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Randomly cross-linked macromolecules undergo a liquid to amorphous-solid phase transition at a critical
cross-link concentration. This transition has two main signatures: the random localization of a fraction of the
monomers and the emergence of a nonzero static shear modulus. In this paper, a semimicroscopic statistical
mechanical theory of the elastic properties of the amorphous solid state is developed. This theory takes into
account both quenched disorder and thermal fluctuations, and allows for the direct computation of the free
energy change of the sample due to a given macroscopic shear strain. This leads to an unambiguous determi-
nation of the static shear modulus. At the level of mean field theory, it is f@uitidat the shear modulus grows
continuously from zero at the transition, and does so with the classical exponent, i.e., with the third power of
the excess cross-link density and, quite surprisingly,that near the transition the external stresses do not
spoil the spherical symmetry of the localization clouds of the particles.

PACS numbds): 82.70.Gg, 61.43:j, 64.60.Ak

[. INTRODUCTION properties of the amorphous solid state in the vicinity of the
vulcanization transition. A core feature of this theory, a brief
The vulcanization transition is the equilibrium phase tran-account of which was given in Rg#], is that it incorporates
sition from a liquid state to a random solid stédkmown as both annealedi.e., thermally equilibratingand quenched
the amorphous-solid statthat occurs when a sufficient den- random(i.e., cross-link specifyingvariables. Its main con-
sity of randomly located, permanent cross-linking constraintlusions are(a) that the amorphous state emerging at the
is applied to the constituents of a liquid. The liquid may be avulcanization transition, which is solid in the sense of the
melt of macromolecules of various typéeng or short, flex-  structural signaturéi), is indeed solid in the sense of the
ible or stiff) or even of a low molecular weight species, andresponse signaturéi); (b) that the elastic shear modulus
our results will-mutatis mutandis-apply to this broad va- vanishes continuously as the transition is approached, and
riety of systems. Corrections due to long-wavelength fluctuadoes so with the third power of the excess crosslink density
tions of the order parameter, omitted in the mean field theoryi.e., the amount by which the cross-link density exceeds its
that we shall be developing do, however, tend to be imporeritical valug; and (c) that the shearing of the container as-
tant over a narrower range of cross-link densities for longesociated with elastic deformations leads neither to a deter-
macromolecules and stronger concentrations of thieas]. ministic nor a stochastic shearing of the probability clouds
For this reason, and for the sake of concreteness, we shalbsociated with the thermal fluctuations of localized particles
focus on cases involving long, linear, flexible macromol-about their mean positions.
ecules. There are two main equilibrium signatures of the vul- There has been considerable attention paid, over the
canization transition(i) the structural signature that a non- years, to the elastic properties of vulcanized matter and re-
zero fraction of the monomersi.e., segments of the lated chemically bonded systems, especially those near the
macromoleculesbecome localized around random mean po-amorphous solidification transition. Amongst the most no-
sitions and have random localization lengths; dig the table approaches are the classical offdsin which it was
response signature that the system, as a whole, acquiresaggued that near the transition the elastic entropy in the solid
nonzero static shear modulus. The structural signature hashaseand consequently the static shear modEygrow as
been discussed previously; the purpose of this paper is tthe third power of the excess cross-link densityi.e., E
present a detailed analysis of the latter signature by develop~- €' with t=3. More recently, it was proposed that the amor-
ing a statistical-mechanical theory of the emergent elastiphous solidification transition of polymer systems be identi-
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fied with a percolation transitiof2,6]. This proposal led to obtained from this model. In Sec. Il we describe and imple-
the identification of the exponentwith the critical exponent ment the changes necessary to accommodate strained sys-
u for percolation of conductivitywith u~2.0 in three spa- tems, construct the appropriate free energy, determine the
tial dimensions In yet more recent work it was observed resulting order parameter, and compute the elastic shear
that the elasticity percolation exponent for a random networknodulus. Finally, in Sec. IV, we give a short summary of our

is substantially higher tham when the forces are centfdl].  results.

