.

The question we address can be stated as follows: Given
many histories of sets of control fields to choose from, each
of which would give rise to Ur in the absence of noise, which
particular setr gives rise to a unitary transformation that is
closest to Ur? In the presence of noise, it is not possible to
predict how the quantum system that we aim to control will
evolve in each given instance of the noise field history. The
best we can do is determine with a statistical measure that tells
us how close we are to reaching our stated goal, which is to
have unitary evolution that is as close as possible to Ur at the
end of the transit time 7.

The simplest such measure, viz., the fidelity (which we
define below), reports how close we get on average, i.e., after
averaging over all sources of noise. In other words, we choose
a single set of control fields; then, for each instance of noise,
we find the corresponding unitary transformation at the end of
the transit time t; we average these unitary transformations
over all instances of noise histories; and, finally, we compare
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the resulting averaged unitary transformation with Ur. We
define the best single set of control field histories—what we
are searching for—to be the set from which one obtains the
(averaged) transformation that lies as close as possible to
the one resulting from Ur. We rigorously define all of the
quantities of interest below, as we develop our methodology.
Before developing our methodology, let us spend some time
to obtain a better quantitative understanding of the problem at
hand in terms of the various Hamiltonian terms involved.

A. Hamiltonian

Consider a quantum system described by a Hamiltonian
H (1), which can be written as a sum of several parts:

H(t) = Hc(t) + Hy(t) + He(t) + EseHse(t); (1)

we allow all parts of the Hamiltonian to be explicitly time de-
pendent, and H, (t), H,(t), H,(t), and H,.(t) are, respectively,
taken to be the control Hamiltonian, system Hamiltonian, en-
vironmental Hamiltonian, and system-environment coupling
Hamiltonian. The parameter €, determines the strength of the
system-environment coupling, which we take to be weak.

Let us denote by {g;} the quantum degrees of freedom
of the system (i.e., the part that we wish to control), and
by O, the degrees of freedom of the environment. The
various Hamiltonian terms have the following characteristics:
H.(t) =Y, ¢i(t) §; couples the control fields c;(t) directly to
the quantum degrees of freedom §;, which we are interested in
controlling; H,(t) = H,(t,g;) determines the internal system
dynamics; H,(1) = H,(t, Qi) determines the dynamics of the
environment; and H,.(t) = Hse(t,(ji,Qi) couples the system
and environment to one another. From the perspective of RG,
the terms that linearly couple the system and environment
degrees of freedom are the most relevant (see, e.g., Ref. [19]).
Taking the system-environment coupling to be weak (i.e., €,,
small), and temporarily ignoring all other terms in H,. () we
get

Ho(1) =) Gimij (1) Q. )
ij

Next, by using the path integral language we can proceed to
integrate out the environment degrees of freedom, and thus
obtain an effective Hamiltonian, in which only the system
degrees of freedom remain. Carrying out this procedure, and
assuming that one can treat the environmental degrees of
freedom using a semiclassical approximation, we obtain an
effective system-environment Hamiltonian H,.(¢#) which in
general has the following form:

Ho () = ) i) i, 3)

where the histories {#;(-)} are stochastic, with a histories
functional probability density P,[{7j;(-)}] (where {#;(-)} des-
ignates the set of #j;(-) for all i), which in principle can
be determined from the state of the environment and the
environment Hamiltonian H,.

In actual experiments, there is also some degree of un-
certainty associated with the control fields c;(¢) themselves,
such as fluctuations in the fields due to noise generated in the
experimental apparatus responsible for the generation of these
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fields. In general, we can write
ci(t) = ¢i(t) + €. 8ci(2), 4

where ¢;(¢) is the control field as given in the absence of
any fluctuations, the fluctuations dc¢; () are described by some
probability distribution P.({6c;(-)}), and €, is a parameter
describing the strength of fluctuations. As experimental mea-
surements are sensitive to the net contribution of noise, we
combine the environmental noise and noise due to fluctuations
in the control fields into a single effective noise term, H,(t),
given by

eH,(t) =€y ni(t) i, )
where € = ¢,, + €, and
6&'(3

i) = - 7; (¢ dci(1), 6

n;(t) 6se+€cn()+ese+ec0() (6)

so that {n;(-)} are effective stochastic fields described by a
(classical) effective probability distribution P[{n;(-)}], which
canin principle be determined via experiment. In what follows,
we assume that we know P[{n;(-)}].

Let us replace ¢; by c¢;, where ¢; is now understood to be the
control field. We can now specify the effective Hamiltonian,
which we will refer to as H.(¢), so as to remind us of its
dependence on € [note this Hamiltonian is different from

Eq. (D]:

Ho(t) = Hy(t.gi) + Y _[ci(t) + eni(0))g;

= Hv(t)+Hc(t)+€Hn(t)- (7)

This effective Hamiltonian H, contains the full quantum
description of the system degrees of freedom §;, which are
coupled to both the stochastic fields n; (t) and the control fields
¢;(1), as well as to one another via the internal system dynamics
as described by H;.

B. Fidelity

We now construct the fidelity, i.e., a measure of success in
effecting the specified unitary transformations, averaged over
the noise history. At the end of the transit time t, our aim is
to have the system evolution to be as close as possible to Ur.
The evolution operator U.(¢,{c;(-)},{n;(-)}) corresponding to
H,, cf. Eq. (7), is given by

Ue(r {ci(O}{ni(O}) = T exp [—i/O dt Hs(t)} ®)

where the notation reminds us that U, is a function of t as
well as a functional of the control and effective noise fields.
We shall often use the shorthand U(¢), provided there is no
risk of confusion. The quantity Uy(t) = U,(t)|.~o corresponds
to the evolution operator in the absence of noise. Recall that at
the transit time t, we have Uy(t) = Ur (i.e., the target unitary).
We elect to define the fidelity F as follows:

Fci()) = (Tr UL Uc(x))n (9a)
= (TrU} (0)U(2) ), (9b)
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where the brackets (- --), denote averaging over {n;(-)}, the
trace operation is taken over the entire Hilbert space of the
system, normalized by the dimension of the Hilbert space so
that Tr 11 = 1. Observe that the fidelity obeys 0 < |F| < 1
and reaches its upper bound of unity if and only if U, = Ur
(i.e., perfect control is achieved regardless of initial state).
The fidelity is a functional of the control fields {c;(-)}. In
order to best accomplish the sought for unitary transformation,
we solve the variational problem to find the set {c;(-)} that
maximizes F. We shall make use of the formulation given in
the second line of Eq. (9b), which turns out to be efficacious
when expressed in terms of a path integral. In terms of the
Hamiltonian, the fidelity is given by

Flici())] = (Tr Tk eifo’ dt Ho(t) e—ifO’ dt He(t)) (10)

Here the operation 7x corresponds to time ordering on the
Keldysh contour (see, e.g., Ref. [12]): The first exponential
factor is anti-time ordered; the second one is time ordered in
the usual way. Equation (10) can be expressed in terms of a
Schwinger-Keldysh path integral over a closed-time contour,
but there is a twist: Unlike the mere usual quantum-dynamical
problems (e.g., for isolated quantum systems), for which this
technique is commonly applied, in the present setting there
is an asymmetry between the forward and backward branches
of the time contour. Specifically, the stochastic degrees of
freedom {n;(-)} are only present in the forward branch.

As we shall see, for some purposes, it is useful to refer to
the fidelity amplitude A instead of the fidelity. This is defined
via

Al{ci(O (O} = Tr Ty & o @ H0 =i JydeHo (1)

which is just the expression for the fidelity before taking the
average over the stochastic fields, and thus is a functional of
both {c;(-)} and {n;(-)}. In terms of A we have

FleiO} = (Alei O} {ni(OD)n- (12)

C. Constraints

Determining the control sequence that best mitigates noise
amounts to finding the set of control fields {c;(-)} that maximize
F and yet satisfy all constraints imposed on the set {c;(-)}
together with the boundary condition at the end of the transit
time 7, viz. Uyp(tr) = Ur. In any realistic situation, there
will be physical limitations on {c;(-)} that we may consider.
For instance, each c¢;(¢r) must be of finite magnitude, and its
functional dependence on time would be constrained by the
experimental devices in use.

There are certain classes of constraints that can be entirely
accounted for by using Lagrange multipliers. These include,
but are not limited to, holonomic constraints. Explicit exam-
ples will be worked out in the following sections.

D. Probability distribution for the fidelity amplitude

In the previous subsections, we have focused on developing
methods to determine F, the fidelity, which is simply the noise
average of the fidelity amplitude (A),, taken with respect to
the stochastic noise fields {n;(-)}. In applications, it may be
of interest to compute higher moments of 4, and even its
full probability distribution function. For instance, consider a
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typical problem in extreme value statistics (see, e.g., Ref. [16]),
where one may be interested in finding a control protocol that
reduces the likelihood of highly detrimental events, however
unlikely they may be, since even a single occurrence may have
unacceptable consequences for the control task. In order to
find the likelihood of extreme events, it is sufficient to have
the full probability distribution.

In this subsection, we will briefly lay out the general
procedure that we shall use to compute both the characteristic
function and the full probability distribution. The formalism
developed here makes use of standard methods, i.e., as seen in
Ref. [15].

In the case of weak noise (¢ <« 1), as far as the full
probability distribution is concerned, the physics is clearer
when working with the infidelity amplitude I, defined as

I=1-A, (13)
in terms of which the infidelity I is given by
I = (1), (14)

Clearly, with these definitions, we can find the fidelity (which
is just an average) via the simple relation,

F=1-1 15)

The optimal control-field histories, as we have defined them,
will then minimize the infidelity / (subject to constraints—see
previous subsection); this amounts to getting I as close as
possible to fully vanishing.

The first step we take in obtaining the probability distri-
bution P(Z) for the infidelity amplitude is to compute the
characteristic function y (k), which is defined via

x (k) = <e—ikI[{¢‘f(<)}.[ni(<)}]>m (16)

where the notation reminds us that Z is a functional of both
the controls {c;(-)} and the noise {n;(-)}.

The characteristic function yx is an interesting object in its
own right, as it allows us to easily compute all the moments of
7, via

(Z")n = (0" x ()lk=o, A7)

and it is also straightforward to calculate all the cumulants
using the expression,

(Z" Y = (0™ In x (k) |=o0- (18)

Once we have y (k), the full probability distribution P(Z) can
be obtained in terms of the Fourier integral,

/ = dk ikT
P(I) = — x(k)e'"™". (19)
00 2T
Specific applications of this formalism and the results obtained
with it will be given in detail in the following section, where
we will be working with a specific system (a single spin in the
presence of time-dependent noise).

We note here a tendency in the behavior of P(Z), which
while not generic, does show up in the examples we consider.
Since the values of |Z| are constrained to lie in the interval
0 < |Z] £ 1, we find that when minimizing the average I, we
simultaneously minimize the width of P(Z).
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IIL. SINGLE SPIN §

We now spell out explicitly how the abstract formalism
presented in Sec. II applies in the case of a single spin S,
for now leaving the spin quantum number s arbitrary. In this
setting, the total Hamiltonian is given by

H.(t) = (@(t) + en(?)) - S, (20)

where the field w(¢) corresponds to the external control field
and n(z) is the stochastic field, discussed in Sec. II, that
represents the effect of environmental noise and also accounts
for any fluctuations in the control field inherently present in
the devices used to generate it. In addition, @(¢) is the control
in the absence of such fluctuations. In the present example, the
system Hamiltonian, H,(¢), vanishes.

Our goal, then, is to determine the @(¢) that maximizes the
fidelity F at the end of the transit time 7. In other words, we
seek w(¢) such that, after averaging over different realizations
of n(t), the evolution operator is as close as possible to some
prescribed target Ur.

