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Randomly cross-linked macromolecules undergo a liquid to amorphous-solid phase transition at a critical
cross-link concentration. This transition has two main signatures: the random localization of a fraction of the
monomers and the emergence of a nonzero static shear modulus. In this paper, a semimicroscopic statistical
mechanical theory of the elastic properties of the amorphous solid state is developed. This theory takes into
account both quenched disorder and thermal fluctuations, and allows for the direct computation of the free
energy change of the sample due to a given macroscopic shear strain. This leads to an unambiguous determi-
nation of the static shear modulus. At the level of mean field theory, it is found~i! that the shear modulus grows
continuously from zero at the transition, and does so with the classical exponent, i.e., with the third power of
the excess cross-link density and, quite surprisingly,~ii ! that near the transition the external stresses do not
spoil the spherical symmetry of the localization clouds of the particles.

PACS number~s!: 82.70.Gg, 61.43.2j, 64.60.Ak
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I. INTRODUCTION

The vulcanization transition is the equilibrium phase tra
sition from a liquid state to a random solid state~known as
the amorphous-solid state! that occurs when a sufficient den
sity of randomly located, permanent cross-linking constra
is applied to the constituents of a liquid. The liquid may be
melt of macromolecules of various types~long or short, flex-
ible or stiff! or even of a low molecular weight species, a
our results will—mutatis mutandis—apply to this broad va-
riety of systems. Corrections due to long-wavelength fluct
tions of the order parameter, omitted in the mean field the
that we shall be developing do, however, tend to be imp
tant over a narrower range of cross-link densities for lon
macromolecules and stronger concentrations of them@1–3#.
For this reason, and for the sake of concreteness, we
focus on cases involving long, linear, flexible macrom
ecules. There are two main equilibrium signatures of the v
canization transition:~i! the structural signature that a no
zero fraction of the monomers~i.e., segments of the
macromolecules! become localized around random mean p
sitions and have random localization lengths; and~ii ! the
response signature that the system, as a whole, acqui
nonzero static shear modulus. The structural signature
been discussed previously; the purpose of this paper i
present a detailed analysis of the latter signature by deve
ing a statistical–mechanical theory of the emergent ela
PRE 621063-651X/2000/62~6!/8159~16!/$15.00
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properties of the amorphous solid state in the vicinity of t
vulcanization transition. A core feature of this theory, a br
account of which was given in Ref.@4#, is that it incorporates
both annealed~i.e., thermally equilibrating! and quenched
random~i.e., cross-link specifying! variables. Its main con-
clusions are~a! that the amorphous state emerging at t
vulcanization transition, which is solid in the sense of t
structural signature~i!, is indeed solid in the sense of th
response signature~ii !; ~b! that the elastic shear modulu
vanishes continuously as the transition is approached,
does so with the third power of the excess crosslink den
~i.e., the amount by which the cross-link density exceeds
critical value!; and ~c! that the shearing of the container a
sociated with elastic deformations leads neither to a de
ministic nor a stochastic shearing of the probability clou
associated with the thermal fluctuations of localized partic
about their mean positions.

There has been considerable attention paid, over
years, to the elastic properties of vulcanized matter and
lated chemically bonded systems, especially those near
amorphous solidification transition. Amongst the most n
table approaches are the classical ones@5#, in which it was
argued that near the transition the elastic entropy in the s
phase~and consequently the static shear modulusE) grow as
the third power of the excess cross-link densitye, i.e., E
;e t with t53. More recently, it was proposed that the amo
phous solidification transition of polymer systems be iden
8159 ©2000 The American Physical Society
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fied with a percolation transition@2,6#. This proposal led to
the identification of the exponentt with the critical exponent
m for percolation of conductivity~with m'2.0 in three spa-
tial dimensions!. In yet more recent work it was observe
that the elasticity percolation exponent for a random netw
is substantially higher thanm when the forces are central@7#.
Part of the ambiguity in the determination of the shear mo
lus of the randomly cross-linked system from percolat
approaches stems from the fact that these approaches d
naturally lead to the computation of a free energy for
system.

Approaches of a more microscopic orientation have a
been made to the elastic properties of vulcanized matte
which macromolecular degrees of freedom feature explici
Among these are the ‘‘phantom network’’@8# and ‘‘affine
network’’ @9# approaches, as well as the comprehensive
cussion of rubber elasticity by Deam and Edwards@10#, and
others@11#. These approaches focus on the well cross-link
regime rather than the lightly cross-linked regime near
vulcanization transition@12#.

Experimentally, the exponentt has been addressed fo
several systems~although mostly for gelation rather tha
vulcanization!: the results vary fromt'2 @13# to t*3 @14#.
This wide discrepancy remains unresolved.

The classical@15,16,5# and percolation@2,6# approaches
to the physics of vulcanized matter are certainly stimulati
However, it must be recognized that neither explicitly i
cludes both crucial ingredients:thermal fluctuationsand
quenched disorder. In addition, as was mentioned abov
contradictory results have been obtained in the determina
of the shear modulus of random amorphous solids from p
colative formulations, due in part to the lack of a natu
definition of an elastic free energy for the system. In t
approach that we shall present, however, the free energ
the system emerges immediately as a physical quantity,
the value of the shear modulus is determined unambiguo
by the change of the free energy due to deformations of
sample. Over the past few years, an approach to the vu
nization transition has been developed@17–20# that explic-
itly incorporates both thermal fluctuations and quenched
order in the context of a semimicroscopic model for flexib
randomly cross-linked macromolecules. This approach
very much inspired by the work of Edwards and collabo
tors @10,21#, as well as by ideas from the field of sp
glasses. Emerging from this more recent approach has be
detailed picture of thestructureof the amorphous solid stat
near to the vulcanization transition, including, in particul
an explicit form for the distribution of localization length
In this paper, we present a detailed exposition of the ap
cation of this approach to the second signature of the vu
nization transition, namely the emergence of staticresponse
to shear deformations. To our knowledge, this is the o
existing computation of the static elastic properties of r
domly cross-linked macromolecular systems near the vu
nization transition that starts from first principles and there
includes both the effects of quenched disorder and ther
fluctuations.

The outline of the present paper is as follows. This int
duction is followed by two long sections. In Sec. II w
present the model that we use to describe systems of
domly cross-linked macromolecules, and review prior res
k
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obtained from this model. In Sec. III we describe and imp
ment the changes necessary to accommodate strained
tems, construct the appropriate free energy, determine
resulting order parameter, and compute the elastic sh
modulus. Finally, in Sec. IV, we give a short summary of o
results.

II. MODEL

In this section we present the model that we use to a
lyze systems of randomly cross-linked macromolecules,
briefly summarize some of the results about the amorph
solidification transition in those systems that have been
tained previously within the framework of the same mod
@17–20#. We emphasize here those aspects of the model
the results that are modified when the system is deform
and refer the reader interested in further details to those
pers~especially Ref.@20#, which gives a detailed account o
the model!.

A. Description of the system: macromolecules; Edwards
Hamiltonian; random permanent cross links

We study a system ofN macromolecules of arclengthL
and persistence lengthl moving in ad-dimensional hyper-
cubic volumeV. The thermal degrees of freedom are t
positions of the monomersci(s), where the index i
51, . . . ,N labels the macromolecules and the arclength
<s<1 labels the monomers on a given macromolecule.@For
convenience, we measure arclengths in units of the tota
clengthL, and spatial positions in units ofALl /d, i.e., the
root-mean-square~rms! end-to-end distance of a free macr
molecule divided byAd.#

We model the system prior to cross linking by using t
Edwards Hamiltonian@22#,

H5
1

2 (
j 51

N E
0

1

dsUdcj~s!

ds U2

1
l2

2 (
i ,i 851

N E
0

1

dsE
0

1

ds8d„ci~s!2ci 8~s8!…, ~2.1!

wherel2(.0) characterizes the effect of the~repulsive! ex-
cluded-volume interaction between monomers andd(c) is
the d-dimensional Dirac delta function.

We suppose that permanent cross links are introduced
tween a random numberM of randomly selected pairs o
monomers: monomerse on chaini e is cross linked to mono-
mer se8 on chain i e8 ~with e51, . . . ,M ). These constraints
which enforce certain pairs of monomers to occupy comm
spatial locations, do not break translational symmetry, a
the variables that specify the constraints,x
[$ i e ,se ; i e8 ,se8%e51

M , play the role of quenched random var
ables.

For a particular realization of the disorder@23#, the parti-
tion function reads

Z~x![
Z̄~x!

s~x!
. ~2.2!