Part of the ambiguity in the determination of the shear modu- Il. MODEL

lus of the randomly cross-linked system from percolative |, this section we present the model that we use to ana-
approaches stems from the fact that these approaches do nofe systems of randomly cross-linked macromolecules, and
naturally lead to the computation of a free energy for thepyiefly summarize some of the results about the amorphous
system. _ o ) solidification transition in those systems that have been ob-
Approaches of a more microscopic orientation have alsajined previously within the framework of the same model
been made to the elastic properties of vulcanized matter, IM7-20. We emphasize here those aspects of the model and
which macromolecular degrees of freedom feature ex'plicitly,[he results that are modified when the system is deformed,
Among these are the “phantom network8] and “affine g refer the reader interested in further details to those pa-

network” [9] approaches, as well as the comprehensive dispers(especially Ref[20], which gives a detailed account of
cussion of rubber elasticity by Deam and Edwai3], and  the mode).

others[11]. These approaches focus on the well cross-linked
regime rather than the lightly cross-linked regime near the
vulcanization transitiof12].

Experimentally, the exponerthas been addressed for
several systemgalthough mostly for gelation rather than ~ We study a system dfl macromolecules of arclength
vulcanization: the results vary front~2 [13] to t=3 [14].  and persistence lengiti moving in ad-dimensional hyper-
This wide discrepancy remains unresolved. cubic volumeV. The thermal degrees of freedom are the

The classica[15,16,5 and percolatior{2,6] approaches positions of the monomers;(s), where the indexi
to the physics of vulcanized matter are certainly stimulating=1,... N labels the macromolecules and the arclength O
However, it must be recognized that neither explicitly in-<s<1 labels the monomers on a given macromolediier
cludes both crucial ingredientshermal fluctuationsand  convenience, we measure arclengths in units of the total ar-
guenched disorderin addition, as was mentioned above, clengthL, and spatial positions in units afL//d, i.e., the
contradictory results have been obtained in the determinatiorpot-mean-squaréms) end-to-end distance of a free macro-
of the shear modulus of random amorphous solids from pemolecule divided by/d.]
colative formulations, due in part to the lack of a natural We model the system prior to cross linking by using the
definition of an elastic free energy for the system. In theEdwards Hamiltoniaf22],
approach that we shall present, however, the free energy of

A. Description of the system: macromolecules; Edwards
Hamiltonian; random permanent cross links

the system emerges immediately as a physical quantity, and 18 ([t dci(s) 2

the value of the shear modulus is determined unambiguously H= 2 121 Jo ds “ds

by the change of the free energy due to deformations of the

sample. Over the past few years, an approach to the vulca- A2 N 1 1

nization transition has been developdd—2Q that explic- +t5 > . dsfo ds’a(ci(s)—cir(s"), (2.

itly incorporates both thermal fluctuations and quenched dis- hi'=1

order in the context of a semimicroscopic model for erxibIe,Where)\z(>o) characterizes the effect of tiiepulsive ex-
randomly cross-linked macromolecules. This approach ig,qjed-volume interaction between monomers aifd) is
very much inspired by the work of Edwards and collabora-ha 4.dimensional Dirac delta function.

tors [10,21], as well as by ideas from the field of spin  \ye syppose that permanent cross links are introduced be-

glasges. Emerging from this more recent approach _has beendeen a random numbevl of randomly selected pairs of
detailed picture of thetructureof the amorphous solid state ,ohomers: monomes, on chaini, is cross linked to mono-

near tol_thtefvulc?nlzguog_trta_rt;sf_lon, 'P(IjUd'lng’t.m pfirt'cfhlar’mer s, on chaini, (with e=1,... M). These constraints,
an explicit form for the distribution ot localization 1€ngtns. ik enforce certain pairs of monomers to occupy common
In this paper, we present a detailed exposition of the appli-

. ; ! spatial locations, do not break translational symmetry, and
cation of this approach to the second signature of the vulca[—he variables  that specify the constraintsy

nization transition, namely the emergence of stegfgponse —fiS03i! ,s;_}";":l, play the role of quenched random vari-

to shear deformations. To our knowledge, this is the onlyables

existing computation of the static elastic properties of ran- . o . .
domly cross—ﬁnked macromolecular systerﬂs Eear the vulca- Fora partlcular realization of the disord@3), the parti-
nization transition that starts from first principles and thereb ion function reads —
includes both the effects of quenched disorder and thermal Z(X)ELX) 2.2
fluctuations. a(x)’ '