As discussed in Sec. II, the stochastic fields {n;(-)} are
governed by a distribution functional P[{n;(-)} which is
presumed to be known. In the present case, we take P to
be Gaussian with zero mean and covariance given by

(ni(On (), = Ny(t,1). (1)

We restrict our attention to stochastic fields that are stationary
in time and time-reversal invariant, in which case,

Nij(t,t)y = NIt —1')) = Nji([t — ¢')). (22)

We make use of the Schwinger-Keldysh (SK) path-integral
formulation (see, e.g., Refs. [10,11] for original work by
Schwinger and Keldysh and Ref. [12] for a modern treatment),
which for the present system can be done either in terms of spin
coherent states or bosonic coherent states (if one makes use
of the Schwinger representation for spins); see, e.g., Ref. [20].
Choosing the latter, we make use of the mapping betweqn the
spin operator S and the two-component bosons 4" = (alT,a;),
given by

S=1al.0-4 (23)

where o = (0,,0,,0;) are the Pauli matrices. The total spin
quantum number s is conserved by the dynamics, and is related
to the total number of bosons in the Schwinger representation:
s = 3a - a. The total Hamiltonian then takes the form,

H.(t) =a' - H.()-a, (24)

where

He = o) - o + %n(r) o

= H.(t) + €H,(0). (25)

A. Schwinger-Keldysh (SK) path integral

We now construct the path-integral expression for the
fidelity amplitude A, Eq. (11), where s indicates the (arbi-
trary) spin quantum number. We make use of the coherent
state basis |a) = |ay,00), for complex «; and «;, defined
by ala) = a|a) (see Ref. [20]), in order to evaluate the SK
path integral along the SK contour. We use the labels e 7, for
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the forward-in-time and backward-in-time branches along the
contour, respectively. We thus obtain the expression,

Ay = Tr/Dzocf(t)Dzotb(t) X |otp(0))

« e~ zllen(P+a pO)F 1+ (r)e ()
sl Jo Loy (0 =Hey o el (=M (g ((0)], (26)

where the normalized trace Tr is taken over the complete set
of two-mode bosonic number states |n,2s — n)ym for n =
0,1, ...,2s, satisfying the constraint (n,2s — n|%ﬁf -a|n,2s —
M)num = S, SO as to fix the quantum spin number s. For further
details on the meaning of Eq. (26), as well as explicit expres-
sions for the measures Do, ¢ and other details concerning
the path integral, we refer the reader to Appendix C. Note
that our approach differs from the conventional SK approach
[12] used to study nonequilibrium quantum dynamics, in that
the forward and backward branches of the time evolution are
asymmetric with respect to noise: It is present in the forward
branch and completely absent in the backward branch.

The expression for A in Eq. (26) can be evaluated with
the help of a generating functional G,[J], which we define as
follows:

GylJ] = Tr f D’ 1 (1)Das (1) x |t (0)) et/ (O))

« ¢~ 3l @ P+ O ]+af () (o)

% ' Jo drle-(10,—He)-ap—ah (19 —H )]

x elo A1V aytasd] Q27)

where, as anticipated, this expression contains the noise-free
Hamiltonian on both branches of the Keldysh contour. More-
over, we have coupled the two-component external source
J(#) to the forward branch only. This allows us to calculate
quantum averages involving the forward branch fields. Recall
that noise couples exclusively to this branch. Observe that we
have G,[0] = 1 since in the absence of a source, G is just the
usual SK partition function and the asymmetry due to the noise
no longer arises. Physically, this corresponds to the feature that
in the absence of noise the fidelity is exactly unity, as is natural.

In terms of G4[J], we may evaluate the fidelity amplitude
as follows:

Ay = e R MmO TG G IOl 0. (28)

G,[J] is evaluated in Appendix C, giving

dz elo Iy drdt’ I(1)-G(z.1.1)3()
Gl = f L @)

i (25 + 1)(1 — 7)2z2s+]

where the integral over the auxiliary complex variable z is
taken over any closed contour that encircles the origin once,
but does not include the pole at z = 1. The variable z plays the
role of a conjugate variable to the discrete spin number s—this
integral can be interpreted as an integral transform between the
z representation and s representation.

In the exponent of Eq. (29) we have the Green function
G.(z,t,t"), which is given by

Go(ztut) = (1ZTZ L o1 — t’))b{c(t,t’), (30)
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where ©(¢) is the Heaviside step function (zero and unity for
negative and positive arguments, respectively), and U, (¢,t') =
T exp[—i ftt dt” H.(t")] is the unitary matrix corresponding
to the control Hamiltonian. Note that in this expression and
formula (28) for A, for an arbitrary spin s, we only need
consider the dynamics of a two-level system (i.e., spin 1/2).
To make the meaning (and evaluation) of Ay more transpar-
ent, we can re-express Eq. (28) in terms of a two-component
Gaussian quantum field o) = (¢7(2),95(t) ) whose descrip-
tion is completely given in terms of the expectation value:

(@) 9" (1)) = Ge(z.1,1), €29

where (- - - ), denotes a quantum average over ¢(¢), and higher-
order averages are determined by means of Wick’s theorem.
Thus,

oic Jy di "M,
A, = f a: | 2 (32)

2mi (25 + 1)(1 — z)2 g2s+1

Note the the expressions for A, given in Egs. (32) and (28) are
entirely equivalent.

The quantum expectation value for the fields ¢(z) in
Eq. (32) can be evaluated exactly with the use of diagrammatic
techniques, which are developed in Sec. 2 of Appendix C.
Through an application of these techniques, we obtain the
expression:

(1—2z)?
1 Det[ll — zT e i€ Jo di UJHUMC] ’

(e )y 1 970

(33)

Inserting this expression into Eq. (32) and evaluating the
integral over z, we obtain the result for the fidelity amplitude
As. Recalling that A; are functionals of the control w(¢) and
the noise n(¢), we finally obtain

N

1 L
AS Jn()] = —— —2jicos (Al/z[w(')sﬂ(')])’ 34
[w(-),n(-)] 2S+1j e (34)

where we are emphasizing the functional dependence of Ay
on w(-) and n(-). The quantity A, [w(-),n(-)], appearing in
Eq. (34), is the fidelity amplitude for the spin-half case. It is
given by the expression,

Aiplo().n()] = $Tr Te™ b dUOmOUO - (35)

in which 7 denotes the usual time-ordering operator, 7 is the
transit time, and

U(t) = Te Jod! M) (36)

is the evolution operator corresponding to the control Hamil-
tonian. The derivation of Eqgs. (33) and (34) is given in Sec. 2
of Appendix C.

B. Connection with quaternions

Before continuing with our development, let us pause to
streamline our notation. To this end, we observe a connection
with quaternions that makes the physics more transparent.
The advantage stems from the fact that quaternions provide
a unified method for treating both geometrical 3-vectors
and unitary evolution operators, all under the language of
quaternion algebra. In what comes below, the reader may freely
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replace pure quaternions (see Appendix A) by vectors in all
settings, except when they occur in exponents. In that case,
the correct interpretation is to replace pure quaternions by the
corresponding vector dotted with —io, where o = (0%,0,,0;)
is a vector of Pauli matrices. The quaternion wedge and dot
products may be freely replaced by the vector cross and dot
products, respectively, and unit quaternions may be replaced
by the corresponding unitary matrices, as seen below. For a
full review of all quaternion properties and operations used in
this paper, see Appendix A.

Before returning to the task of finding the fidelity and
optimizing it, let us define the quantities E;(¢), given by

Ei(t) = —i U/ (t) 0; UL (1), (37)

where, recalling that U/,(¢) is the unitary corresponding to the
control Hamiltonian, E; (¢) are the Pauli matrices in the rotating
frame of the control fields. Note that the E;(r) satisfy the
quaternion algebra, regardless of the form of the control fields,
for all times ¢, i.e.,

E,(DE;(1) = —6; 1 + ¢, Ex (1), (38)

where the indices i, j, and k take on the values 1, 2, and
3, corresponding, respectively, to x, y, and z, and repeated
indices are summed over. The symbol 1 denotes the 2 x 2 unit
matrix. Let us introduce E((¢) = 1; then evidently we have

Eo(OE; (1) = E{(DEo(1) = E;(1) (39)

for all i. The isomorphism between the set of quantities E;(¢)
and quaternions is given by identifying E;(¢) (for i = 1,2,3),
respectively, with the quaternion imaginary units 7, 7,k, and
Ey(¢) with the real number 1. Quaternion addition is defined
component-wise, whereas multiplication is defined through
Egs. (38) and (39); note that quaternion multiplication is not
commutative.

Given this identification, for calculational purposes it is
simpler to work with quaternion quantities. Recall that any
quaternion Q can be expressed in terms of components as Q =
Q' E; with {Q'} real and i summed over the values 0,1,2,3.
The component QE| is referred to as the real, or scalar,
part of the quaternion, and the remainder is the imaginary
part, also called the vector part, of the quaternion. Quaternions
having vanishing scalar part are called pure quaternions. In
what follows we will almost exclusively work with pure
quaternions. For additional properties of quaternions, other
types of operations (specifically, the dot and wedge products)
and the terminology associated with quaternions, we refer the
reader to Appendix A.

We refer to the set of quaternions E;(¢), restricting i to be
1,2, or 3 as the rotating triad, and we refer to the set e; given
by

e = —ioj, (40)

as the static triad, because these are fixed in the laboratory
frame. For convenience we represent pure quaternions using
a bold font, i.e., p, and they can be represented by a restricted
sum over the indices, i.e., p = Z?:] p'E; in the rotating
basis and p = Z?:l p' e; in the static basis. Unless indicated
otherwise, from now on we interpret repeated indices as a
summation over the seti = 1,2,3.
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It is straightforward to find the relation between E; (¢) and e;
within the quaternion language. Associated with the evolution
operator U.(t) is a unit quaternion; for simplicity, we indicate
unit quaternions by means of a regular font. If we take the pure
quaternion £2(¢) to represent the control Hamiltonian in the
quaternion language, () = ' (¢) E;(¢), then the associated
unit quaternion, corresponding to the unitary in the vector
language, is given by

u (1) = Tet Jodr' &), (41)

and the relation between the rotating triad E;(¢) and the static
triad e; is given by

Ei(t) = (1) e uc(r), (42)

where ii.(t) = Te 3} 2 ig the quaternion conjugate of
uc(t) [corresponds to Uj (t) in matrix language; see Ap-
pendix A], and the operation on the right-hand side is just
quaternion multiplication. In quaternion language, Eq. (42)
tells us that the e; and E;(¢) are related via a pure rotation—in
other words the rotating triad corresponds to a rigid rotation
of the static triad.

Let us now continue with the evaluation of the fidelity, but
now making use of the quaternion language. Equation (35) can
be rewritten in terms of quaternions as

A1 plEC),ni ()] = ScTes Jo 4, 43)

where n(¢) = n'(t)E;(t) is now interpreted as the pure quater-
nion representing the stochastic field in the rotating frame,
A\, is now interpreted to be a functional of the rotating triad
[we take E(t) as shorthand for the set of E;(#)] as well as the
stochastic fields {n;(-)}, and the Sc operation simply takes the
scalar part of the expression following it.

In this formulation, the idea is to find the best rotating triad
E(?), i.e., the one that maximizes the fidelity. It may seem that
we have not gained much from this reformulation. However,
working with E(#) is in fact a much simpler task than working
with the control field €(-) directly, as 2(-) is buried inside
time-ordered exponentials [see Eqs. (35) and (36)]. As aresult,
in practice one usually resorts to approximate schemes. In
contrast, the set E(¢) appears at the same level as the stochastic
fields, and thus can be treated exactly. Furthermore, once we
have found the best triad history E(¢), it is straightforward to
recover the control fields 2(7):

(1) = 3OEx(1))E (1)
= 1B (OE; (1) - 3, Ei(1)). (44)

These are the control fields in the rotating frame. Ultimately,
the objects we are interested in are the control field in the
laboratory frame, o(t) = '(t) e;, which is trivially found via

(1) = u (1) A1) iic(t)
= 37 uc () Ei(0) i (t)(E (1) - 9, Ex (1))
= e & (E;(1) - 0, Ex(1)). (45)

In other words, o' () = w(t) - e; = () - E;(¢). The labora-
tory frame components of the control field can be recovered
directly from the rotating frame triad E(¢), without the need to
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take the intermediate step of computing either 2(¢) or u.(¢):
o' (1) = LeVFE (1) - 3, Ex(0). (46)

Here and elsewhere, the dot denotes the quaternion dot product
(see Appendix A), and repeated indices are summed over. Note
that Eq. (406) is an exact relation between @(¢) and E(7).