Here,Z̄(x) is a naı¨vely computed sum of the thermodynam
weights for allowed macromolecular configurations, and
defined via
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Z̄~x![E Dce2H)
e51

M

d„ci e
~se!2ci

e8
~se8!…, ~2.3!

where*Dc indicates functional integration over all configu
rations of all macromolecules. The permutation symme
factor s(x) in Eq. ~2.2! depends on the realization of th
disorder and compensates for the overcounting of config
tions that only differ by permutations of the labels of ma
romolecules~Ref. @20#, Secs. 2.4 and 2.6!. This symmetry
factor plays a role in ensuring that the free energy of
system has the proper extensive scaling~for example, in the
simplest example of all molecules being identical, one
the well-known 1/N! prefactor to the partition function
without which one would have the Gibbs paradox!. How-
ever, the symmetry factordoes not changewhen the system
is deformed after cross linking, and is thusirrelevant in the
determination of elastic properties.

It should be pointed out that in the present approach
macromolecules are allowed to pass through one ano
and, therefore, the interlocking of loops is not explicitly co
sidered@23#. There are reasons to believe that this is a go
approximation. First, the transition regime, of interest he
is characterized by a rather low cross-link density—of or
one cross link per macromolecule—so most of the mac
molecules appear in ‘‘treelike’’ structures and therefo
loops might reasonably be expected to have little impa
Second, under coarse graining the distinction between h
nomic and anholonomic constraints tends to fade, with kn
and cross links having rather similar effects. Third, a co
parison of the results for the gel fraction and the distribut
of localization lengths obtained from the present appro
with those obtained in computer simulations that do inclu
the interlocking of loops suggests that this interlocking eff
is indeed negligible near the liquid to amorphous-solid tr
sition @24–26#.

B. Probability distribution of the quenched disorder

To model the distribution of the cross-link locations in
realistic vulcanization process, we make the following phy
cal assumption~due to Deam and Edwards@10#!: a ‘‘snap-
shot’’ of the semimicroscopic state of the uncross-linked s
tem is taken, and, if a pair of monomers happen to be c
to each other, there is a probability, determined by a con
parameterm2, of becoming permanently attached by a cro
link. The mean number of cross links per macromolec
@M #/N is a smooth, monotonically increasing function
m2. Here and subsequently, square brackets@•••# denote
averages over the cross-link distribution, i.e., disorder av
aging. The replica technique is used to perform the disor
averages, with the peculiarity that the Deam–Edwards
sumption leads to the presence ofn11 replicas a
50, . . . ,n , with n→0. The additional replicaa50 repre-
sents the degrees of freedom of the original system be
cross linking, or, equivalently, encodes the consequence
the cross-link distribution. Consequently, any external str
applied to the systemafter the permanent constraints hav
been createdwill affect replicasa51, . . . ,n, but not replica
a50 @10#.
y
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C. Order parameter for amorphous solidification

In this system there is a phase transition between a liq
phase at low cross-link densities (m2,1) and an amorphous
solid phase at high cross-link densities (m2.1). Since the
disorder-averaged particle density is uniform in both state
cannot be used as an order parameter to detect the trans
The appropriate order parameter~inspired in the Edwards–
Anderson@27# order parameter for spin glass systems!, is the
following @17#:

Vk1, . . . ,kg[F 1

N (
j 51

N E
0

1

dŝ eik1
•cj (s)&x•••^eikg

•cj (s)&xG .

~2.4!

Here, g is a positive integer, and$k1, . . . ,kg% are anyg
nonzerod-dimensional wave vectors. This order paramete
zero in the liquid phase and, for wave vectors chosen so
k11•••1kg50, it is nonzero in the amorphous solid phas
The order parameterVk1, . . . ,kg is, in principle, experimen-
tally accessible through scattering experiments: e.g., the
coherent contribution to the elastic neutron scattering cr
section is proportional toVk,Àk @20,28#. Other experimental
techniques that can be used to probe the order paramete
pulsed field gradient nuclear magnetic resonance~NMR!
@29# and dynamic light scattering@30#.

For the sake of computational simplicity, we adopt pe
odic boundary conditions on the coordinates to describe
microscopic configurations of our system. Consequently,
order parameter is only nonzero forkaPr u,a51, . . . ,g,
wherer u denotes the reciprocal lattice ind dimensions asso
ciated with the periodicity in real space arising from t
boundary conditions. Here, the superscriptu stands for ‘‘un-
strained system.’’

In the replica formalism, the definition of the order p
rameter traduces into the following form:

V k̂[K 1

N (
i 51

N

exp~ i k̂• ĉi !L
n11

P

. ~2.5!

Here, hatted vectors denote replicated collections of vect
viz., v̂[$v0,v1, . . . ,vn%, their scalar product beingv̂•ŵ
[(a50

n va
•wa, and ^•••&n11

P denotes an average for an e
fective pure~i.e., disorder free! system ofn11 coupled rep-
licas of the original system. We use the termsone-replica
sectorandhigher-replica sectorto refer to replicated vectors
with, respectively, exactly one and more than one replicaa
for which the corresponding vectorka is nonzero. The setRu

of allowed replicated wave vectorsk̂ is obtained by taking all
combinations of (n11) allowed d-dimensional wave vec-
tors. In the next section, when we discuss deformations
the system, these deformations will directly change
boundary conditions in real space and, consequently, the
of allowed wave vectors.

The presence in the replicated order parameter of prod
between quantities probing the replicaa50 and quantities
probing the replicasa51, . . . ,n makes it a useful tool to
detect correlations between the state of the systembefore
cross linking~or, equivalently, the distribution of cross-lin
locations! and the state of the systemafter cross linking~and
possibly deformation!.
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D. Field theory

The fundamental quantity to be computed in the repl
approach is the disorder averaged replicated partition fu
tion @ Z̄n#. Starting from the microscopic Edwards Ham
tonian of Eq.~2.1! and the Deam–Edwards disorder dist
bution @10#, and after performing a Hubbard–Stratonovi
transformation that eliminates microscopic monomer po
tion variables in favor of field variablesV k̂ @31#, the follow-
ing expression is obtained:

@ Z̄n#5NE DV exp$2n dNFn~$V k̂%!%. ~2.6!

HereFn($V k̂%) is a replicated free energy functional and t
symbol *DV denotes integration over all possible config
rations for the fieldV k̂ , where the independent set of var
ables is the set of all complex-valuedV k̂ ~for k̂ in the half-
space determined by the condition thatk̂•n̂ be positive for a
fixed unit vectorn̂). Outside of this half-space,V k̂ is defined
by the relationV2 k̂5V k̂

* . N is a normalization constant tha
will be ignored henceforth, as it does not affect the value
the order parameter@see Eq.~2.10!# or the dependence of th
free energy on any shear deformations of the container~see
Sec. III C!. As for the free energy functionalFn($V k̂%), it is
given by

n dFn~$V k̂%!5l̃n
2 N

V
(

p̂

;
† uV p̂u21

m2

Vn
(

k̂

—
† uV k̂u2

2 lnK expS i l̃n
2 2N

V
(

p̂

;
†

ReV p̂r p̂*

1
2m2

Vn
(

k̂

—
†

ReV k̂r k̂* D L
n11

W

, ~2.7!

where the symbol(̄denotes a sum over replicated wave ve

tors in the higher replica sector, the symbol(̃ denotes a sum
over replicated wave vectors in the one replica sector,
the superscript † restricts a given sum to replicated w
vectors satisfying the conditionk̂•n̂.0 for a fixed unit vec-
tor n̂. The parameterl̃n

2[l22V12nm2/N gives the strength
of the excluded volume interaction between the monom
after renormalization due to the effects of the crosslinki
The one-macromolecule Fourier-transformed densityr k̂ is
defined via

r k̂[E
0

1

ds eik̂• ĉ(s) ~2.8!

for a macromolecular configurationĉ(s), and the replicated
Wiener average is defined by

^O&n11
W [

E Dĉ O expS 2
1

2E0

1

dsUdĉ~s!

ds
U2D

E Dĉ expS 2
1

2E0

1

dsUdĉ~s!

ds
U2D . ~2.9!

Analogously, the order parameter can be obtained as@31#
a
c-

i-

f

-

d
e

rs
.

Vk1, . . . ,kg5 lim
n→0

E DV V l̂ exp$2n dNFn~$V k̂%!%

E DV exp$2n dNFn~$V k̂%!%

,

~2.10!

where, once again, we choosel̂ so that la5ka for a
51, . . . ,g and la50 for a50 anda5g11, . . . ,n.

E. Stationary-point approximation

The simplest available method to evaluate the free ene
and the order parameter is the stationary-point approxi
tion, which also provides a starting point for possible im
provement, for example, by way of the loop expansion@3#.
In the stationary-point approximation@1#, we have

f̄ 5d lim
n→0

min
$V k̂%

Fn~$V k̂%!. ~2.11!