The outline of the present paper is as follows. This intro- .
duction is followed by two long sections. In Sec. Il we Here,Z(x) is a navely computed sum of the thermodynamic
present the model that we use to describe systems of ramveights for allowed macromolecular configurations, and is

domly cross-linked macromolecules, and review prior resultslefined via
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C. Order parameter for amorphous solidification

M
Z(X)Ef Dce He[[l 8(Gi(se)—cir(se), (2.3 In this system there is a phase transition between a liquid
phase at low cross-link densitieaf<1) and an amorphous
solid phase at high cross-link densitieg?c1). Since the
fisorder-averaged particle density is uniform in both states, it
cannot be used as an order parameter to detect the transition.
The appropriate order paramet@nspired in the Edwards—
6}E\ndersor’{27] order parameter for spin glass systensthe
“following [17]:

where [ Dc indicates functional integration over all configu-
rations of all macromolecules. The permutation symmetr
factor o(x) in Eq. (2.2 depends on the realization of the
disorder and compensates for the overcounting of configur
tions that only differ by permutations of the labels of mac
romolecules(Ref. [20], Secs. 2.4 and 2)6This symmetry
factor plays a role in ensuring that the free energy of the
system has the proper extensive scalifug example, in the Q1
simplest example of all molecules being identical, one has

the well-known 1N! prefactor to the partition function,

without which one would have the Gibbs paragokow- Here, g is a positive integer, andk?, ... k9 are anyg

ever, the symmetry factafoes not changehen the system nonzerod-dimensional wave vectors. This order parameter is
is deformed after cross linking, and is thinsslevantin the  zero in the liquid phase and, for wave vectors chosen so that
determination of elastic properties. ki+...4+k9=0, it is nonzero in the amorphous solid phase.

It should be pointed out that in the present approach th&@he order parametef},1 g is, in principle, experimen-
macromolecules are allowed to pass through one anothdally accessible through scattering experiments: e.g., the in-
and, therefore, the interlocking of loops is not explicitly con- coherent contribution to the elastic neutron scattering cross
sidered[23]. There are reasons to believe that this is a goodection is proportional t6), _ [20,28. Other experimental
approximation. First, the transition regime, of interest heretechniques that can be used to probe the order parameter are
is characterized by a rather low cross-link density—of ordePulsed field gradient nuclear magnetic resona(i#R)
one cross link per macromolecule—so most of the macrol29] and dynamic light scattering0]. _
molecules appear in “treelike” structures and therefore FOr the sake of computational simplicity, we adopt peri-
loops might reasonably be expected to have little impact?d,'c boundary cqndlthns on the coordinates to describe the
Second, under coarse graining the distinction between holdlicroscopic conflg_uratlons of our system. uConsequentIy, the
nomic and anholonomic constraints tends to fade, with knotQ"der puarameter is only nonzero fcbzr"j‘er a=1...g,
and cross links having rather similar effects. Third, a com—Wherer denotes the reciprocal lattice éhdimensions asso-

parison of the results for the gel fraction and the distributionCIateOI with the_ _perlod|C|ty in real space arising fr?m the
boundary conditions. Here, the superscrtands for “un-

of localization lengths obtained from the present approaclgtrained system.”

with those obtained in computer simulations that do include™ | "\ repIicé formalism, the definition of the order pa-

the interlocking of loops suggests that this interlocking eﬁeCtrameter traduces into the fé)llowing form:

is indeed negligible near the liquid to amorphous-solid tran-

sition [24-26. 1 N o \P
QQE<N > exmk~ci)>

i=1

k9=

A
2: ikl.c ik9.c:
N Ods{e‘ Gy (e CJ(S)>X]
(2.4

(2.9

B. Probability distribution of the quenched disorder n+1

To model the distribution of the cross-link locations in a Here, hatted vectors denote replicated collections of vectors,

realistic vulcanization process, we make the following physi-iz., {)E{VO,V{ ... V"), their scalar product bein@ ‘W