By taking the triad E(#) as the relevant degrees of freedom
[as opposed to the control §2(¢)], we no longer have to worry
about the time-ordered exponential associated with €2(z), but
there still remains an overall time-ordering operator in front
of the whole expression; see Eq. (35). For a pure quaternion
n(¢), one can always find another pure quaternion m.(¢) such
that the relation,

’]’egfor din(t) _ egme(f)’ 47

is satisfied, and we note that m.(¢) is a function of € as well as
time. The expression for m.(¢) can be found, as is commonly
done in quantum mechanics from the Magnus expansion; i.e.,
as an expansion of log 7 exp(e X) (for some quantum operator
X, i.e., see Ref. [21]) for a small parameter €. By using
the quaternion formulation, however, it is straightforward to
determine how the two quantities n(¢) and m(¢) are related
to each other exactly; this relationship comes in the form of a
differential equation, viz.,

dmc(r)

H—<m.) An@)+(1 eme(t)
T —n()_zme() n()+<—

eme(t)
cot
2 2

X M (1) A (Me(t) An(D)), (48)

where m(t) = |m¢(¢)] is the quaternion modulus, and m(¢) =
m(¢)/|m(¢)| is a unit pure quaternion and, as such, it can
be interpreted as the direction of m¢(¢) (see Appendix B for
a derivation of this result). Note that in the case of pure
quaternions the quaternion wedge product acts just like the
vector cross product. If Eq. (48) is solved perturbatively in
€, one recovers the Magnus expansion (see Appendix B for
details), but the real power of Eq. (48) is that it is an exact
relation: The solution of this differential equation is equivalent
to the exact summation over all terms in the Magnus expansion.

After this lengthy detour, let us return to the task of
analyzing the fidelity. Making use of the results in Eqgs. (43)
and (47), we find

Ay p[E()m ()] = cos (“”T(T)> 49)

which, in view of its simplicity relative to the expression in
terms of {n;(-)}, we can use to find the exact expression for the
fidelity amplitude for general spin s:

e—ijemf(r)‘ (50)

S

1
AsE(t),m. (1)) = 1
j=—

This enables us to construct a simple expression for the fidelity
F; = {Ay), using Egs. (50) and (21):

s

1 : 3
F[EGQ)] = —— e—(}f)ZS[E(-)]-&-O(f%)’ 51

2s +1
j=-—s
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where S[E(-)] is a functional of the rotating triad, i.e.,
1 ! ! ! / ’
S[E()] = 3 dedt' N;j(t,t)E;(t) - E;(t'). (52)
0o Jo

In the expression (51) for F;, we make the assumption that €
is small, and only consider the leading-order term in € in the
exponent. Higher order contributions can be easily computed;
see Appendix B for details on how this is accomplished.

Itis clear from Eq. (51) that in order to maximize the fidelity,
we need only minimize the functional S[E(-)]—note that this
condition is independent of the spin number s. In other words,
the functional form of the rotating triad E;(¢) [and therefore
the control field; see Eq. (46)] that maximizes the fidelity is
the same for all values of s. The fidelity itself, however, does
depend on s.

C. Extremals and constraints

The task that remains is to find the rotating triad E;(¢) that
minimizes the functional S[E(-)]; cf. Eq. (52). We look for
solutions in the form of extremals of the action, i.e., we seek
E;(¢) such that the variation § S[E(-)] vanishes. Note that the
variations in the triad §E;(¢) are not fully arbitrary. They are
constrained due to the fact that the triad has to rotate as a rigid
body. Simply put, the variations are constrained to take the
form,

SE; (1) = SA(t) AEi(D), (53)

where §A(r) is now any arbitrary pure quaternion.

In addition to the rigidity constraints just stated, there are
also experimental constraints present that one should account
for, such as limitations on the frequency, amplitude, etc., that
the control fields can take. Even in the absence of experimental
considerations, it is natural to impose such constraints, if we
are to make fair comparisons between different realizations
of the control fields. For instance, if there is no limit to
the amplitude of the control field, one may simply pick a
large enough amplitude such that one can achieve the target
operation over a time scale much smaller than any time scale
associated with the noise N ;(2,1). The greater the separation
of time scales, the smaller will be the effective action S, and
thus the higher will be the fidelity F. In this case, there is no
sense in comparing strong fields with weak ones, as strong
fields always win.

In order to make a sensible comparison between different
choices for the control fields, we have to put some constraint
on the solution space in which we seek trajectories for the
triad E(7). As an example, from a purely physical standpoint,
one may choose to compare trajectories for which the fotal
energy output associated with the control field is prescribed.
This quantity is given by the time integral of the square of the
control field, so one has the following constraint [22]:

T Q(t 2
Eou 5/ dt | (2)| = const. 54
0

In what follows, we shall also prescribe the transit time t.
As we are fixing the energy output, if we were to make t
too small, there would not be enough time to achieve a given
target. Effective values for 7 should be bounded from below
in an E,, dependent way to ensure that we have access to all
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desired targets. We shall seek optimal controls in the space of
fixed 7 and Ey.

To determine the optimal controls in this constrained space
we seek minima corresponding to the constrained functional
S., determined via

S. = l/fdt/fdt/{Mj(t,t,)Ei(Z)'Ej(t/)
2 0 0

+A8(r — 1))}, (55)

where A is the Lagrange multiplier associated with the energy
output constraint, and the output power |£(#)|? is determined
entirely in terms of the triad E(¢), via

1)1 = {88 (Bi(r) - 3,E;(1) — E;(1) - 9,Ei(1))
x (Ex(t) - 3 Eo(t) — Eq(t) - 3, Ex (1))
= 1N Ei(1) - (O,E;(t) A 3 Ex(1)). (56)

Thus we see that S, is a functional of the triad E(¢) and its
first time derivatives only. To obtain the first line of Eq. (56)
we use the expression for 2(¢) in Eq. (44); the second line
requires a little algebra. In practice it is simpler to work with
the expression as given in the second line, because it is of lower
order in the triad and its derivatives. Note that A|(z)|?/2 has
a natural interpretation as the kinetic energy associated with
the triad E(¢), with the Lagrange multiplier A playing the role
of inertia.

The constraint present in Eq. (55) is just one type of a
constraint that we may impose on the system. We are free to
impose other types. For instance, we can replace the Lagrange
multiplier in Eq. (55) by a matrix, and even make that time
dependent:

T

l / dt w(t) - A1) - o(2).

2 Jo

This may be useful, e.g., in the situation where the control
fields w(¢) are constrained to lie in the xy plane. In this
case, we simply let A,, tend to infinity. We are also free to
impose constraints on the derivatives of @(t), i.e., to impose a
frequency cutoff. Indeed, we have a lot of freedom on the types
of constraints we may impose. An advantage of this method
(based on extremals) is the ease with which one can implement
them.

For illustration purposes, we work with with the case of
scalar, time-independent A in Eq. (55), imposing constraints
on the total energy output. From the action S., we can obtain
the Euler-Lagrange equation, which will give us the condition
that the extremals must satisfy. For our case, we are specifically
interested in the minima. Setting §S./6A(¢t) = 0 [see Eq. (53)]
we get the Euler-Lagrange equation for the triad,

20,2 +E;(t) A [/T dt’ ij(t,t’)Ej(t/)} =0, (57)
0

where, in writing down Eq. (57), we used the fact that
Q1) = L Ei() [E;(1) - 97Ex(1)]. (58)

The form of Eq. (57) fits naturally with the fact that €(z)
is the angular velocity of the triad, and indicates that the
interpretation of A|(7)|?/2 as the kinetic energy, with A
playing the role of inertia, is correct.
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Given the connection between £2(¢) and the set E; (1) [see
Eq. (44)], we also have

LE:i(t) = Ei(t) A R(1). (59)

It is useful to define the dual triad D;(t), via
D;(t) = / dt'N;j(t,t)E;(t"). (60)
0
The solution of the set of coupled equations,

9,90) = —E(1) AD; 1)

* ©1)
aE;(t) = Ei(1) A Q(1),

along with the appropriate set of boundary conditions, de-

termines the optimal controls. Recall that we have a target

operation Uy, which is to be satisfied at the transit time t = 7.

For our case, Uy is simply a rotation operator, and can therefore

always be written as

Up = e7'20rte, (62)

where O is the angle and T is the axis of rotation. It is
easy to translate this into quaternion language and find the
corresponding unit quaternion u# 7 that gives the target rotation,
1

ur = e297, (63)
where qr = g'e; is the pure quaternion corresponding to
—i0rt - 0, as determined by Eq. (40). The quaternion modulus
|qr| corresponds to the angle of rotation, and r = qr/|qr|
corresponds to the axis of rotation. The boundary conditions
for the equation of motion Eq. (61) are then entirely determined
from the target uz, via

E;(0) =e;,

64
E;(v) =dareur. (4

The presence of boundary conditions specific to the
target rotation is an inconvenience when investigating generic
properties of extremals. It is easy to take care of arbitrary
boundary conditions once and for all by transforming to a
suitably rotating frame, which is described by some angular
drift velocity (¢), generally an arbitrary function of time.
The rotating-frame triad E;(¢) is then given by

Ei(t) = uo(t) Ei(1) iio(t), (65)

where ug(t) = Texp[% fot dt’' Qy(t")]. Likewise, for any
rotating-frame quantity X [e.g., the control fields fl(t)], we
have X = uo(#) Xiio(r). We can also define the covariant
derivative for the rotating frame 9;, through the relation,

9,X(1) = 3,X(r) — Ro(1) A X(1); (66)

likewise, for the noise kernel we have the covariant integral
operator,

/ dt’ Nij(t,0)X (1)
0

=/rdt’ (ot t) X; () dg(t,1), (67)

0

where u(z,t') = uo(t) iip(t'). In terms of the quantities carry-
ing tildes, the Euler-Lagrange equations for S, can be written in
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a generally covariant form, valid for arbitrary time-dependent
rotating frame 2(¢):
3E; (1) = Ei() A Q1),
’ | (68)
38(1) = —Ei(1) A Dy (o).

A consequence of the fact that the form of S. expressed in
terms of E;(¢) is invariant under arbitrary 2y(¢), is that this
general covariance carries over to all physical equations, i.e.,
the relation between €2(¢) and E; (¢) takes the expected form,

(1) = LeUFEi(0) [E;(r) - 9, B (1)) (69)

We can take advantage of the freedom we have in choosing
() to force the boundary conditions to take on a simple
form,

E/(0) = Ei(r) = e, (70)

the only requirement being that in order to satisfy the
boundary condition in the laboratory frame, we simply need
(10(0),uo(t)) = (1,ur ), with ur being the target operation.
The solutions E;(#) then satisfy periodic boundary conditions,
i.e., each member of the triad forms a closed loop on the unit
sphere. The only other constraint is that the triad rotates as a
rigid body. The loops are not constrained in any other way, i.e.,
they are free to cross each other an arbitrary number of times.

Without loss of generality, we choose §2¢(#) to be a constant
@ p, so that all nontrivial dynamical behavior is displayed by
the triad E;(¢). This particular rotating frame, with constant
Qp, corresponds to eliminating the drift term whose effect
is to take the triad E;(¢) through a free geodesic path on the
unit sphere connecting the starting point at + = 0 with the
target at r = t. This procedure simply accounts for this trivial
part of the evolution, allowing us to focus on corrections
due to fluctuations in the environment. For this reason, it is
advantageous to solve the Euler-Lagrange equations in this
rotating frame. We take a further step, and work with the
difference §S2(t) = Q(t) — L p, and thus the set of equations,

3,6Q(t) = Rp A SRUt) — %E(t) ADi(1), (71a)

K () = E;(t) A 8Q1), (71b)

satisfying boundary conditions given in Eq. (70). This set of
variables holds the advantage that the trajectories §2(¢),E; (¢),
which describe deviations from the average drift, are small in
the limit where the noise matrix N;;(¢,¢") is small, and vanish
in the limit of vanishing noise, making them a natural set of
variables to work with.