The valueV̄ l̂ of the fieldV l̂ that provides the minimum also
determines the order parameter according to

Vk1, . . . ,kg5 lim
n→0

V̄ l̂ . ~2.12!

Proposing a general solution:As has been discussed i
Refs. @19,20#, the stationary-point equation for the free
energy functional near the transition is exactly solved by
following hypothesis:

V l̂ 5~12q!d l̂ ,0̂1qd l̃ ,0W
u~ l̂ !, ~2.13a!

Wu~ l̂ ![E
0

`

dt p~t!e2 l̂ 2/2t, ~2.13b!

with

l̃[ (
a50

n

la. ~2.14!

The physical motivation for this hypothesis comes from
picture in which a fractionq ~the ‘‘gel fraction’’! of the
monomers are localized around random mean positionsbj (s)
about which they execute harmonic thermal fluctuatio
characterized by random localization lengthsj j (s). In terms
of the Fourier-transformed particle density for an individu
monomer, this picture translates into the expression

^exp„ik•cj~s!…&x5exp„ik•bj~s!…exp„2j j~s!2k2/2….
~2.15!

The mean positions and localization lengths are assume
be distributed independently, with a homogeneous distri
tion over the sample for the mean positions, and a statist
distribution 2j23p(j22) for the localization lengths. By
combining the contributions from all monomers in the sy
tem, we see that the proposed statistical distributions g
rise to an order parameter of the form
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Vk1, . . . ,kg5~12q!dk1,0•••dkg,01qE db

V
ei (k11•••1kg)•b

3E
0

`

d~j22!p~j22!e2j2
„(k1)21•••1(kg)2

…/2

~2.16a!
5~12q!dk1,0•••dkg,01qdk11•••1kg,0

3E
0

`

dt p~t!e2„(k1)21•••1(kg)2
…/2t. ~2.16b!

The homogeneous distribution of the mean positions of
localized particles gives rise, in Eq.~2.16a!, to an integral
over b, which represents the delta function that appears
plicitly in the second term of the right-hand side~RHS! of
Eq. ~2.16b!. In the second line we have also identified t
variablet51/j2. By taking the replica limit in the manner o
Eq. ~2.12!, the order parameter hypothesis@of Eqs. ~2.13a!
and ~2.13b!# reduces to Eq.~2.16b!.

From our motivation of the order parameter hypothesis
is evident that, in Eqs.~2.16a!, ~2.16b!, and~2.13a!, delocal-
ized and localized particles are, respectively, represente
the first and second terms on the RHS. The functionWu( k̂),
which we refer to as thecontinuous partof the order param-
eter, encodes information about thermal fluctuations~the su-
perscriptu standing for ‘‘unstrained system’’!.

The hypothesis of Eqs.~2.13a! and ~2.13b! for the order
parameter only allows for a liquid phase~for q50) and for
an amorphous solid phase~for q.0). It is useful to notice
here that the order parameter is zero in the one replica se
independently of the values ofq and p(t). This is to be
expected, since the disorder averaged particle density is
tially uniform in both the liquid and amorphous solid phas

F. Behavior near the amorphous solidification transition

For the regime close to the transition which occurs
m251, it is convenient to define a variablee[3(m221)
that measures the distance to the transition. Fore,0 the
system is in the liquid phase, and fore.0 the system is in
the amorphous solid phase.

1. Free-energy functional

Close to the transition the order parameter is domina
by long localization lengths. This is to be expected on phy
cal grounds, because the system is ‘‘barely solid,’’ allows
monomers to thermally fluctuate over long distances; an
has also been shown directly by computingp(t) @19,20#.
Here we take this as an assumption, and later show tha
solution obtained for the order parameter is consistent w
this assumption@32#.

As that saddle point value of the order parameter is z
for wave vectors lying in the one replica sector, any term
the expansion ofFn($V k̂%) that contains it as a factor wil
automatically vanish. We therefore ignore all such ter
henceforth.

By expanding Eq.~2.7! in powers of the order paramete
and the wave vectors, assuming that the order paramet
zero in the one replica sector~and, in order to simplify later
algebra, rescalingF by an overall factor of 6), we obtain fo
the regime near the transition a free energy of the form:
e

x-

it

by

or,

a-
.

t

d
i-
e
it

he
h

o
n

s

is

n dFn~$V k̂%!5 (
k̂PRu

—

~2e1 1
2 uk̂u2!uV k̂u2

2 (
k̂1k̂2k̂3PRu

—

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂ .

~2.17!

This form for Fn($V k̂%) can be obtained either from
semimicroscopic model, as sketched here, or via an a
ment involving symmetries and the continuity of the tran
tion in the context of a Landau theory. The same free-ene
functional actually describes a universality class of physi
systems that display liquid–amorphous-solid transitio
similar to the one shown by vulcanized systems@26#.

2. Stationary-point approximation

We now obtain the stationary-point approximation by d
manding that variations ofFn($V k̂%) with respect to the or-
der parameter should be zero. This results in the stationa
equation

052~2e1 1
2 uk̂u2!V k̂23 (

k̂1k̂2PRu

—

V k̂1
V k̂2

d k̂11 k̂2 ,k̂ .

~2.18!

The stationary-point equation Eq.~2.18! is satisfied~in the
limit n→0) by the hypothesis Eqs.~2.13a! and~2.13b!, pro-
vided that

05d k̃,0H 2~3q22eq1qk̂2/2!E
0

`

dt p~t!e2 k̂2/2t

23q2E
0

`

dt1 p~t1!E
0

`

dt2 p~t2!e2 k̂2/2(t11t2)J .

~2.19!

3. Gel fraction

By taking the limit k̂2→0, the above equation reduces
a condition for the gel fractionq,

0522qe13q2. ~2.20!

For negative or zeroe, corresponding to a cross-link densi
less than or equal to its critical value, the only physical s
lution ~i.e., with 0<q<1) is q50, corresponding to the
liquid state. For positivee, corresponding to a cross-lin
density in excess of the critical value, there are two so
tions. One, unstable, is the continuation of the liquid st
q50; the other, stable@33#, corresponds to a nonzero g
fraction, i.e., to the amorphous solid state,

q5 2
3 e. ~2.21!

As mentioned above, the gel fraction~and consequently the
order parameter! change continuously at the transitio
which means that ate50 there is a continuous phase tran
tion between the liquid and the amorphous-solid state. Mo
over, the linear dependence of the gel fraction withe implies
a similar linear dependence with the excess of the cross-
density@M #/N above the critical valueM c /N at the transi-
tion: q'2e/3;(@M #/M c21)5(@M #/M c21)b, with b51,
i.e., we recover the classical exponent for the gel fraction
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4. Distribution of localization lengths

In the amorphous solid state, by assuming that Eq.~2.20!
is satisfied, Eq.~2.19! reduces to a nonlinear integro
differential equation involving only the distribution of~in-
verse square! localization lengthsp(t):

t2

2

dp

dt
5S e

2
2t D p~t!2

e

2E0

t

dt1 p~t1!p~t2t1!.

~2.22!

The form of this equation immediately suggests that, to
present level of approximation, alle dependence can b
eliminated by the scalings@34#:

p~t!5~2/e!p~u!, t5~e/2!u. ~2.23!

Thus, the universal scaling functionp(u) satisfies the pa-
rameter free equation

u2

2

dp

du
5~12u!p~u!2E

0

u

du8p~u8!p~u2u8!,

~2.24!
together with the normalization condition

15E
0

`

du p~u!. ~2.25!

This normalization condition directly follows from the fac
that the order parameter of Eq.~2.4! has to be unity at the
origin @19,20#, and is consistent with the physical interpret
tion of p(t) as a probability distribution.

The scaling functionp(u) determines the behavior o
both the distribution of localization lengths and the ord
parameter near the transition. It has a peak atu.1 of width
of order unity, and decays rapidly both asu→0 and
u→`. The asymptotic forms of the decays are:p(u)
;au22 exp(22/u) ~for u!1) and p(u);3(bu23/5)exp
(2bu) ~for u@1). These forms are obtained analytica
from Eq. ~2.24!; the coefficientsa'4.554 andb'1.678 can
be extracted from the complete numerical solution of E
~2.24! @19#.

Due to the fact thatp(u) has a well-defined, unique pea
that concentrates most of the weight, it makes sense to de
a typical localization lengthj typ , and from Eq.~2.23! we see
that it scales asj typ;e21/2. In particular, it diverges at the
transition, as anticipated above. It is interesting to notice
this typical length scales with the same exponent as the
obtained in the classical theory for the correlation leng
However, j typ is a quantity that describes the localize
monomers, whereas the correlation length of the class
theory describes the delocalized monomers.