cal assumptionidue to Deam and Edward40]): a “snap- =3"_v¥-w and(-- '>E+1 denotes an average for an ef-
shot” of the semimicroscopic state of the uncross-linked sysfective pure(i.e., disorder freesystem ofn+ 1 coupled rep-
tem is taken, and, if a pair of monomers happen to be closcas of the original system. We use the terorse-replica

to each other, there is a probability, determined by a controsectorandhigher-replica sectoto refer to replicated vectors
parameter?, of becoming permanently attached by a crosswith, respectively, exactly one and more than one replica
link. The mean number of cross links per macromoleculeor which the corresponding vectkf is nonzero. The sé&R"

[M]/N is a smooth, monotonically increasing function of of allowed replicated wave vectoksis obtained by taking all

w?. Here and subsequently, square bracKets ] denote  combinations of (+1) allowed d-dimensional wave vec-
averages over the cross-link distribution, i.e., disorder avertors. In the next section, when we discuss deformations of
aging. The replica technique is used to perform the disordethe system, these deformations will directly change the
averages, with the peculiarity that the Deam—Edwards assoundary conditions in real space and, consequently, the set
sumption leads to the presence of+1 replicas « of allowed wave vectors.

=0,...n, with n—0. The additional replicax=0 repre- The presence in the replicated order parameter of products
sents the degrees of freedom of the original system beforbetween quantities probing the repliaa=0 and quantities
cross linking, or, equivalently, encodes the consequences @fobing the replicasr=1, ... n makes it a useful tool to
the cross-link distribution. Consequently, any external strairtletect correlations between the state of the sysbefore
applied to the systerafter the permanent constraints have cross linking(or, equivalently, the distribution of cross-link
been createdvill affect replicase=1, ... n, but not replica locations and the state of the systeafter cross linking(and
a=0 [10]. possibly deformation
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D. Field theory

The fundamental quantity to be computed in the replica
approach is the disorder averaged replicated partition func- o
tion [Z"]. Starting from the microscopic Edwards Hamil- fDQ exp{—n dNF,({Qih)}
tonian of Eq.(2.1) and the Deam—Edwards disorder distri- (2.10
bution [10], and after performing a Hubbard—Stratonovich
transformation that eliminates microscopic monomer posiwhere, once again, we choodeso that = k“ for a
tion variables in favor of field variable@; [31], the follow- =1,...g andl*=0for a=0 anda=g+1, .
ing expression is obtained:

DO Qf exp{—n dNF,({Qi})}

E. Stationary-point approximation

[Zn]:Nf DQ exp{ —n dNF,({Qi})}- (2.6) The simplest available method to evaluate the free energy
and the order parameter is the stationary-point approxima-
Here 7,({Q4}) is a replicated free energy functional and thetion, which also provides a starting point for possible im-
symbol [DQ denotes integration over all possible configu- provement, for example, by way of the loop expandigh
rations for the fieldQ);, where the independent set of vari- In the stationary-point approximatidi], we have
ables is the set of all complex-valuél; (for k in the half- —
space determined by the condition tkan be positive for a f=d r!'TO m'k?}— ({0 (21D
fixed unit vectom). Outside of this half-spacé); is defined
the relatiom) _;=QF . Ni lizati tant that
\k/)v)illl bee rige;r?olr(:ed h;ncefl;)rt;l\/:saitnc(zl)(r)z:rzz(i Li()f?ef:?r:rsleaCaluea‘ of fhe vaIueQ| of the field £} that provides the minimum also
the order paramet¢see Eq(2.10] or the dependence of the determines the order parameter according to
free energy on any shear deformations of the contaises o
Sec. Il O. As for the free energy functiond, ({Q}), it is Q1 o= limQ;. (2.12
given by n—0

Proposing a general solutiorAs has been discussed in
Refs. [19,20, the stationary-point equation for the free-

ndF, ({0 =a2 ST
V'