Before proceeding with examples, we note that the trajec-
tories as determined from Egs. (71a) and (71b) can belong
to distinct topological sectors. This is easy to see in the case
where there is no noise, i.e., when (¢) = p, since the set of
drift vectors Sl(l')’) = (f 4 2mn) £ (for constant f and integer n)
give rise to trajectories for E; (7) that satisfy the same boundary
conditions (i.e., correspond to the same target), but differ in
the number of times the triad E;(#) winds around the axis
determined by f. These winding numbers n then describe
different topological sectors. The same situation arises in the
case of nonzero noise; here one also obtains sets of trajectories,
differing in winding number, but satisfying the same boundary
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conditions. When seeking solutions to the equations of motion,
one can thus also specify the topological sector of interest,
which can without loss of generality be accounted for by the
drift term SZ(D") (where there is no risk of confusion we omit
the label n for brevity).

Finally, we mention that the laboratory frame components
of the control field trajectories, the quantities we are ultimately
interested in, can be determined entirely in terms of the rotating
frame quantities w; (1) = w(t) - e; = (Rp + 5R(¢)) - E;(¢).

D. Full probability distribution function for the (in)fidelity

As we stated in Sec. II, for some applications one may
require the use of the full probability distribution for the
infidelity. As an example, we briefly discussed the possibility
of looking into the effect of rare extreme events, which
though unlikely to occur, can be unacceptably detrimental to
the control task. Such questions are commonly addressed in
extreme value statistics, and require more information than
simply the average; usually a full account of the probability
distribution is needed (see, e.g., Ref. [16]).

The formalism we shall be using here has been developed
in Sec. II D, and we refer the reader there for details (see
also Ref. [15]). In the present case, where we consider weak
noise (¢ < 1), it is more convenient to work with the infidelity
amplitude,

I, =1— A, (72)

To illustrate the method, we expand this quantity to order €2,
and all results obtained are good to this order. We have

I, ~ €’ / ' / Tdt dt'ni(tn;(HE; 1) -E;(t)  (73)
0 0

[see Eq. (50) for the relevant expression for A, and Appendix B
for details on the relationship between m.(r) and n(t),
especially Eq. (B10)], where we have defined the renormalized

€ via
1
€ = ,/¥e. (74)

Next, we give the result for the characteristic function:

Xs (k) = <e—ikIS )n
1

- \/Det(]l + ike2 M[E(-)])

) (75)

where in obtaining x;(k) we have used the approximation
for Z; given in Eq. (73), along with the assumption that the
noise fields n; () are Gaussian correlated. In the second line of
Eq. (75), 1 corresponds to a 3 x 3 unit matrix and M[E(-)] is
a matrix functional of E;(t) given by

M[E(-)]:% [0 /0 drdt' ETON @, HEWR), (76)

in which N(¢,t’) is the noise correlation matrix with elements
Nj(t,t'), and E€(¢) is a matrix, with transpose ET(t), whose
elements contain the components of the rotating-frame triad
E;(¢) in the basis of the laboratory frame triad e;, viz.,

E[j(t):E,-(t)-ej. ()
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In the case of weak noise (i.e., small ¢,) considered here, it
is sufficient to expand the determinant in Eq. (75) to leading
order in €, so that

Det(1 + ike] M[E()]) ~ 1 + ike, Tr(M[E(-)])
= 1+ ikeS[E(-)], (78)

where S[E(-)] is the effective “action” functional that we
found in Sec. IV B [see Eq. (52)], which we rewrite here
for convenience:

S[E(-)]:% /0 /0 di di' Ny () E(r) - Eo(t'). (19

Recall that the triad E;(¢) that minimizes S[E(-)] determines
the optimal control field histories that maximize (minimize) the
fidelity (infidelity). By using Eq. (79), we obtain the following
expression for x;(k), which to this level of approximation
depends on the triad E;(¢) (and therefore on the control field
histories) solely through the functional S[E(-)]:

1
V1 + ike2S[E()]
By using Eq. (80), it is straightforward to calculate all the

moments and cumulants in the limit of weak noise. For the
moments, we find

(T = )" xs(K) k=0
2 . m
—Qm— 1)!!(@) , 1)

and for the cumulants we find
(2" N0 = 0" In x5 (k) k=0
2 AT\
= Qm— 2)!!(%15()]) . (82)

Furthermore, it is straightforward to find P(Z;) in the weak-
noise case under consideration:

Xs(k) = (80)

Py = [ 5 e

0o 2T
O, exp[_ z }
7 Ze2S[E()] €;S[EC)]

where O(Z;) is the Heaviside step function (which vanishes for
7T, < 0 and gives unity otherwise), and in evaluating Eq. (83)
we have used the approximate expression for x,(k) given in
Eq. (80). Note that although the expression obtained in Eq. (83)
is valid only in the case of weak noise (i.e., €, < 1), it has an
essential singularity at €; = 0, so the expression obtained here
is nonperturbative in nature. For a given fixed €,, we see from
Eq. (83) that in order to maximize the fidelity—along with all
moments of the fidelity amplitude—one must employ control
field histories that make S[E(-)] as small as possible. We note,
however, that Eq. (83) is not valid for vanishing S; in this case,
higher-order contributions in €, from Eqs. (72) and (78) come
into play, and there are quantities other than S that must vanish
in order to recover perfect fidelity. Nevertheless, Eq. (83) is a
useful result, that remains valid even for small infidelities, and
this includes the examples considered in this paper.

(83)
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E. Examples

A physically interesting situation arises when the noise
has a 1/f character. In many systems, this accounts for the
material-dependent noise source that leads to decoherence in
quantum devices [18]. It is therefore of considerate importance
for applications to mitigate this noise effectively. 1 /f noise can
be understood as arising from the collective effect of multiple
sources of telegraph noise that are coupled to the quantum
system of interest, with the weight of each source scaling as
the inverse characteristic decay rate of that source [18,23].

In what follows, we focus on the case of mitigating noise
along a fixed axis, bearing in mind that generalizations are
straightforward. Without loss of generality, we take the noise
to point along the x axis, i.e., the only nonvanishing component
of the noise matrix is Ny, (¢,¢’). For 1/f noise, this is obtained
via the expression,

Y2
Nty =g [ Lo, (84)

Y1

where & denotes the strength of the noise, and y; (y») is the
lower (upper) decay-rate cutoff for the ensemble of telegraph
processes that are coupled to the spin. For frequencies v within
the range y; < v < y», the noise correlator in the frequency
domain NV, (v) ~ v, ie., is 1/f in character.

For the noise form under consideration, we seek solutions
for (t),E;(¢t) that depend parametrically on the Lagrange
multiplier A. The case A~! = 0 corresponds to making energy
output infinitely costly, and gives rise to solutions correspond-
ing to the geodesic path on a sphere, i.e., we have () = 2p.
For increasing A, the energy cost decreases, so that there is
nontrivial competition between keeping energy costs low and
compensating for the noise. In the limiting case of A~! — oo,
the energy costs become vanishingly small meaning that there
are no constraints on the set of extremal control fields we get
to choose from. In this case, we can simply take the control
€2(¢) to be an infinitely sharp pulse acting over a vanishingly
small transit time 7, and this guarantees maximal fidelity. In
actuality, as long as we ensure that the spectral content of the
noise and the control do not overlap, which we are always
free to do in the case where there are no constraints on the
control, we guarantee maximal fidelity at leading order in ¢;
see Refs. [6,7].

As we have mentioned, one advantage of this approach is
that we can naturally find families of solutions corresponding
to a given 2p. Raising A~ =0, we find a set of solutions
that correspond to continuous deformations of the geodesic on
a sphere. As we raise A~! and loosen the constraints on the
energy output, we find solutions which improve the fidelity
more and more.

In order to illustrate our approach, we take the drift
to be (27,0,27)/t so that we have a nontrivial winding-
number (note that p = (v/2 — 1)(27,0,27)/t would give
us the same target rotation), and the target operation has
both a nonvanishing component parallel to the noise and
a nonvanishing component orthogonal to it. In this case,
we expect to obtain nontrivial time dependence in both the
amplitude of the control field, |€2(¢)|, and the direction 2(z). It
is convenient to scale all parameters with respect to the transit
time ,i.e., wetake & = 8/ 72 (the strength of the noise relative
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FIG. 1. Plot of @(¢)/7~' (dimensionless, with 7 the total transit time) for A~ = 50 ™! (light purple arrows), for the case of 1/ noise. The
drift field Q , = (27,0,27)/7 (bold black arrow), which also corresponds to the optimal control for the case A~! = 0, is shown for comparison.
The green dashed arrow (on the left side of the plot) corresponds to the initial value of @(¢), while the blue dashed arrow (on the right side)
corresponds to its final value. The other parameter values are y; = 20/7, y» = 0.1/7, and £ = 8/72, as described in the text.

to the control is then ~¢£), y; = 0.1/7, and y, = 20/t. The
values chosen for the cutoffs y; and y, give us a wide range of
frequencies for which the noise N, is well approximated by
1/f noise.

Our interest lies in the case where A~! is not too large,
so that there is nontrivial competition between minimizing
energy output and maximizing the fidelity. The equations of
motion (68) can be solved straightforwardly, numerically. The
quantities we are ultimately interested in are the control fields
in the laboratory frame »(t), whose components are given by

wi(t) = @) -E(t)
= (R + 520)) - E:(0), (85)

where Rp = (27,0,27)/7 is the drift and 6S~2(t) = fl(t) —
Qp, with 2(¢) and E;(¢) the control fields and the triad as
given in the rotating frame; which we find by solving the
rotating-frame Euler-Lagrange equations in the presence of the
drift term €2, [see Egs. (71a) and (71b) and the accompanying

discussion]. The optimal control field history @(f) in this
nontrivial regime (with parameters given in the caption) is
shown in Fig. 1 (set of light purple arrows), where we have set
2= 50/7. The drift field & ((27,0,27)/7) is shown (bold
black arrow) for comparison.

To get a better understanding of the results obtained in this
example, let us take a closer look at how each component of
(1) behaves. In Fig. 2, we plot the results for do(t) = o(t) —
©2p. The curves shown there correspond to several values
of the Lagrange multiplier: A~1'=(0,10,20,30,50, 100)/7; in
each plot the solid curve corresponds to A~! = 100/7, and the
dashed curves correspond to a sequence of smaller values.

Recalling the fact that in this example the noise lies along
the x axis, the interpretation of the plots becomes clear: §w, ()
is negative definite, meaning that the overall amplitude of
the control field is reduced relative to the drift &p for the
entire process. This is reasonable because a driving field along
the x axis does nothing to compensate for noise along the x
direction: The driving and noise terms would commute in this

(5wy/T_l

t/t

t/T t/T

FIG. 2. Plot of the components of §w(¢) (defined in text) vs time, for A~! = 0,10,20,30,50,100 t~'. All plotted quantities are dimensionless,
with 7, the total transit time, playing the role of the fundamental time unit. The solid lines correspond to A~! = 1007 ! and the dashed lines
correspond to intermediate values. As explained in the text, note that the x component of the control is reduced, relative to the noise-free case,
at the expense of increasing the z component. This reduces the component of the control field along the noise (taken to be the x axis) in order
to compensate more efficiently for the noise; see the text for further discussion.
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case. To compensate for the reduced drive along the x axis,
the drive along the z axis on average is increased. As far as
the drive along the y direction is concerned, although its time
average is zero, it takes on a nontrivial time dependence.