5. Order parameter

The order parameter also has a scaling form near the t
sition, which follows directly from its parametrization i
terms ofq andp(t), Eqs.~2.13a! and ~2.13b!, and the scal-
ing form for p(t), Eq. ~2.23!:

V k̂5~122e/3!d k̂,0̂1~2e/3!d k̃,0v~A2k̂2/e!,
~2.26a!
e

-

r

.

ne

at
ne
.

al

n-

v~k!5E
0

`

du p~u!e2k2/2u. ~2.26b!

Hence, we see that the order parameter is also describe
terms of a scaling function, in this casev(k). As
for p(u), the asymptotic forms ofv(k) can be obtained
analytically: v(k);11ck21dk4 ~for k!1) and v(k)
;(9pk3/A8b)1/2exp(2A2bk2)$11(27/40A2bk2)% ~for k
@1). A numerical calculation yieldsv(k) for all k, and de-
termines the coefficientsc'20.4409 andd'0.1316 ~see
Ref. @19#!.

III. RESPONSE TO SHEAR STRAIN

In this section we discuss the effects of an externally
plied strain, both on the semimicroscopic macromolecu
structure of the system and on the value of its free energy
do this, we repeat the preceding followed in the previo
section to obtain the order parameter and the free energ
the system, but this time we consider in detail the effects
deforming the boundaries of the container. As we did befo
we are going to concentrate on the behavior near the am
phous solidification transition, and we are going to emp
the stationary-point approximation in order to obtain expli
results.

A. Description of the deformation

We characterize the deformation of the system by thed
3d) deformation matrixS, that describes the change in p
sition of any pointb at the boundary of the systemb→S•b,
with S independent ofb. For any matrixS, it is possible to
find a diagonal matrixS̄ and two rotationsU andV such that
the decompositionS5US̄V holds @35,36#. This decomposi-
tion can be interpreted in terms of a physical process p
formed in three steps: in the first, the system is rotated
space as described byV; in the second, it is deformed with
the diagonal deformation matrixS̄; and in the third, it is
rotated as described byU. The only part of this process tha
represents a genuine strain, and can therefore possibly
the free energy of the system, is the second step. There
we may~and shall! always assume, without loss of genera
ity, that the deformation matrix is diagonal. As an examp
of a deformation matrix ford53, let us consider the case i
which thex, y and z Cartesian components of the positio
vector are, respectively, elongated by the factorslx , ly, and
lz , the matrixS has the form diag(lx ,ly ,lz). As we are
concerned with the effects of pure shear strains, we s
consider only deformations that leave the volumeV of the
system unchanged, i.e.,

detS51. ~3.1!

For considering infinitesimal strains, it is convenient to d
fine the~diagonal! strain tensor

J[S2I , ~3.2!

whereI is the identity matrix. For small shear deformation
we have

15detS511tr ~S2I !1O„~S2I !2
…, ~3.3!
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and consequently

tr J50, ~3.4!

to first order in the deformation.

B. Deformation and replicas

Before taking the thermodynamic limit, the system is
nite in extent, and thus the Fourier representation of anyfu
tion of position consists of a superposition of plane wav
with wave vectors belonging to a discrete set. The precise
of wave vectors is determined by the periodic boundary c
ditions. In particular, the order parameter is represented
function V k̂ that is only defined at a discrete set of points
replicated Fourier space. Now, under strain the boundarie
position space are displaced and, as a consequence, th
crete set of points in replicated Fourier space move. As p
viously mentioned in Sec. II B, any external strain applied
the system after the permanent constraints have been cr
will affect replicasa51, . . . ,n, but not replicaa50 @10#.
Therefore, the change in the discretization of the wave v
tors occurs only fora51, . . . ,n, but nota50. For replicas
a51, . . . ,n, the set of allowedd-dimensional wave vector
r u corresponding to the unstrained system is replaced b
new set r s corresponding to the strained system. Con
quently, the setRs of allowedreplicatedwave vectors in the
strained system is composed of all replicated wave vec
k̂5$k0,k1, . . . ,kn% such that
k0Pr u andkaPr s ~for replicasa51, . . . ,n).
I D
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C. Free-energy functional for the deformed system

Conceptually, there are two sources for the change in
energy, Eq.~2.11!, under deformation: the change in the e
pression for the free-energy functional itself, and the con
quent change in the value of the order parameter that so
the stationary-point equation. The free-energy functional
the strained systemF n

s($V k̂%) is obtained by repeating, step
by-step, the procedure followed@20# to construct the free-
energy functional for the unstrained systemFn($V k̂%). The
only change resides in the fact that integrals over the p
tions of the monomers in replicasa51, . . . ,n now range
over the region occupied by the strained sample instea
the region occupied by the unstrained sample and, co
quently, the summations over replicated wave vectors n
run over the new setRs of wave vectors in replicated spac

ds~ ĉ!5
1

V11n (
p̂PRs

exp~ i p̂• ĉ!. ~3.5!

As a result, one has

m2V

2N (
i , j 51

N E
0

1

dsE
0

1

dt ds
„ĉi~s!2 ĉ j~ t !…5

m2N

2Vn (
p̂PRs

uQp̂u2,

~3.6!

and the expression for@ Z̄n# in terms of monomer densitie
becomes
se
maliza-
@ Z̄n#5

e2NnfE Dĉ expH 2
1
2

(
j 51

N E
0

1

dsUdĉj~s!

ds
U2

2Nl̃n
2 N

V
(

p̂PRs

;
† uQp̂u21N m2

Vn
(

kPRs

—
† uQk̂u2J

E DcexpH 2 1
2 (

j 51

N E
0

1

dsUdcj~s!

ds
U22Nl̃0

2 N
V

(
p

† uQpu2J . ~3.7!

Two features should be noted here. One is that the denominator in formula~3.7! is not affected by the deformation, becau
it is the normalization factor for the disorder distribution, which is fixed before the system is deformed. Thus, the nor
tion constantN in Eq. ~2.6!, which reads

N5
exp~2Nnf!

E DcexpH 2
1

2 (
j 51

N E
0

1

dsUdcj~s!

ds U2

2Nl̃0
2 N

V (
p

† uQpu2J , ~3.8!
the

the
is unchanged by the deformation, as anticipated in Sec. I
The second feature is that the general form of the expres
for @ Z̄n# in Eq. ~3.7! is unchanged with respect to the corr
sponding expression in the unstrained system, even to
point that the values of the prefactors multiplying the su
over replicated wave vectors are unchanged. The only dif
ences between the unstrained and strained system resi
.
on

he
s
r-

in

the region of integration for the variableĉ and in that the
summations over replicated wave vectors run over either
setRu or the setRs.

From Eq. ~3.7! one immediately obtains, with the
Hubbard–Stratonovich transformation as in Sec. II D,
free energy functional
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n dF n
s~$V k̂%!5l̃n

2 N
V

(
p̂PRs

;
† uV p̂u21

m2

Vn
(

k̂PRs

—
† uV k̂u2

2 lnK expS i l̃n
2 2N

V
(

p̂PRs

;
†

ReV p̂r p̂*

1
2m2

Vn
(

k̂PRs

—
†

ReV k̂r k̂* D L
n11

W

. ~3.9!

As in the case of the undeformed system, we are going
take one further step, and restrict ourselves to the reg
near the amorphous solidification transition.

D. Free-energy and stationary-point equations
near the vulcanization transition

In the regime close to the transition, we can expand
free energy functional in powers of the order parameter
the wave vectors, as we did in Sec. II F 1, and obtain
analog of Eq.~2.17! for the deformed system:

n dF n
s~$V k̂%!5 (

k̂PRs

—

~2e1 1
2 uk̂u2!uV k̂u2

2 (
k̂1k̂2k̂3PRs

—

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂ .

~3.10!

As a result, the stationary-point equation for the strain
system becomes

052~2e1 1
2 uk̂u2!V k̂23 (

k̂1k̂2PRs

—

V k̂1
V k̂2

d k̂11 k̂2 ,k̂ .

~3.11!

Although, superficially, this equation looks the same as
~2.18!, they are actually different, as all the wave vecto
entering in Eq.~2.18! belong toRu, i.e., the set of replicated
wave vectors corresponding to the undeformed system,
all the wave vectors entering in Eq.~3.11! belong toRs, i.e.,
the set of replicated wave vectors corresponding to the
formed system. Therefore, while Eq.~2.18! is invariant un-
der all permutations of the 11n replicas, Eq.~3.11! is only
invariant under permutations of then replicasa51, . . . ,n.