The behavior of the fields vary in concert in order to satisfy
the boundary conditions while reducing the weight of the
control field w(7) along the direction of the noise (in this case
the x direction) as much as possible. As A~ is increased, more
and more of the weight lies along the y and z axes. As A~!
is increased, and thus the energy restrictions are lessened, we
have at our disposal larger-amplitude control fields (¢), and
therefore larger frequencies in the spectral content of E;(¢). In
light of the fact that 1/f noise has higher weight at smaller
frequencies, by increasing A~ we reduce the spectral overlap
between the noise and the control, and hence increase the
fidelity, which is what we set out to do. To recapitulate, for the
fidelity to be as large as possible, one should put as much of
the weight of the control field in a direction orthogonal to the
noise for as long as possible. This all has to be done in such
a way as to satisfy the boundary conditions (i.e., to obtain the
sought after target operation) and the energy constraints. This
is why we can only completely eliminate w,(¢) in favor of
wy - (¢) if we have access to arbitrarily large energy outputs.

Recall that although the optimal control scheme (£2(-),E;(-))
is independent of the spin quantum number s, the fidelity itself,
however, is not, although the dependence on s is elementary
in the limit of weak noise:

1 y —(je)*SIE()]+0(e)
FS[EM)] = m ' e . (86)
J==
Thus, in the small-¢ limit considered here, one does best by
reducing S = 5 [, dt [y dt’ Ni;(1,1')E;(¢) - E;(1") as much as
the constraint in energy output will allow, obtaining an optimal
control trajectory which is independent of €. For a fixed value
of € (which we take to be 0.1), we plot S as a function of 1!
in Fig. 3. Note that, in principle, there is no limit to how small

0.55¢
0.50¢
“ 045

0.40

50 100 150 200 250
At

FIG. 3. Plot of the action S as a function of A~!'/z~! (both
quantities in plot are dimensionless), which determines the constraint
on energy output for the control fields (). Larger values of A~
correspond to less stringent constraints, i.e., larger energy outputs.
As S approaches zero, the fidelity approaches unity [see Eq. (86)].
There is no limit to how small we can make S as long as we are
willing to increase A~
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S can be as long as we are willing to keep increasing A"
For the case of A~ ! = 250/t, the maximum value present
in Fig. 3, the fidelity for the s = 1/2 case is on the order
of 0.999. In the weak noise limit (i.e., € < 1), the effective
action integral, S = %fof dt [y dt' Nij(t.t)Ei(t) - E;(t), not
only tells us information regarding the fidelity [see Eq. (86)],
but also gives us all the information needed to compute the
full probability distribution of infidelity amplitudes, as seen
by Eq. (83), which we rewrite here for convenience:

Oz .
nZe;S[E()]

P(I,) ~ (87)

T,
P [ SIEC)] }
This expression tells us that by minimizing the infidelity
(which amounts to minimizing §), we automatically minimize
all higher moments and cumulants.

All results arrived at for this example can be generalized
straightforwardly to the case of a general noise matrix. Greater
fidelity usually results from putting as much of the weight of
the control fields in a direction orthogonal to the dominant
noise contributions, while choosing the amplitudes |@(#)| such
that the triad E;(¢) has as little spectral overlap with the noise
as possible, in other words, as much as is allowed by the
constraints imposed upon the control fields.

IV. CONCLUSIONS

We have considered the problem of error mitigation in the
control of quantum systems subject to time-dependent sources
of noise, which in general includes environmental noise and
noise inherent to the experimental control apparatus. We do
this in terms of a fidelity metric, which measures how faithfully
the time evolution matrix (determined by the controls, internal
system dynamics, and the noise) reproduces a predetermined
“target” unitary transformation at the end of a prescribed transit
time 7. We have tackled the problem through a modification of
Schwinger-Keldysh path-integral techniques, which enables
us to account for the effects of general sources of noise in
a unified manner. By analogy with the Martin-Siggia-Rose
scheme we “integrate out” noise sources, thus arriving at an
effective deterministic formulation, which we use to represent
the fidelity.

Our methods yield the conditions obeyed by the control field
history such that the effects of noise are optimally mitigated
and hence, on average, the fidelity corresponding to the desired
unitary transformation is as large as possible. These conditions
are determined by solving equations of motion that are found
by extremizing an effective action functional with the control
fields playing the role of the degrees of freedom. Our method
has the advantage that it admits a wide range of constraints
through the use of Lagrange multipliers. These constraints
may correspond to those naturally found in experiments, such
as optimization of fidelity in the presence of fixed energy input,
which is the main type of constraint we consider in the article.
We also show how to compute the full probability distribution
of the infidelity, which in principle can be used to address more
complicated questions, such as those related to minimizing the
likelihood of rare, detrimental events.

As an application of our methods, we consider a system
composed of a single spin degree of freedom S of arbitrary
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spin quantum number s coupled to a noise source that is of the
1/f type, which is known to be a common source of quantum
decoherence in many systems of interest. We address the limit
of weak noise, and study the problem in the case where the
total energy output is constrained at a fixed value. We use our
methods to find the optimal control field histories subject to
applied constraints, and interpret the results. In the case of
weak noise, we find that the optimal control field histories
are independent of the spin quantum number s, and that the
fidelity depends on s in an elementary manner. Finally, we
find a simple, analytical expression for the full probability
distribution of the infidelity, and show that, in the weak-noise
limit, it depends solely on the effective action functional.

Although we have studied the case of a single spin as
a specific example, it is straightforward to generalize our
methods, e.g., by applying them to chains of coupled spins,
atomic systems, as well as general noise distributions. An
intriguing avenue that merits exploration, and that we have not
pursued in this paper, is the question of many body effects
on the control task, where interactions may have nontrivial
repercussions. This is a question that can be addressed within
the formalism we have constructed here.
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APPENDIX A: QUATERNION ALGEBRA

Here we briefly review quaternion algebra and explain the
notation used in our paper. A quaternion g can be written
in terms of its components as follows (using the summation
convention over repeated indices p):

a=q"e, =q’e+q'er +g’es+q’es,  (AD
where the components g" are real numbers, and the tetrad e,
are the basis quaternions. The tetrad e, satisfy the quaternion
multiplication table (i, j, and k are restricted to take nonzero
values):

€oe; = €;€p = ¢,
(A2)
ee; = —4;; + €jke.

We can without loss of generality take ey = 1; the quaternion
algebra can then be understood entirely in terms of the equation
on the second line of Eq. (A2), i.e., we only need to consider
the triad e;, wherei = 1,2,3. We refer to the zeroth component
q° as the scalar part (in the literature, it is often referred to
as the real part in analogy with complex numbers), and we
refer to q = g'e; as the vector part (it is also, in analogy with
complex numbers, the imaginary part). In terms of its scalar
and vector parts, we can write an arbitrary quaternion ¢ as

g=4¢"+q. (A3)
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Taking the analogy with complex numbers another step, we
also have the quaternion conjugate g, where the conjugation

operation is defined through its action on the triad e;. We have
e =—e;, (A4)

and in terms of an arbitrary quaternion written in terms of its
scalar and vector parts, we then have

i=q"—q. (AS)

In addition to the geometric product between two quater-
nions pq = r, we can also define the quaternion dot product,

p-q.=3(pd +qp). (A6)
and the quaternion wedge product,
pPAq=5(pg—qp). (A7)

The magnitude of a quaternion is given by its modulus |q|,
defined through the relation,

gl =43 =V(@** +a-q

Pure imaginary quaternions ¢, referred to as pure quater-

nions, can naturally be interpreted as a geometric vector

in R3. For pure quaternions, the quaternion dot and wedge

products correspond to the usual vector dot and cross products,
respectively,

(A8)

P-q= %pl.qj.(eiej +e;€) = pl.qj,aij’k (A9)
PAQ=5pqilee; —eje;)) =plgie e,
where we use the quaternion multiplication table in Eq. (A2)
(repeated indices are to be summed over). The geometric
quaternion product between two pure quaternions pq sub-
sumes both the dot and wedge products,

Pq=-p-q+pAq. (A10)

Unit quaternions, defined as quaternions for which |u| = 1,
can always be written in the form,

u = eP, (A11)

where p is a pure quaternion. Unit quaternions are used in
the quaternion language to describe rotations. Given a unit
quaternion v = e2® and any pure quaternion p we can write
down the rotated quaternion p’ as

p = vpi = e2’pe2® =pcosd+0 Apsing
+(p— (0 p)0) (1 — cos0),

where p’, p, and 6 are all pure quaternions, and where we have
0 = 10| and = 0/|0|. The third line of Eq. (A12) is arrived
at by the rules of quaternion algebra.

The geometric interpretation of this relation is quite
intuitive: @ describes both the angle of rotation (through its
modulus 6), and the axis of rotation (through #). Note that
the quaternions v corresponds to the same rotation—this
is analogous to the 2 to 1 correspondence between SU(2)
and SO(3). Indeed, there is an isomorphism between the
description of rotations via unit quaternions and via SU(2).
An advantage of the quaternion description of rotations is
that it does not run into issues of “gimbal lock™ that afflict
more conventional descriptions, such as Euler angles. This

(A12)
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robustness makes the quaternion description very attractive
not just in a theoretical, but a practical point of view as well.

Finally, we note that composite rotations are also conve-
niently represented in terms of quaternions. It is straight-
forward to show that the quaternion product of two unit
quaternions is also a unit quaternion, and so can also be used to
represent a rotation. The quaternion corresponding to a rotation
u followed by a rotation u, is simply the quaternion product
us = upu, which can be easily seen from the following:

p' = uspits = upu puru; = ur(upity)ii,  (A13)

where in going from the second to third lines, we used the
following relation for the conjugate of the product of two
quaternions uv = vil.

APPENDIX B: RELATION BETWEEN n(f) AND m, (f)
FOR Te5 fi 4/ n) = g5me®

Our goal is to find the relation between the pure quaternions
n(¢) and m.(¢) [they can equivalently be considered members
of su(2) due to the isomorphism between them]—we put a
subscript € in m(¢) as a reminder that it is generally a function
of €. In order to find the relation between n(¢) and m.(z), we
make use of the defining relation,

'Te% fol dr'n(t') _ e%mg(l‘)’ (B1)
and the time derivative,

iTe%jg de'n(t')y _
dt

in order to write the following expression,

SR Tes kO, (B2)

d . .
gn(t) — [Eezm‘(”}eﬁm‘(’). (B3)

To find the derivative of the exponential, we first rewrite it as
an infinite product and get the result,

Hezﬁxme(z)

i=0

ie%m‘(’) =— lim

dt N — 0
sx — 0
Noéx — 1

=— lim
N — oo
sx > 0
Néx — 1

$-af o]

L

=

dme(f)

l—[ £5xme(t)

1
. dm.(t) «
- %,/ dx e ™" dt( : A(moma, (B4)
0

Using this expression, we can rewrite Eq. (B3) as

emndMe() e

1
1) = dx e?™™\) ___—_~¢73 . B5
n(z) [) xe 7 e (BS)

The geometric meaning of the integrand is simple: It corre-
sponds to a rotation of dm.(¢)/dt by an angle exm(t) [where
me(t) = |m(¢)|] about the unit axis m.(¢) = m.(¢)/m(1).
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Using quaternion algebra [or equivalently the su(2) algebra],
we find

psxm M) _<im )

dt
- dnz;f(t) () A d“[';t @ Ginxem. )
_ - dm,(1)
+m.(t) A (mg(t) A T >(l —cosxeme(t)). (B6)

With this, it is now trivial to carry out the integral in x in
Eq. (BS). In order to simplify the expression further, we make
use of the relation,

dm.(1)
dt

= M ()me(t) + M ()m (1), (B7)

where the overhead dot denotes a time derivative, along with
the fact that m.(¢) and m.(¢) are orthogonal since m.(z) is a
unit pure quaternion. We obtain the expression,

. R ~ _sinem.(t)
n(t) = me()m(2) + m () ——

1 .
() A ﬁG(I)M' (B8)

This equation is very useful, as it gives us an exact expression
for n(¢) in terms of m.(¢) and its time derivatives. Fortunately
it is possible to invert Eq. (B8) and unambiguously solve for
both m.(t) and m.(¢) in terms of n(¢), m.(¢), and m.(t), where
we find after some algebra,

ms(t) = n(t) ' fﬁs(t)»

(1) = —%ﬁem An(t)

_ <§ cot E’";(t))ﬁé(z) A (@i (1) A (). (B9)

Using Eq. (B7), we can combine both equations in Eq. (B9)
to find a single differential equation unambiguously relating
m,(¢) and n(¢). After a little algebra we find

dme(t)
dt

eme(t) em(t)
n(t) — Eme(t) An() + < > cot > )

x M (1) A (Me(2) An(r)). (B10)
Note that Eq. (B10) is an exact relation between m.(¢) and
n(z). Solving it is equivalent to summing up all terms in the
Magnus expansion for the case where n(z) is an arbitrary
time-dependent linear combination of elements of su(2), or
equivalently, any pure quaternion since the two are isomorphic.
For cases where € is large, Eq. (B10) can be used to give us the
exact solution—it can also be used to generate a diagrammatic
expansion in €. By summing up certain classes of diagrams,
we can obtain useful results even for moderately large €.