E. Proposing a hypothesis for the order parameter

We shall obtain the order parameter for the strained s
by finding a solution of Eq.~3.11!. To do this, we shall use
physical arguments similar to those used in the case of
unstrained system to motivate our guess for a possible s
tion. As our guess will turn out to solve Eq.~3.11! exactly,
this justifies,a posteriori, our physical assumptions. As th
shear modulus is determined by an expansion of the
energy to quadratic order in the deformation, for the mom
we will only consider infinitesimal deformations.

For each localized monomer in the unstrained system
envisage that its old mean positionbj (s) is displaced to a
new mean positionbj

s(s)5S•bj (s)1t j (s). Up to this point
the only assumption is the physically intuitive one that tho
monomers that are localized in the undeformed system
to
e

e
d
e

d

.

nd

e-

te

e
lu-

e
t

e

e
e-

main localized in the deformed system. The vectorS•bj (s)
is the affine displacement of the old position@9#. We now
make the assumption thatt j (s) is a random additional dis
placement, uncorrelated withbj (s).

For each localized monomer, we also need some con
ture about the behavior under strain of the size and shap
the region within which it thermally fluctuates. We assum
that this localization region need not remain spherical~as it
was in the unstrained system! but might be deformed due to
the external strain~Fig. 1!. We will consider the position
fluctuations for the monomers:

dcj
u~s!5cj~s!2bj~s! ~3.12!

for the unstrained system, and

dcj
s~s!5cj~s!2„S•bj~s!1t j~s!… ~3.13!

for the strained system, and also the individual monom
densities for the unstrained and strained systems,r j ,s,x

u (r )
andr j ,s,x

s (r ), as defined by

r j ,s,x~r ![^d„r2cj~s!…&x . ~3.14!

One possible assumption is that the fluctuation region
forms affinely, i.e., that

dcj
u~s!→dcj

s~s!5S•dcj
u~s!. ~3.15!

This gives rise to the individual monomer density

r j ,s,x
s ~r !5r j ,s,x

u
„S21

•„r2bj
s~s!…1bj~s!… ~3.16!

in real space, and

^eik•cj (s)&x
s5exp„ik•$S•bj~s!1t j~s!%…

3exp„2j j
2~s!k•S2

•k/2… ~3.17!

for the Fourier-transformed version. In what follows, we w
replace the matrixS2 by its expansion to first order in th
deformation

S2'I12J1O~J2!. ~3.18!

FIG. 1. Change of the localization region for an individu
monomer due to an externally imposed strain:~a! assuming that the
fluctuation region around the mean position deforms affinely;~b!
assuming that the fluctuation region around the mean position s
spherically symmetric.
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Thus, for an infinitesimal strain, the assumption of affi
distortion of the fluctuation region gives the density

^eik•cj (s)&x
s5exp„ik•$S•bj~s!1t j~s!%…

3exp„2j j
2~s!k•$I12J%•k/2…. ~3.19!

An alternative assumption is that the fluctuation reg
remains spherical as in the unstrained system, i.e., that

dcj
u~s!→dcj

s~s!5dcj
u~s!. ~3.20!

This, in turn, gives rise to the individual monomer densit

r j ,s,x
s ~r !5r j ,s,x

u
„r2bj

s~s!1bj~s!… ~3.21!

in real space, and

^eik•cj (s)&x
s5exp„ik•$S•bj~s!1t j~s!%…exp„2j j

2~s!k2/2…
~3.22!

in wave-vector space.
Motivated by the above special cases, we propose

following parametrization for̂ eik•cj (s)&x
s , which contains

Eqs.~3.19! and ~3.22! as particular limits:

^eik•cj (s)&x
s5exp~ ik•$S•bj~s!1t j~s!%!

3exp~2j j
2~s!k•$I1h j~s!J%•k/2!.

~3.23!
The rationale for this generalization goes as follows. W
know that in the undeformed system the probability cloud
asymptotically isotropic. For an infinitesimal deformatio
one might expect the localization region to be slightly d
torted. To lowest order in the deformation, the matrix ch
acterizing the deformation isJ. The other ingredient that ca
influence the shape of the localization region is the disord
thus we include a random factorh j (s) that weights the de-
parture of the localization region from spherical symmet
For example, ifh j (s)52, Eq. ~3.23! would reduce to Eq.
~3.19!, meaning that the probability cloud is affinely di
torted. By contrast, ifh j (s)50 Eq. ~3.23! would reduce to
Eq. ~3.22!, i.e., the probability cloud would remain spher
cally symmetric, as it is in the undeformed system. In
same spirit as in the undeformed case, we assume tha
parametersh andj describing the extent~and shape! of the
fluctuation region are uncorrelated with the original me
positionb.

By consideringg real copies of the system, and adding t
contributions of all monomers, we can explicitly constru
the order parameter of Eq.~2.4!:

Vk
1 , . . . ,kg5~12q!dk1,03•••3dkg,0

1qE db

V
ei (k11•••1kg)•S•b

3E dtE
0

`

dtE
2`

`

dh c~ t,t,h!ei (k11•••1kg)•t

3e2„k1
•$I1h J%•k11•••1kg

•$I1h J%•kg
…/2t. ~3.24!
e

e
s

-
-

r:

.

e
the

n

t

Here,c(t,t,h) is the joint statistical distribution for the
parameterst, t, andh, i.e.,

1

V
c~ t,t,h![F 1

N (
j 51

N E
0

1

dsd„b2bj~s!…d„t2t j~s!…

3d„t2„j j~s!…22
…d„h2h j~s!…G . ~3.25!

In order for Eq.~3.24! to reproduce the order parameter
Eq. ~2.16b! in the limit of zero strain, the following condition
on c(t,t,h) has to be satisfied:

lim
S→I

c~ t,t,h!5d~ t!p~t!d~h!. ~3.26!

The integral overb in Eq. ~3.24! factorizes for the same
reason as in the undeformed system, namely becauseb is
uncorrelated with all the other parameters.

In order to solve the stationary-point equations, we ne
an expression forV k̂ , wherek̂ is a generic replicated wav
vector inRs. Obtaining this expression is less straightforwa
than in the undeformed case: we have to take into acco
the fact that replicaa50 is different from all the others
because it is not affected by the deformation. This sugg
that for localized monomers we parametrize the Four
transformed individual particle density by using Eq.~2.15!
for a50 and Eq.~3.23! for a51, . . . ,n, and thus we obtain
the following form forV k̂ :

V k̂5~12q! )
a50

n

dka,01qE db

V
ei (k0

•b1(a51
n ka

•S•b)

3E dtE
0

`

dtE
2`

`

dh c~ t,t,h!ei ((a51
n ka)•t

3e2„(k0)21(a51
n ka

•$I1h J%•ka
…/2t ~3.27a!

5~12q!d k̂,0̂1q dk01S•(
a51
n ka,0W

s~ k̂!.

~3.27b!

To arrive at the second line we have observed that the p
uct of wave-vector Kronecker delta functions corresponds
a delta function for replicated wave vectors, we have ide
fied the integral overb as a representation of a Kroneck
delta function in wave-vector space, and we have denoted
integral overt, t andh asWs( k̂), i.e., the continuous part o
the order parameter in the strained system.

Although it is not trivial to propose a general form for th
probability distributionc(t,t,h), under fairly mild condi-
tions it is possible to expand its Fourier transform with r
spect to the random displacementt to first order in the strain
and to lowest nontrivial order in wave vectors:

E dt eip•tc~ t,t,h!5p~t!d~h!1m~t,h!p•J•p1O~J2!,

~3.28!

with m(t,h) an unknown function. The correctness of th
expansion can be justified as follows. The value of the ri
hand side of Eq.~3.28! in the limit of zero strain is dictated
by Eq. ~3.26!. The first order correction in the strain is de
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termined by assuming that it is invariant under a rotation
the coordinate system~which is equivalent to a simultaneou
rotation ofp andJ). This condition only allows for the fol-
lowing terms:~i! a linear function ofp•J•p times any func-
tion of p2 and~ii ! a product of an invariant linear function o
J times any function ofp2. The only quantity linear inJ and
invariant under rotations is trJ, which is zero for infinitesi-
mal shear strains, as mentioned above. Thus we only h
term ~i!, which, to lowest nontrivial order in wave vector
reduces to the contribution appearing in Eq.~3.28!.

The integral overt in Eq. ~3.27a! is the same as that in Eq
~3.28!, but with p replaced by

(
a51

n

ka52S21
•k0'2k0 ~3.29!

The approximation in the second line is consistent with
keeping only terms linear in the deformation in Eq.~3.28!.