For small €, we can solve Eq. (B10) perturbatively in a
fairly straightforward to arbitrary order. This is useful if one
is interested in finding a series expansion for higher order
contributions for the fidelity functional. We seek a solution of
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the form,

m.(f) = Ze-"m(-f)(t), (B11)

j=0

where mY)(¢) is the jth order term in the perturbation theory
[we drop the subscript € for the perturbation terms m®/(r)
since the € dependence is accounted for in the prefactor €/].
Let us rewrite Eq. (B10) in a way that is more amenable to this
perturbative treatment. We make use of the following series
expansion [24]:

X X
11— =cot— =
2 2

o~ (=17 By

ay O

j=1

where B; are the first Bernoulli numbers. The first Bernoulli
numbers can be obtained from the Bernoulli polynomials,
defined through the generating function,

xe'™ ad xJ

—= ZBJ-(;)F, (B13)

j=0
where we have B; = B;(0), and are given explicitly by

Jj ok ¢ i
(=Dkle/

B; = —_— B14

/ ggﬁ!(k—é)!(k+l) B1

Using Eq. (B12), we then see that the third term in Eq. (B10)
only contains positive even powers of em.(t), where in
particular the leading order term is quadratic in €. In a series
expansion in €, in the right-hand side of Eq. (B10), we get
terms of the form,

(=DM mZ R (1) A (Re(t) A n(D).

These terms can be rewritten entirely in terms of m(¢) only,
simplifying the perturbative expansion since we do not have to
consider the amplitude m . (¢) and the unit axis m, (¢) separately.
To do this, we introduce the nested wedge product, which can
be defined recursively through the relation,

(an)’b = a A [(arn) " 'b], (B15)

where j is an integer greater than or equal to zero, and where
we use the convention (aA)’b = b. Using this definition for
the nested wedge product, along with some quaternion algebra,
we can show that

(=DM mZ @ (1) A (Me(1) A1) = (m (DA n(t). (B16)

Next, we take advantage of the fact that the odd Bernoulli
numbers, B,;, vanish for all integers j > 0 so that we can
include the odd order nested products in the series expansion
without changing its value. Using this fact along with the result
By = 1 and B; = —1/2 and the nested wedge product defined
in Eq. (B16), we can rewrite Eq. (B10) in a simple unified way
that is completely amenable to the perturbative expansion as
given in Eq. (B11):

dm.(1) < €'B; .
- —; e (m(1)A) n(2).

(B17)

We now define the nested wedge product for N generally
distinguishable factors, which can be, for example, factors
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mY)(),mY2(¢), ... ,.mU¥)(¢), appearing in the perturbative
expansion. It is defined recursively as

m{jljZ‘"jN}(t) AN() = m(jl)(t) A [m{jzmj/v}(t) An(r)]. (B18)

For the special case where the number of factors N vanishes,
ie., {ji...jn} = (¥}, we define m”(¢) A n(¢) = n(t)—with
this convention all other cases are uniquely defined through
Eq. (BI8).

Using Egs. (B11), (B17), and (B18), it is straightforward to
find the expression for arbitrary m/)(z) in the perturbative
expansion. The zeroth order j =0 term is given by the
expression,

m? @) = / dr' n(t), (B19)
0

while for all other values j > 0 we find the result,

J t
. B j\ig..d
m(])(t) — Z k_]: Z /0 dt’ m{lllz...lN}([/) An) ¢,
k=1 Sk =ik
(B20)

where the second sum over the set iy,i,, ...,i; in Eq. (B20)
satisfies the constraint that lezl ig = j — k. One can easily
check that with this constraint, only m® () for0 < k < j — 1
contribute to the right-hand side of Eq. (B20), so that this
equation gives us an explicit result for the jth order perturba-
tion term entirely in terms of lower order perturbation terms
m*</=D(¢) and n(t). Equations (B19) and (B20) reproduce
what is expected from the Magnus expansion [21], which is
not surprising since the same approximation scheme has been
used here. It can be easily shown that our perturbative result,
Egs. (B19) and (B20), readily generalizes to all Lie algebras,
provided one replaces the nested wedge products with nested
commutators (Lie brackets)—in particular the quaternion
wedge product corresponds exactly to the commutator for
su(2). For the case of quaternions [also su(2) due to the
isomorphism], we have used quaternion methods to derive
an exact differential equation Eq. (B10) in a straightforward
manner, which when solved is equivalent to summing up all
terms in the Magnus expansion. The result given in Eqs. (B19)
and (B20), along with Eq. (B11), gives us a perturbative
solution to the differential equation in powers of e—this
reproduces the Magnus expansion term by term.

Using Egs. (B19) and (B20) we find explicit expressions for
the first few terms in the perturbative expansion, given here,

t
m®() = / dn n(n).
0
1 t n
mP@) = = f dr, f dnn(t) A ),
2 Jo 0

m?(t) = ! f dt / dny / 2dl3{n(fl)/\[n(t2)/\ﬂ(l3)]
6 Jo 0 0

+n(3) A [n(2) An(ty)]}, - ete. (B21)

The form of Eq. (B10) also suggests a different way of
approximating the solution which is better than the Magnus
expansion in the sense that we include contributions from all
orders of € at each iteration (with the exception of zeroth
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order which coincides with the expression obtained from
the Magnus expansion). Because of this, we then obtain a
much better approximation which works well even in the case
where € is large. We denote the [j]th order approximation
with a superscript [n] using brackets instead of parentheses
to distinguish this from the Magnus expansion (note that we

J

€me

[j_l](t/) Gme
cot
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now include the subscript € since each term now does depend
explicitly on €). For the leading order we have

m (1) = / dr' n(t)), (B22)
0

and all higher order approximations j > 0 are given by

=11

mb/(1) = / dt’{n(t’) —~ gmif‘”o’) An(t') + (1
0

The approximate nth order expression is simply given by the
nth iterate of this procedure,

m,(r) ~ m"l(r). (B24)

This procedure is equivalent to solving the exact equation
Eq. (B10) by iteration—when it is carried out to infinite order,
it gives us the exact solution (as long as the solution obtained
this way is unique, then it is unquestionably the solution), i.e.,
we have

m(r) = lim mY(r). (B25)
J—>00

In practice we find that even for fairly large values of ¢, this
procedure converges very quickly to a unique answer, i.e.,
there is some finite order N upon which m{V(¢) is practically
indistinguishable from the exact solution. For extremely large
values of € this procedure may not converge—i.e., the iterates
may jump back and forth between two or more different
values—in which case one must modify the approximation
to obtain a unique answer. One can always check whether
this unique answer is the solution by plugging it back into
Eq. (B10).

APPENDIX C: EVALUATION OF THE PATH INTEGRAL
EXPRESSION FOR THE FIDELITY AMPLITUDE

Here we show how to evaluate the path integral expression
for the fidelity amplitude [given in Eq. (26) in the main paper].
We rewrite it here for convenience [in this appendix, unlike the
main paper, we write explicitly the normalization prefactor,
(2s 4+ 1)7!, corresponding to the dimension of the Hilbert
space],

S

=5 1Tr / D%« ;D% x |(0)) (e £(0))]

w o~ U+l O)F)+ej(r)a,(r)

el drfecy (G0, —Hey o —a (A —Ho @] (1)

where | f;,(0)) are two-component coherent states corre-
sponding to the two-mode operator &' = (&I,&;). The trace
is taken over the complete set of states |i) satisfying the
constraint (1//|%ﬁfﬁ|w) = s, fixing the quantum spin number
s. The integral measure D?a; for i = f,b is given by the
following expression:

N
20 1 2o
D’a; = nggo]ld ai(ty), (C2)

2

: (t/))ﬁlgj_l](f/) A (ﬁigj—l](t’) A n(t’))}, (B23)

(

where f, = nt/N and 7 denotes the total transit time. The
local (in time) measure d’e;(t,) is given by

dai(ty) = d*e" (1) d*aP (1), (C3)

where the superscripts (1) and (2) denote the components of
the two-component field «;, and we have

() = der(t,) do;’ (1)

2mi
_ dRea}”(t,) dIme”(1,)
T

, (C4)

where Reafj )(tn) and Imoz;j )(tn) denote the real and imaginary

parts of ozi(’ )(tn), respectively. The first and second lines of
Eq. (C4) are equivalent, and it is a matter of convenience as to
which representation we use.

To evaluate Eq. (C1), we introduce the generating func-
tional G4[J]:

T / D?a D%ty x [0t (0)) (e 1 (0)]

Xe—(Ivtb(t)I2+Ia/(())lz)+a;(f)-d/‘(f)
ot Jo ey (0 —Ho)ap—ery-(i0—Ho)-s]

xelo " a st 0] (C5)

where J and J* are two-component source fields which couple
only to the forward branch of the path integral (due to the fact
that the noise field only couples to this branch—see discussion
in main paper). We can evaluate .4, (which includes the noise
contribution) via the following expression:

A = { TdriHmL}G[J]‘
s = OXP _’6/0 510 s [T so=o
J(t)=0
(Co)

Note that G,[J] depends only on the noise-free term in the
Hamiltonian (which shows up symmetrically in both forward
and backward branches). For this reason, it is a simpler task
to calculate G,[J] first, and then use Eq. (C6) to obtain A,
as opposed to calculating A, directly. Taking the generating
functional route also holds the advantage that the physics is
more transparent.

Our first goal is to evaluate G,[J] exactly, which we show
in the following subsection. Once we have this quantity we
will use it to obtain an exact expression for the fidelity
amplitude Aj.
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1. Evaluation of the generating functional G,[J]

In what follows, we shall evaluate the path integral
expression for G[J] [defined in Eq. (C5)] exactly. We start
with a change of variables (a Keldysh rotation) defined by

b= O B0

n(t) = oy (1) — ot (1). (C7)

It is easy to check that the Jacobian associated with this change
of variables is exactly unity. The description of the path integral
in terms of these fields has a nice physical interpretation.
The symmetric combination ¥ is usually referred to as
the “classical” component in the literature (it is the only
component that survives in the classical limit, giving rise to a
unique classical trajectory corresponding to the saddle point
of G,[J]). The antisymmetric combination 5 is referred to
as the “quantum” component since it accounts for deviations
from the classical trajectory [12]. The evaluation of the path
integral in terms of this set of variables simplifies greatly as
we shall see below.

Let us rewrite the expression for G[J] in terms of this new
set of variables. After some algebra (and integration by parts
in order to move time derivatives from »’s to ¥’s) we obtain
the following expression:

QUki/WWWﬂWWmMWm%M%WP

% efordt[ir]‘~(i3,¢7H<»~¢fiJ/2)+¢'-J]
> efo’dz[(—ia,:p*—:/f‘-HC—iJ‘/Z)'in-kJ“lﬁ], (C8)
where we use the shorthand notation ¥¢ = ¥(0), no = 5(0),

and 5, = (7). The function W (¥ o,¥,70,7;) in the integrand
of Eq. (C8) is given by the expression,

1 s * 1
W A n0.0%) = eg('/’g"lﬁ*ﬂg"/’o)
(Yo, ¥5:M0,15) w1

Yo — %><'/fo + %

xTr ;o (©9)

where the states |¥( £ "—2“) are coherent states, and we recall
that the trace in Eq. (C9) is constrained to be over states for
which the spin quantum number s is fixed, i.e., the constrained
subspace contains the two-mode Fock states |n,n,) for which
ny +n, = 2s.

Before evaluating the path integral expression for G[J] in
Eq. (C8), we take a moment to write down explicitly the form
taken by the integral measures in the new set of variables, ¥
and 5. We have

N N
20 1 2 20 1; 2
Dw—gquwm,Dn_gQQdmmwmm

with the local measures d’¥(t,) and d’y(t,) taking the
expected form,

>y (t,) = YVt >y (t,),
d*n(t,) = d°nV(t,) d*n@(t,). (C11)

where as usual, the superscripts denote the components of the
fields. Importantly, the expression for the measures d>v/)(t,)
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and d’n"Y)(t,) slightly differ. Suppressing time arguments for
brevity, we have

gy = WAy 2dRey dimy D
B i - = )
D dn*l : A C12)
P = dnDdn*  dRen" dImy") (
= 4mi B 27 )

where we see that the measure for ¥ is a factor of four larger
than the measure for 5. Note that the expressions in the second
and third columns are entirely equivalent representations,
and one can simply choose whichever representation is most
convenient when performing calculations.

Going back to the expression for G[J] in Eq. (C8), we
can immediately evaluate the integrals over 39,73,7-, and 55.
The only contribution to the integrand for the fields 5o, that
survives the time-continuum limit of the path integral comes
from the term W (¥o,¥.10.1;) given in Eq. (C9), giving us
the result,

1mw¢@szmmmwmwm

(GROAT 2y ,—2Mol?
=%t les @Yol e ,

(C13)

where L(zls)(x) is an associated Laguerre polynomial, which we
express here in terms of its Rodrigues representation,

x . —k n
LOx) = e x' : n(e—xxk+n)
n! X
_ Xn: (k +n)! (—x)/ (C14)
S Dk

In the process of evaluating Eq. (C13), we made use of the
following expression giving the overlap between the two-
component coherent states | + %ﬂo) and the two-component
Fock states |n,2s — n):

1 e—3lVotinol o o)
25 — +-90) = ——— + -
<” s =nvo 2"°> 4/_n!(2s—n)!< 0 2’70)
1 2s—n
x < s 5778”) . (C15)

where the superscripts (1) and (2) on the right-hand side of
Eq. (C15) denote the components of the respective fields. The
function W(¥o,¥;) given in Eq. (C13), referred to as the
Wigner function in the context of quantum dynamics, can be
interpreted as a distribution over the fields ¥, ¥ . Note that
this distribution function, as described by W(¥o,¥y), is gen-
erally not positive definite, and in our case it shows oscillatory
behavior. As far as the integral over 5,7} is concerned, the

only contribution that survives the time-continuum limit is

given by
/dZ”T e—%“lrlz =1.

We now proceed to evaluate the integrals over the fields
n(t),n*(¢) in the bulk [i.e., for all # > 0 in the path integral
given in Eq. (C8)]. The change of variables introduced in
Eq. (C8) really simplifies things here. The integrals are readily

(C16)
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evaluated and result in a product of Dirac delta functions,

N-1
lim 1:!)[5('ﬁ(fn+1) +i8t[He(tn) - ¥ (1) + 1(2)/2])
XS (tra) = 18119 (1) - Heltn) + i3 (1)/2D) 2],

(C17)

where 8t = t/N. This result makes the evaluation of the
integrals over ¥ (¢) and ¥*(¢) (for t > 0) simple as well. The
delta functions constrain the fields ¥ (r),¥(r) (for r > 0) to
obey the following equations of motion,

. iJ
iy ZH0'¢+57
iy
i ==Y He — -,
2
where we have suppressed time arguments for brevity. Assum-
ing general initial conditions ¥ (0) = ¥( we can write down
the exact solution for all # > 0,

(C18)

V() = U1,0) - o + % f e Uty - 30,
0

o (C19)
VO =¥ U0 - 5 /0 di' F() - Ut D),
where we have
t
Ut = T exp |:—i/ HC(IU)dtH] (C20)
;

Note that in general we have ¥*(¢) # [¥(¢)]*, as one can see
from Eq. (C19), and these fields have to be treated as being
independent of one another. This also applies to the fields ¥
and Y.

Applying the results obtained in Eqgs. (C13), (C16), (C17),
and (C19) to Eq. (C8), we get the following expression for
G[JI:

Go[J] = et i di fy e WUt 130)=3 Ut 0130 / o

x W(¥o 'ﬁ)) ef[f dr (IO U0y Po+P 5 U0.0)-J(1)]
(C21)

All that remains to be done in order to obtain the final
result for G[J] is the evaluation of ordinary integrals over
the fields ¥ and ¥. This is a Gaussian integral with a
polynomial prefactor in the integrand [see Eq. (C13)], and it
can therefore be evaluated exactly. Before doing so we rewrite
the expression for W(¥o,¥ ) by making use of the following
integral representation for the associated Laguerre polynomial,

Lfb(x)zf dz _(zDfer

i (1 4 g)k+ign+l’ (€22)

where the contour runs counterclockwise and encloses the pole
at z = 0, but not the pole at z = 1. We can use the expression
in Eq. (C22) to rewrite W(¥o,¥() as follows:

1 d e*%%)l'/’ol2
W0 ¥ = f < (C23)

T 25+ 1) 2mi (14 7)2g2s
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This greatly simplifies the evaluation of the integrals over ¥
and ¥{ in Eq. (C21), and we obtain the following result:

/ P = e HEDE LoDy
2ni (25 + D1 — 7)2z%+!

It is a simple matter now to combine the expression in
Eq. (C24) with the prefactor in Eq. (C21) to obtain the
expression for G[J]. After some algebra, we finally get

(C24)

dz els Jy drdi' 0-G.G.t.1)3)
G,[J] = 75 . (C25)

2mi (25 + 1)(1 — )2z

where G.(z,t,t") (which plays a role similar to that of a Green’s
function) is given by the expression,

Gelz,t,t") = <1ZTZ + 01— t’))uc(t,t’). (C26)

The quantity ©(t —t’) denotes the Heaviside (unit step)
function, defined as

fort >t

fort <t (€27)

/ 1

Ot —-1t)= { 0

It is straightforward to evaluate the integral over z in

Eq. (C25) if we wish, but the expression for G[J] is much

more useful for doing calculations as is, and for this reason

this is the expression used in the main paper [see Eq. (29)].

The (continuous) variable z can be thought of as a conjugate

variable to the (discrete) variable s, and the right-hand side of

Eq. (C25) can be interpreted as an integral transform between
the z representation and the s representation, i.e.,

dz G.[J]
GslJl = . (C28
[J] % 2T (2S 4 1)(1 _ Z)2Z23+1 ( )
where we have
G.[J] = elo Jo drdi' F-Gezr.a)3a) (€29)

In practice, it is easier to compute quantities using the contin-
uous z representation generating functional G,[J] (where the
expression is a simple Gaussian) and take the transform back
into the s representation as a final step. In the next subsection of
this appendix, we use G[J] to calculate the fidelity amplitude
As.

2. Using G,[J] to calculate the fidelity amplitude A,

With the expression for G,[J] [see Eq. (C25)], we can
make use of Eq. (C6) to calculate A, by taking functional
derivatives of G[J]. Because G,[J] is given by Gaussian, the
right-hand side of Eq. (C6) can be rewritten in an entirely
equivalent representation by way of introducing fictitious
two-component quantum fields ¢(¢)" = (¢7(2), ¢5(1)) that are
completely described in terms of the expectation value,

@)y = (9*(1)), =0,
(@D (1))y = Gelz,1,1),

where the Green’s function G.(z,t,t’) is the same one given in
Eq. (C26), and (-), denotes a quantum expectation value over
the fields ¢(¢) with all higher order expectation values entirely
determined through the use of Wick’s theorem. With the aid

(C30)

042319-19



RAFAEL HIPOLITO AND PAUL M. GOLDBART

of Eq. (C30), it is straightforward to show that the expression
(suppressing time arguments for brevity),

—ie [y dt WH,,(I))

q

As = f 27i (2s + 1)(1 — 7)2z2s+1° (€30
is equivalent to the defining relation for A, given in Eq. (C6).
This formulation, given in terms of the dynamics of the
fictitious fields ¢, has the advantage of being physically more
intuitive.

We shall now evaluate the quantum expectation value by
making use of the following cumulant expansion:

e7e s dr 8T ?), = exp {Z X, } (C32)
where the quantities X, are defined by the relation,
1 ' 4 "
X, = —<<(—ie/ dt(b'Hn¢) >> . (C33)
m! 0 q

The double brackets {-)), on the right-hand side of Eq. (C33)
denote cumulant averages. It is a well-known fact that in a
diagrammatic expansion only connected diagrams contribute
to cumulant averages. In what follows, we shall use the
diagrammatic expansion to exactly evaluate the right-hand side
of Eq. (C32), i.e., we will perform an exact resummation of all
connected diagrams.

Given the form of Eq. (C32), we see that each diagram
contributing to X}, contains exactly m vertices and m prop-
agators. Considering this together with the fact that only
connected diagrams contribute (since we are taking cumulant
averages) places a severe restriction on the form allowed for
the diagrams: All contributing diagrams have the topology of
a single non-self-crossing closed loop. For convenience, we
assign a definite orientation to this loop by placing arrows on
the propagators (but note that different orientations are not
distinct and should not be counted as such).

The Feynman rules are easily determined, and we state
them here. In a given diagram, each vertex (with its time label
t;) corresponds to a factor H,(#;), and each propagator with
starting point #; and ending point #; (as determined from the
direction of the arrow) corresponds to the Green’s function
Gc(z,1;,t;). To obtain the value of an mth order diagram (i.e.,
one contributing to X),), start at an arbitrary vertex and write
down all of the factors corresponding to each vertex and
propagator in the order determined by the direction of the
arrows (taking care not to count the starting point twice).
Then simply integrate over all time variables, take the matrix
trace, and multiply by an overall prefactor (—i€)™ /m. That this
prefactoris (m — 1)! times larger than expected from Eq. (C33)
simply comes from the fact that for a given order m there are
(m — 1)! diagrams which differ only in their labels. Since all
labels are dummy variables, all (m — 1)! diagrams give the
same numerical contribution, hence the overall prefactor. To
obtain the entire contribution to X, it suffices to evaluate a
single representative diagram, so, i.e., in Fig. 4(c) we only
need to evaluate either the left or right diagram, but not both.

The diagrams corresponding to &, form = 1,2,3 are given
in Figs. 4(a), 4(b), and 4(c), respectively. The integer labels
displayed (i = 1,2, ... etc.) correspond the time labels 7;. We
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FIG. 4. (a) Diagram corresponding to entire contribution for
X). (b) Diagram corresponding to entire contribution to AX,. (c)
The 2! diagrams corresponding to the entire contribution for A;.
Both diagrams give the same contribution, since all variables are
internal, so in practice one only need evaluate a single representative
diagram (see discussion in text). Likewise, for a given order m, all
(m — 1)! diagrams give the exact same contribution. The expressions
corresponding to the diagrams given in (a), (b), and (c) are given in
Egs. (C34a), (C34b), and (C34c), respectively (see text for Feynman
rules). For all diagrams, the integer labels i = 1,2, ..., etc. next to
the points refer to the time labels 7;, which are all dummy variables
to be integrated over. Though we have chosen a counterclockwise
orientation for the diagrams, one is free to choose whichever

orientation one wishes (i.e., diagrams with different orientations are
the exact same diagram).

have arbitrarily chosen to use a counterclockwise orientation
when drawing the loop diagrams, though as we noted earlier
different orientations correspond the the same diagram. As
we have stated earlier, both diagrams shown in Fig. 4(c) give
the same contribution, since all labels correspond to internal
variables. As an example, we evaluate the diagrams shown in
Fig. 4, giving expressions corresponding to X, A,, and A3.
We find

(—ié)l T
. / dt Tr Ho(1)Ge(zot1,1), (C34a)
0
_i.\2 T T
x, = 1O / dr, / dts THHo(1)Ge(2,t1.12)
0 0
«Ho(1)Ge 2ot (C34b)
(—i6)3 T T T
X = / dr, / dt> / dts Tr [Ha(1)Ge(2,1.12)
3 0 0 0

X Hu(12)Gc (2,12, 13 Hn (83)Gc (2,153,111, (C34c¢)
and it is straightforward to see to how the expression
generalizes for arbitrary X,,.