We are now in the position of being able to simplify th
form of Eq. ~3.27a! substantially, by taking the following
steps:~i! we use Eqs.~3.28! and ~3.29! to perform the inte-
gration over the random displacementt; ~ii ! we expand all
terms consistently to linear order inJ; and ~iii ! we define
scaling variables in a way analogous to that shown in
~2.23!.

As a result of these manipulations, we arrive at the f
lowing hypothesis for the continuous part of the order p
rameter:

Ws~ k̂!5qE
0

`

du e2 k̂2/euS p~u!2
z~u!

e
k0
•J•k0

2
Ã~u!

e (
a51

n

ka
•J•kaD . ~3.30!

Here,z(u) and Ã(u) are new scaling functions, which de
scribe the change in the continuous part of the order par
eter due to the deformation. They are unknown at this po
but they will be determined later by demanding that the
pothesis~3.30! satisfy the stationary point equations for th
deformed system, Eq.~3.11!.

The motivation for the hypothesis, Eq.~3.30!, can be re-
phrased in a more compact way as follows. Let us assu
that for small strainsWs( k̂) is unchanged by a rotation of th
coordinate system~or, equivalently, by simultaneous rota
tions ofS and k̂). This is evidently true forWu( k̂) ~which is
a function ofk̂2). Therefore the difference between the tw
quantitiesWs( k̂) and Wu( k̂) has the same property. If w
further assume permutation symmetry among replicasa
51, . . . ,n, this difference can only contain, up to lowe
nontrivial order in the deformation and in the wave vecto
the following terms:~i! the product of an invariant linea
function of J and a linear combination of a constant, (k0)2,
and(a51

n (ka)2; ~ii ! a linear function ofk0
•J•k0; ~iii ! a lin-

ear function of(a51
n ka

•J•ka; and ~iv! a linear function of
((a51

n ka)•J•((b51
n kb). The only quantity linear inJ and
f

ve

r

.

-
-

-
t,
-

e

,

invariant under rotations is trJ, which is zero for infinitesi-
mal shear strains, as mentioned above. In addition, by u
Eq. ~3.29!, any term of type~iv! is reduced to a term of type
~ii !. Thus only terms of type~ii ! and ~iii ! are left, and we
recover Eq.~3.30!. Note that in Ref.@4# the term~ii ! was
omitted from Eq.~9!; the results, however, are not altered
this omission.

F. Solving the stationary-point equations

We now show that the hypothesis proposed does ind
satisfy the stationary-point equations in the deformed s
tem, provided that the gel fractionq and the scaling functions
p(u), z(u), andÃ(u) satisfy appropriate conditions.

In order to perform the summation over wave vectors
the stationary-point equation, Eq.~3.11!, one has to take into
account the fact that the sum excludes vectors in the one
zero replica sectors. For any expressionf k̂ that is zero in the
one replica sector, the following identity is valid in the larg
volume limit:

(
k̂

—

f k̂5VE
k̂
f k̂2 lim

k̂→0̂
f k̂ . ~3.31!

To simplify our notation, we make use of the followin
shorthand:

E
k̂
f k̂[VnE dk̂

~2p!(11n)d
f k̂ , ~3.32!

the factorVn in front of the integral will be irrelevant in the
replica limit n→0, and we will ignore it from now on. Then
the stationary point equation for the deformed system can
rewritten as:

052~3q2e1 1
2 uk̂u2!V k̂23VE

p̂
V p̂V k̂2 p̂ . ~3.33!

Two observations are in order here. One is technical, nam
that the volume prefactor in the second term, although
might appear dangerous, is in fact compensated by a fa
of 1/V coming from the integrand. The second is more p
found: at this point in the argument, all explicit dependen
on the deformation has been removed from the station
point equation. The only dependence that remains reside
the fact that the order parameter field entering in it has to
consistent with the boundary conditions for the strained s
tem, i.e., it must be chosen so that for a system of large
finite volume the order parameter is nonzero for replica
wave vectors that belong to the discrete setRs rather thanRu.
This restriction has nontrivial effects: it will be shown in th
penultimate paragraph in this section that a proposed o
parameter of the form given by Eq.~2.13a!, which would be
perfectly acceptable if one completely neglected the discr
ness of the setRs, must be rejected because it cannot sim
taneously satisfy the boundary conditions and depend c
tinuously on the strain.

By inserting the hypothesis for the order parameter, E
~3.27b! and ~3.30!, into the stationary-point condition, Eq
~3.33!, and expanding to first order in the strain, we obta
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05d k̃s,0H 2~3q22eq1qk̂2/2!E
0

`

du p~u!e2 k̂2/eu23q2E
p̂
E

0

`

du1p~u1!E
0

`

du2 p~u2!e2 p̂2/eu1e2( k̂2 p̂)2/eu2

3E dm eim•p̃s
22~3q22eq1qk̂2/2!E

0

`

du
z~u!

e
k0
•J•k0e2 k̂2/eu16q2E

p̂
E

0

`

du1

z~u1!

e
p0
•J•p0

3E
0

`

du2 p~u2!e2 p̂2/eu1e2( k̂2 p̂)2/eu2E dm eim•p̃s
22~3q22eq1qk̂2/2!E

0

`

du
Ã~u!

e (
a51

n

ka
•J•kae2 k̂2/eu

16q2E
p̂
E

0

`

du1

Ã~u1!

e (
a51

n

pa
•J•paE

0

`

du2 p~u2!e2 p̂2/eu1e2( k̂2 p̂)2/eu2E dm eim•p̃sJ . ~3.34!

Here we have made use of the notation

k̃s[k01S• (
a51

n

ka, ~3.35!

and the integral representation for the Kronecker delta

dk,05
1

VE dm eim•k. ~3.36!

After performing the integrations, first overp̂, then overm, Eq. ~3.34! reduces to

05F2~3q22eq1qk̂2/2!E
0

`

du p~u!e2 k̂2/eu23q2E
0

`

du1E
0

`

du2 p~u1!p~u2!e2 k̂2/e(u11u2)G
2

1

e
$k0

•J•k0%F2~3q22eq1qk̂2/2!E
0

`

du z~u!e2 k̂2/eu26q2E
0

`

du1E
0

`

du2S u1

u11u2
D 2

z~u1!p~u2!e2 k̂2/e(u11u2)G
2

1

e H (
a51

n

ka
•J•kaJ F2~3q22eq1qk̂2/2!E

0

`

du Ã~u!e2 k̂2/eu26q2E
0

`

du1E
0

`

du2S u1

u11u2
D 2

Ã~u1!p~u2!e2 k̂2/e(u11u2)G .
~3.37!
ti
-
-

ta
d
t

os

e
l

ng
-
f

r

Now, what conditions are forced on the unknown quan
ties q, p(u), z(u), andÃ(u) by this stationary-point equa
tion? First, by taking the limitk̂2→0 we recover the condi
tion for the gel fraction

0522qe13q2, ~3.38!

which implies thatq52e/3 for e.0. It is not surprising that
we obtain the same gel fraction for the amorphous solid s
as in the unstrained system, as in our motivation for the or
parameter hypothesis we assumed that the monomers
were localized in the strained system would also be th
that were localized in the unstrained system.

Next, we observe that demanding that Eq.~3.37! be valid
for all k̂PRs is equivalent to the above equation for the g
fraction, together with the following integro-differentia
equations for the scaling functionsp(u), z(u), andÃ(u):

u2

2

dp

du
5~12u!p~u!2E

0

u

du8p~u8!p~u2u8!,

~3.39a!
-

te
er
hat
e

l

u2

2

dz

du
5~12u!z~u!2

2

u2E0

u

du8u82z~u8!p~u2u8!,

~3.39b!

u2

2

dÃ

du
5~12u!Ã~u!2

2

u2E0

u

du8u82Ã~u8!p~u2u8!.

~3.39c!

As for the boundary conditions satisfied by the scali
functionsp(u), z(u), andÃ(u), they are obtained by study
ing the values of the order parameter in different regions ok̂
space. First, as noticed in Sec. II F 4 for the case ofp(t), the
fact that the order parameter is unity at the origin~i.e., k̂

50̂) determines the following normalization condition fo
p(u):

E
0

`

du p~u!51. ~3.40!

Next, to derive boundary conditions forz(u) andÃ(u) we
observe that, from Eq.~2.4!,
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lim
(k1)21•••1(kg)2→`

Vk1, . . . ,kg50, ~3.41!

and consequently that

lim
k̂2→`

V k̂50. ~3.42!

In order to benefit from this information, we perform th
change of variables

u→y[ k̂2/eu ~3.43!

in Eq. ~3.30!, thus obtaining

Ws~ k̂!5qE
0

`

dy e2yH e

k̂2
p̃S k̂2

ey
D 2 z̃S k̂2

ey
D x0

•J•x0

2Ã̃S k̂2

ey
D (

a51

n

xa
•J•xaJ . ~3.44!