Now that we know the expression for all &), , all that remains
is to evaluate the sum Y > | X,,. Let us first introduce the
shorthand notation,

1—z

(C35)
0;; = 0 —t)),
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and rewrite the expression for &, as follows:

PHYSICAL REVIEW A 93, 042319 (2016)

Xm=(_;f) / d / d - / Aty TH Mo (1)Ge (ot 2 Ha ()G (2, 10,83) -+« o) Gel ot t1)]
0 0 0

_io\n T T
=( i) / dn/ dty - --
m 0 0

X (& +0O)+0x3) (L +0Op)

= (_IE) / d[]f dt2
m 0 0 0

X (& +0O)E +03) - (& +Op)

_ (—ie) / dt / dt TH[Ho(t1) - - Ha(ta) (& + O12) - (£ + Op1),
0

m 0

where in the second line of Eq. (C36) we simply use the
definition of G.(z,t,t") [see Eq. (C26)], in the third line we
use the property U (t,t'") = U.(t,0U(0,1") = U(t,00U (¢',0)
along with the cyclic property of traces TrAB---YZ =
TrZAB---Y, and in the fourth line the quantity H,(¢) is
defined as

Hou(1) = U (2,00 H,, ()U(2,0).

Note that H,, (¢) is simply the noise Hamiltonian in the rotating
frame, or equivalently, in the interaction picture [with respect
to the control Hamiltonian H.(z,0)].

At first sight, it may seem that the sum ), A, cannot be
explicitly carried out since the expression for A, as given
in Eq. (C36), does not factorize (the factors of ®;; make it
impossible to factorize the time integrals). This situation can
be remedied by rearranging ) |, &, into a power series in ¢,

Z‘X — Zymé.m.
m=1 m=1

Unlike A&, the coefficients ), do factorize, making this
rearrangement advantageous. They take the form,

(C37)

(C38)

Am
ym =Tr >
m
where A is a 2 x 2 matrix to be determined below. With the
expression in Eq. (C39), we can evaluate the sum in Eq. (C38)
and obtain the result,

(C39)

Z X, = Tr log(l — cA)"", (C40)

m=1

where 1 is the 2 x 2 unit matrix.

We will now show that Eq. (C39) is true, finding the matrix
A in the process. We note that an infinite set of &, contribute
to Yy, since all X, with ¢ > m contain terms proportional to
¢'™. Starting with the first term, ) (i.e., the term in the sum
>, X, proportional to ¢°), we find that it exactly vanishes.
This is due to the fact that the contribution coming from each
X, 1s proportional to ® ;0,3 - -- 0,1, and in order for this
to be nonvanishing we need | > tp -+ > t,,_| > t,, > ], an
impossibility.

Next, we seek the expression for ) by collecting all terms
linear in ¢ from Zm X, Itis easy to see from Eq. (C36) that a
given X, contributes exactly m terms, furthermore all of these

f ity TEH (0 U (1102 Ho 02U (12,15 - - - FHo (oot s11)]
0

f r diy Tr[UL (11, 0)H (0)Ue11,0)) - - - UL, OYH (1)U (10, 0))]

(C36)

(

terms give the exact same contribution since they only differ in
the labeling of internal variables. It then suffices to take a single
representative and multiply the result my m. Let us take as
the representative the term proportional to ® 1,23 - - - Oy _1 ;.
The effect of this factor is to simply cut off the limits in the time
integrals so that #; > ;- - - > 1, and we are left with a time
ordered sequence of factors H,, (¢;)H,,(t2) - - - H,(t,,) which can
be easily factorized via the help of the time ordering operator
T. The (linear in ¢) contribution from &, is given explicitly
by

T n tm—1 ~
Xy — {(—ie)mTr/ dn/ dtz---/ dty, Ha(t1)
0 0 0
X ﬁn(h) e ﬁn(tm)
1 t ~ m
= ;Tr—T[—ie/ dt Hl(t)] .
m! 0

Collecting all terms in ), A, proportional to ¢, we obtain

Vi =TrT{Z %[—ie/otdt ﬁn(t)] }

(C41)

m=1""""
_ Tr[Te—ie Jo dr Hio) _ 1]

=TrA, (C42)
giving us the sought for expression for the matrix A.

Now we proceed to find )%, showing that the general result
given in Eq. (C39) holds. Looking at Eq. (C36), we see that all
X, for m > 2 contain a term proportional to ¢ and therefore
contribute to )». In order to more easily understand the pattern
that emerges, let us consider the contributions from the first
few X,,. The lowest order term to contribute to ), is X>, from
which we get the expression,

,(—i€)? ’ o~
PO St / dn / dts Tt Fla(12)
2 0 0
S I Y S L
= 2Tr|:]!T( ze/o dt Hn(t)>
x lT(—ief dt ﬁn(t)ﬂ,
1! o

(C43)
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where in the second line of Eq. (C43) we have just rewritten the expression in a way that suggests what the pattern will be for

higher order terms.

In order to more clearly see the pattern that emerges, let us work out the ¢ order contribution coming from X3. We have

Xy — ¢

) (—ie)?
3

Tr|:'/ dt / dlz/ dts Hoy(t)YHu () Ha(53)(© 12 4+ O3 + ®31)]
0 0 0

_ {2(—ie)3Tr|: / “an / “dn / " dty Tt YLt (1) @]2}

= ¢X(—ie)’Tr (/ dt1/ dtr H,(t))H, (tz)) </Tdt7:zn(t))i|
0

|
- Srlar(e

In the second line we have used the fact that the terms propor-
tional to ®,3 and ®3; are identical to the one proportional to
©12. This can be seen by simply relabeling variables along
with taking cyclic permutations of H,(#;), since the trace
operation remains invariant under this. In the third line, we
simply apply ®i, to cut off the integral over f,, and note that
the expression factorizes as the parentheses suggest. In the
third line we rewrite the expression as a sum of two terms, via
the use of time-ordering operators 7, and by once again taking
advantage of the invariance of the trace operation under cyclic
permutations of matrices. In the final line, we rewrite the sum
in a way that is suggestive of how higher order X}, contribute
to V.

As one can easily guess from the expression in Eq. (C44)
(we do not show the proof explicitly here, though it is easy to
prove by induction) the contribution to ), coming from A&,
for general m is given by the expression,

m—1 1
1 T ~ J
Xy = T Zﬁ7<—ie/0 dtH,,(t))

j=1

1 ) T o m—j
X —(m — j)!T<—l€/0 dt Hn(t)>

We are now ready to write down the entire contribution to )%,
coming from all &},, where we find

00 m—1 j
1 1 ) T - J
= EmzzzTr jgzl ﬁT(—lE[) dt Hn(t))

1 ) T o m—j
X mT<_l€/(; dt Hn(t)>

AZ
=Tr—,
2

(C45)

1 o
= Tr[E(Te_’éfO dtHa () _ 11)2:| (C46)

where we see that in the last line of Eq. (C46), the matrix A is
the same matrix appearing in Eq. (C42).

2 T T T 2
ai Ho(t) Lr(zie [ ar (1) v Xr(cie [ ar Ho(t) Lr(ie [ a (1)
1! 0 1! 0 2! 0

_ rZiT<—ze/rdtﬁ (z))A ! ( ie/rdtﬁ (t)>2_j
= o )@= o )

(C44)

(

Continuing with the same procedure used above to de-
termine Y and )%, it is simple to show (though we do not
explicitly show the proof here) that for general order m we get
the expression,

m

A
y m = Tr P (C47)
m

reproducing the expression given in Eq. (C39), which is
what we intended to show. Using this expression, along with
Egs. (C38) and (C40), we obtain the exact result for the
quantum average in Eq. (C32). We have

(e~ Jidr ¢an¢)q = exp {Z ymé'm}

m=1
= exp{Tr log(1 — cA)Y
= exp{log Det(1 — ;A)~!}
1

~ Det(l—¢A) (C48)

With this expression, all that remains is to evaluate the integral
over z in Eq. (C31) in order to obtain the expression for A;.
Before doing so, let us first define the matrix §

s=1+A

— Te—ié for dtﬁ,,(t)’ (C49)

in terms of which the analysis to follow simplifies. Recalling
that ¢ = z/(1 — z), we see that

1 o (1—zp
Det(l1 —¢A)  Det(l — z8)’

(C50)

where we used the fact that for any 2 x 2 matrix A and
c-number ¢ we have Det(cA) = c?Det A. This is a very
convenient representation since the factor of (1 —z)? in
Eq. (C50) cancels a similar factor appearing in Eq. (C31)
which simplifies the evaluation of the integral over z. It also
turns out to be very convenient to reexpress the determinant
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on the right-hand side of Eq. (C50) as
[Det(l — z8)]"' = [1 — z Tr§ + z> Det§] "
=[1-zTrs + 77",

where the first line is an exact relation for any 2 x 2 matrix §,
and in the second line we used the fact that § is a SU (2) matrix
[see Eq. (C49)] with unit determinant.

As a final step before evaluating the integral over z in
Eq. (C31) to find A, we take advantage of the fact that the
right-hand side of Eq. (C51) takes the form of a generating
function for the Chebyshev polynomials of the second kind
[24], which play an important role in the development of
spherical harmonics in four dimensions. We have

_— Vil = Tré
1—zTr8+Z JXZ: ( r)

where V;(x) denotes the jth order Chebyshev polynomial
of the second kind. Equation (C52) is valid as long as the
conditions |z| < 1 and |%Tr8| < 1 apply, which is always the
case for our problem. Using Egs. (C50), (C51), and (C52) we
find a very useful representation for Eq. (C48):

L o0 1
—ie [, dt¢"H,p\ __ 2 A =
(e Jo dt )q =(1-2) jEzO V_,(2 Tr8) 7/

We are now ready to evaluate Eq. (C31) to find A,. Using
Eq. (C53), we find

(C51)

(C52)

(C53)

<efiejg dt ¢*H,,¢>
q

A _7§ dz
P 2mi 2s + 1)(1 — 2)2z> !

Tr(S)

2s+127§2m Tt

Loy (Lrs
— V| £ IT s
25+1 =\2

(C54)
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where in going from the second to the third line, we use
Cauchy’s residue theorem. In order to arrive at the expression
for Ay shown in Eq. (26) in the main paper, we make use of
the following relation:

V(cos 0) = St + D6 (C55)
sin 6
We then have
A= 1 sin[(2s 4+ D)cos™! (3 Tré)]
T 25+ 1 sin[cos*1 (% Tr8)]
1< i cosI(L
— T Z e 2ji cos (2Tr8)’ (C56)

j==s

where the expression given in the second line turns out to be
more convenient for calculations. By carrying out the sum in
the second line, one arrives at the expression given in the right-
hand side of the first line, showing that the two expressions are
entirely equivalent. Taking the simplest case, s = 1/2, we get
the expression,

AI/Z = %[eicos’](%’[‘r(g) + e—icosfl(% T]'(S)]
_ 1
=3 Tré

== %TrT€7i€ f()r dtﬁn(t)’ (C57)

where in the third line we made use of Eq. (C49). Making
use of Eq. (C57), we finally arrive at the expression given in
Eq. (34) in the main paper:

I i cos!
As — —2ji cos Al/z‘
25+ 1 Z ¢

(C58)

This relation is remarkable in the fact that it essentially shows
us we can understand the behavior of the spin s system entirely
in terms of quantities associated with the spin 1/2 system.
The dynamics of a spin s system is entirely contained in the
dynamics of a spin-half system.
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