Here, we have defined the functionsp̃(u), z̃(u), andÃ̃(u)
by

p̃~u![u2p~u!, z̃~u![u2z~u!, Ã̃~u![u2Ã~u!,
~3.45!

and the unit vectorx̂5$x0, . . . ,xn% by

xa[
ka

Ak̂2
~a50, . . . ,n!. ~3.46!

From the expression~3.44! for the order parameter hypoth
esis, and the exponential decay ofp(u) for u→`, it follows
that

lim
k̂2→`

V k̂52 lim
u→`

S z̃~u!x0
•J•x01Ã̃~u! (

a51

n

xa
•J•xaD .

~3.47!

However, this limit must be zero regardless of the direct
of x̂, and consequently we obtain the following bounda
conditions forz(u) andÃ(u):

lim
u→`

u2z~u!50, ~3.48a!

lim
u→`

u2Ã~u!50. ~3.48b!

To obtain boundary conditions atu50, one only needs to
examine the integro-differential equations~3.39a!, ~3.39b!,
and ~3.39c! themselves. Near the origin, the integral term
can be neglected, and all three equations reduce to the f

u2

2

d f

du
5~12u! f ~u!, ~3.49!

where f stands forp, z, or Ã. This is a first-order linear
differential equation having the solution
n

m:

f ~u!5A
e22/u

u2
, ~3.50!

with A an arbitrary constant. Consequently, all three scal
functions vanish rapidly at the origin.

As the reader has probably already noticed, the integ
differential equations and the boundary conditions that ap
to both z(u) and Ã(u) are linear and homogeneous. Th
implies that one of two possibilities must hold for each o
of these functions: either it is identically zero, or it is on
determined up to an arbitrary multiplicative constant.@By
contrast, in the case ofp(u), the integro-differential equa
tion ~3.39a! is nonlinear, and the condition of Eq.~3.40! is
linear but inhomogeneous, and the scale of the solutio
well determined.# The latter possibility does not seem to b
easy to justify on physical grounds, as it would imply th
the stationary-point equations leave the order parameter
determined. In fact, if this were the case, there would b
continuous family of order parameters such that the conti
ous partsWs( k̂) for members of the family differ to varying
degrees from the continuous part of the order parameter
responding to the amorphous solid state of the unstrai
system. One could, however, imagine that we are miss
some additional physical constraint that fixes the scale
these two functions, and therefore the above argumen
suggestive but not conclusive. To settle the issue of which
the two possibilities holds forz(u) andÃ(u), we show, in
Appendix A, by analytic manipulation of the integro
differential equations and boundary conditions, that b
z(u) andÃ(u) are identically zero.

The fact that bothz(u) and Ã(u) are identically null
implies thea priori most surprising result of this paper: th
continuous part of the order parameterdoes not changeto
first order in the strain, i.e.,Ws( k̂)5Wu( k̂). This conclusion
is consistent with the phantom network picture@8,12#. It also
suggests thatWs( k̂)5Wu( k̂) for finite ~and not merely in-
finitesimal! deformations. Indeed, our order-parameter h
pothesis turns out to satisfy the stationary-point equation
arbitrarily strained systems.

To see this, let us return to the stationary point equat
~3.33!. As was mentioned earlier, Eq.~3.33! applies both for
the unstrained and for the strained systems, the only dif
ence between the two cases being that in the unstrained
the ‘‘external’’ replicated wave vectork̂ belongs to the dis-
crete setRu, whereas in the strained casek̂ belongs to the se
Rs. By inserting the form for the order parameter given
Eq. ~3.27b!, but now withWs( k̂)5Wu( k̂) @i.e., given by Eq.
~3.30! with z(u)5Ã(u)50# we find that the stationary
point equation is satisfied providedp(u) satisfies Eq.~2.24!.

One way of understanding this result is to consider tha
order for the shape of the fluctuation region to be affected
the externally imposed strain, this strain has to be someh
communicated to the individual monomers. This is mo
likely the effect of the deformation of the ‘‘cage’’ of sur
rounding polymers that form the local environment at ea
point. However, when the interlocking of loops is neglecte
as in the present calculation, this ‘‘cage’’ exerts no effe
Therefore, this result should be taken with caution, as
validity might not extend beyond the region near the tran
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tion, in which the approximation of neglecting the interloc
ing of loops is fully justified.

At first sight, it might appear possible to propose altern
tive hypothesis for the structure of the deformed amorph
solid state. One possible alternative hypothesis would b
assume that the order parameter is completely unchan
when the system is deformed. However, this is not qu
correct. In addition to the stationary-point equation, the or
parameter has to satisfy the boundary conditions in
space for the deformed system. This means that the hyp
esis of Eq.~3.27b! for V k̂ is physically meaningful only for
k̂ belonging to the set of allowed replicated wave vectorsRs.
If the order parameter corresponding to the unstrained
tem were retained, there would be a factord k̃,0 in the term
corresponding to the localized monomers that would be z
for generic values of the deformation matrixS unlessboth
k050 and (a51

n ka50. As in the undeformed system th
same factor is nonzero for(a51

n ka52k0Þ0, this would
give rise to an unphysical discontinuity in the order para
eter as a function of the deformation. On the other hand,
modified delta factord k̃s,0 that appears in Eq.~3.27b! takes
into account the shift in the reciprocal lattice due to the
formation, and displays no such discontinuity. In mathem
cal terms, finding the intersection between the set of mea
zero in Fourier space that corresponds to macroscopic
translation invariant states and the discrete set of points
lowed by the strained boundary conditions plays a cru
role in selecting the correct order parameter for the deform
system. In more physical terms, the order parameter nee
somehow ‘‘remember’’ that when the system was cro
linked, it had a different shape. The factord k̃s,0 is the one
that keeps this memory, by correlating thea50 replica~as-
sociated with the cross linking! with the replicas a
51, . . . ,n ~associated with the present, strained state of
system! in a way that explicitly depends on the strain. If th
information was lost, we would be computing the free e
ergy of a system that was cross linkedafter being deformed,
and this would be independent of the deformation.

A second possibility would be to keep for the order p
rameter the form proposed in Eq.~3.27b!, and to choose for
its continuous part the formWs( k̂)5Wu($k0,S•k1, . . . ,
S•kn%) @37#. Although this hypothesis might appear natur
since it represents an affine deformation of the localizat
clouds for each monomer@in the manner of Eq.~3.19!#, it
turns out that it is not a stationary point of the free ene
@38#. This nonstationary point does not represent a phys
state because the thermal weights of the configurations
not peaked around it. Indeed, it is easy to show by dir
insertion in Eq.~3.33! that this hypothesis would be a st
tionary point for a modified free energy in which the ter
quadratic inV k̂ had a modified coefficient@2e1 1

2 „(k
0)2

1(S•k1)21•••1(S•kn)2
…# instead of (2e1 k̂2/2). In more

physical terms, since this state describes monomers that
tuate in regions whose shape is not spherical, it fails to m
mize the entropy, given the constraints imposed on the
tem.

G. Change in free energy with deformation; shear modulus

We now have all the ingredients necessary to calculate
change in the free energyD f , to leading order ine, due to
the deformation of the system:
-
s
to
ed
e
r

al
th-

s-

ro

-
e

-
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re
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s

e

-

-
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e

D f 5d lim
n→0

$F n
s~$V k̂

s
%!2Fn~$V k̂

u
%!%. ~3.51!

HereV k̂
s andV k̂

u are, respectively, the stationary-point valu
of the order parameter for the strained and unstrained
tems. Similarly,F n

s and Fn , respectively, denote the free
energy functionals for the strained and unstrained syste
As we show in Appendix B, the free-energy change due
the deformation is

D f 5
2

27
e3 tr~S22I !. ~3.52!

Thus we can extract the value of the static shear moduluE
of the amorphous solid state near the solidification transit
~with physical units restored!:

E5kBT N Ce3, ~3.53!

wherekB is Boltzmann’s constant,T is the temperature, and
C is a model-dependent positive constant. Hence, we see
the static shear modulus near the vulcanization transitio
characterized by the exponentt53, in agreement with the
classical result@5,2#. A simple scaling argument, viz., tha
the modulus should scale as two powers of the order par
eter (q2) and two powers of the gradient (j typ

22), leads to the
same value for the exponentt.

IV. CONCLUDING REMARKS

In this paper we have presented a microscopic deriva
of the static elastic response of a system of randomly cro
linked macromolecules near the amorphous-solidificat
transition.

From the technical point of view, we have modeled t
deformation of the system by changing the boundary con
tions in real space. A point that required special care w
how to include in our formulation the physical informatio
that the system had been cross linkedbefore it was de-
formed. This results in an asymmetry in the replica formu
tion of the problem: in the case we are studying, replicaa
50 describes the systembeforethe deformation is applied
and replicasa51, . . . ,n describe the system in its actu
state of deformation.

The physical picture that emerges from the results of t
paper has the following features:~i! the amorphous-solid
state, which had been previously shown to be character
structurally by the localization of a nonzero fraction of pa
ticles, is also characterized by having a nonzero static sh
modulus; ~ii ! the static shear modulus scales as the th
power of the excess cross-link density~beyond its value at
the transition! @39#; and ~iii ! the form of localization exhib-
ited by the particles is left unchanged by the strain.

A possible explanation for the spherical localization r
gions that the particles exhibit even under externally app
stress might be that in the regime near the transition m
monomers in the infinite cluster are very loosely connect
and thus their behavior is dominated by the maximization
entropy, which is obtained by allowing them to fluctuate
all directions. It is not implausible that strain-induce
changes in the pattern of localization would emerge from
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more detailed analysis of the effects of the excluded-volu
interaction, at least at higher cross-link densities. This is
cause at higher crosslinks densities, the macromolecular
work is more tightly bound, and the topological barriers ge
erated by interlocking of macromolecular loops are m
significant.

Finally, let us point out that since the treatment presen
here only depends on the form of the free-energy functio
@26# near the transition, and not any specific semimic
scopic model, the approach to elasticity described h
should be generally applicable not only to systems of r
domly cross-linked flexible macromolecules, but also
other equilibrium amorphous solid forming systems.
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APPENDIX A: CORRECTION TO THE ORDER
PARAMETER UNDER STRAIN

In this appendix we show that the only solution to E
~3.39b! that satisfies the boundary condition Eq.~3.48a! is
the null functionz(u)[0 for all u. Our approach is to as
sume that a nonzero solution exists, and then to arrive
contradiction. As the equations and boundary conditions
identical forz(u) andÃ(u), showing thatz(u) is identically
null would imply that the same holds forÃ(u).

It is convenient to work withz̃(u) instead ofz(u). In
terms ofz̃(u), the integro-differential equation reads:

u2

2

dz̃

du
5 z̃~u!22E

0

u

du8z̃~u8!p~u2u8!. ~A1!

The boundary condition is simply

lim
u→`

z̃~u!50. ~A2!

It turns out that it is possible to derive a simple different
equation for the Laplace transform%̂(s) of the function

%~u![
dz̃

du
. ~A3!

By starting with Eq. ~A1!, and using properties of th
Laplace transform, one obtains~after some algebra! the
equation

d2%̂~s!

ds2
5

2

s
%̂~s!„12p̂~s!…, ~A4!

and the boundary condition

%̂~0!5E
0

`

du
dz̃

du
5 lim

u→`

z̃~u!2 z̃~0!50. ~A5!
e
-

et-
-
e

d
al
-
re
-

t

.

a
re

l

The function p̂(s) appearing in Eq.~A4! is the Laplace
transform of the scaled probability distributionp(u) for the
unstrained system. By using its expansion for smalls,
namely

p̂~s!512s^u&p1O~s2!, ~A6!

one can immediately show that Eq.~A4! has a regular sin-
gular point at the origin, and thence use the Froben
method@40# to obtain the asymptotic forms near the origin
two linearly independent solutions:

%̂1~s!5s2s21O~s3!, ~A7a!

%̂2~s!5 1
2 2s ln s1O~s!. ~A7b!

Any solution of Eq.~A4! can be written as a linear comb
nation of these two. Due to the boundary condition~A5!, the
coefficient of %̂2(s) must be zero. Therefore%̂(s) is some
real multiple of%̂1(s).

We have not been able to integrate Eq.~A4! analytically.
However, it is straightforward to integrate it numericall
using the behavior given by Eq.~A7a! as the initial condi-
tion. The numerical solution thus obtained diverges at infi
ity; but as %̂(s) is the Laplace transform of a function,
goes to zero at infinity. Therefore, by assuming that a n
zero solution can be found satisfying both Eq.~3.39b! and
Eq. ~3.48a!, we have arrived at a contradiction.

APPENDIX B: FREE-ENERGY CHANGE UNDER STRAIN

We need to compute the difference between the free
ergy of the deformed system,F n

s($V k̂
s
%), and the undeformed

system,Fn($V k̂
u
%), as a function of the deformation matrixS.

From Eq.~3.10! we see thatF n
s($V k̂

s
%) contains both a qua

dratic and a cubic term inV k̂
s . We first study the quadratic

term. We make use of Eq.~3.31! to write, in the large vol-
ume limit,

(
k̂PRs

— S 2e1
uk̂u2

2
D uV k̂u2 ~B1!

5e lim
k̂→0̂

uV k̂u21VE
k̂
S 2e1

uk̂u2

2
D uV k̂u2. ~B2!

The term associated with the limitk̂→0̂ has the valueeq2,
independent ofS, and is thus irrelevant for the present pu
poses. We concentrate on computing the integral

I[VE
k̂
S 2e1

uk̂u2

2
D uV k̂u2. ~B3!

To make the analysis more digestible, we define the
tations

E
u
•••[E

0

`

du•••p~u! and a[
2

e S 1

u1
1

1

u2
D . ~B4!
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The first step is to insert the form of the order parame
for the solid phase, Eqs.~3.27b! and~3.30!, and use the fac
that z(u)5Ã(u)[0. We then have

I 5VE
k̂
S 2e1

uk̂u2

2
D S q d k̃s,0E

u
e2 k̂2/euD 2

5q2E
u1

E
u2

E
k̂
S 2e1

uk̂u2

2
D e2ak̂2/2

3E dm eim•(k01S•(a51
n ka)

5q2VnE
u1

E
u2

S 2e2
d

daD E dm
e2m2/2a

~2pa!d/2 S e2(Sm)2/2a

~2pa!d/2 D n

5q2VnE
u1

E
u2

S 2e2
d

daD $~2pa!nd@det~ I1nS2!#%21/2

~B5!

5q2~11n ln V!„2e1O~n!…S 12
n

2
tr ~S2! D1O~n2!,

~B6!

where we have only kept the lowest two powers of the nu
bern of replicas in the result. The change in this term due
the deformation is

DI 5
n

2
eq2 tr~S22I !1O~n2!. ~B7!

Now, to compute the cubic term, we use Eq.~3.31! re-
peatedly to obtain

2 (
k̂1k̂2k̂3PRs

—

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂

52V2E
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E
k̂2

V k̂1
V k̂2

V2 k̂12 k̂2
13VqE

k̂
uV k̂u222q3.

~B8!

Next, by inserting the form@Eqs.~3.27b! and ~3.30!# of the
order parameter, the first term on the right-hand side yie
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E
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E
u3

E
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E
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e2 k̂1
2/eu12 k̂2

2/eu22( k̂11 k̂2)2/eu3

3E dm1 eim1•(k1
0
1S•(a51

n k1
a)E dm2 eim2•(k2

0
1S•(a51

n k2
a)

52q3V2nE
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E
u2

E
u3

E dm1E dm2
he
er
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r

-
o

s

3
exp@2 1

2 ~m1m2!A~m1

m2!#

~4p2 detA!d/2

3S expF2 1
2 ~Sm1Sm2!AS Sm1

Sm2
D G

~4p2 detA!d/2
D n

, ~B9!

where the 232 matrix A is the inverse of the matrix

2

e S 1

u1
1

1

u3

1

u3

1

u2

1

u2
1

1

u3

D . ~B10!

By performing the Gaussian integration overm1 andm2, and
expanding in powers ofn, we obtain

J52q3V2nE
u1

E
u2

E
u3

~4p2 detA!2nd/2 @det~ I1nS2!#21

52q3~112n ln V!„12n tr~S2!…„11O~n!…1O~n2!.

~B11!

For this term, the change due to the deformation is

DJ5nq3 tr~S22I !1O~n2!. ~B12!

Similarly, the second term on the right-hand side of Eq.~B8!
can be evaluated to yield

K53VqE
k̂
uV k̂u2

53q3~11n ln V!S 12
n

2
tr~S2! D „11O~n!…1O~n2!,

~B13!

and its change under deformation is

DK52
3n

2
q3 tr~S22I !1O~n2!. ~B14!

By combining the contributions given in Eqs.~B7!, ~B12!,
and ~B14!, dividing by the numbern of replicas, and taking
into account the fact thatq52e/3, we obtain the free-energ
change due to the deformation given in Eq.~3.52!.
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