B energy functional near the transition is exactly solved by the
—In< exp( %VNE ReQ;p% following hypothesis:
w i=(1-a) 87,5+ a87 oW (D), (2.133
5 —
+ 2&2 T ReQipf ) > , (2.7 A " *2
vtk n+1 WU(l)sf drp(r)e "7, (2.13b
0

where the symbo}:denotes a sum over repllcated wave vec-

tors in the higher replica sector, the symEoUenotes asum
over replicated wave vectors in the one replica sector, and !
the superscript t restricts a given sum to replicated wave T= Z
vectors satisfying the conditiokr n>0 for a fixed unit vec-
tor f. The parametex2=\?—V'~"u?/N gives the strength
of the excluded volume interaction between the monomer
after renormalization due to the effects of the crosslinking.
The one-macromolecule Fourier-transformed dengityis

with
(2.19

The physical motivation for this hypotheS|s comes from a
f)lcture in which a fractionq (the “gel fraction”) of the
'monomers are localized around random mean positgiss
about which they execute harmonic thermal fluctuations

defined via characterized by random localization leng#és). In terms
1 .. of the Fourier-transformed particle density for an individual
Pi= fo ds dk-c® (2.8  monomer, this picture translates into the expression
for a macromolecular configuratiar(s), and the replicated (explik-cj(s))), =explik-bj(s))exp(— &(s)?k?/2).
Wiener average is defined by (2.19
- 11 |dc(s) 2 The mean positions and localization lengths are assumed to
f Dc(’)exp( - §fo dsl—5 ) be distributed independently, with a homogeneous distribu-
(O = ——. (2.9 tion over the sample for the mean positions, and a statistical
fDa exp( B EJlds dc(s) ) distribution 26~ 3p(¢72) for the localization lengths. By
2Jo ds combining the contributions from all monomers in the sys-

tem, we see that the proposed statistical distributions give
Analogously, the order parameter can be obtaing@ak rise to an order parameter of the form
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db . - A
D, kg=<1—q>6k1,o~-~6kg,o+qfve'<kl+'”+kg>-b ndA({Qih)= 2 (—e+3[k2)]
ke RY
x | “a(e 2p(e e 0t T2 0000000 i b
0 kqkokgeRY
(2.16a (2.1
=(1—0) k1,0 - - Ska.0t ASk1s ... +k0,0 This form for 7,({Q}) can be obtained either from a

. semimicroscopic model, as sketched here, or via an argu-
X f drp(r)e (D*r+09?2r 51y  ment involving symmetries and the continuity of the transi-
0 tion in the context of a Landau theory. The same free-energy
The homogeneous distribution of the mean positions of théunctional actually describes a universality class of physical
localized particles gives rise, in ER.163, to an integral systems that display liquid—amorphous-solid transitions
over b, which represents the delta function that appears exsimilar to the one shown by vulcanized systefiR6].
plicitly in the second term of the right-hand sigRHS) of
Eqg. (2.16h. In the second line we have also identified the 2. Stationary-point approximation
variabler= 1/£2. By taking the replica limit in the manner of

Eq. (2.12, the order parameter hypothedisf Egs. (2.133 manding that variations af,({Q}) with respect to the or-

and(2.13D] redu_ces_ to Eq(2.16h. . .der parameter should be zero. This results in the stationarity
From our motivation of the order parameter hypothesis, it

is evident that, in Eq92.163, (2.16h, and(2.133, delocal- equation
ized and localized particles are, respectively, represented by 0=2(— e+ L[K|2) 03 2—: 00 0% 6 i
B 2 R 177Ky Pk ko ke

We now obtain the stationary-point approximation by de-

the first and second terms on the RHS. The funcut(k), kyky e RY

which we refer to as theontinuous parbf the order param- (2.18
eter, encodes information about thermal fluctuati@he su- The stationary-point equation E@.18) is satisfiedin the
perscriptu standing for “unstrained system.”’ limit n—0) by the hypothesis Eq&2.133 and(2.13b, pro-

The hypothesis of Eq$2.133 and(2.13b for the order  \iged that
parameter only allows for a liquid phas®r q=0) and for
an amorphous solid phagtr g>0). It is useful to notice 0= 6% o[2(3q2—Eq+qf<2/2)fwd7'p(7)e_k2/27
here that the order parameter is zero in the one replica sector, ’ 0
independently of the values af and p(7). This is to be
expected, since the disorder averaged particle density is spa- _3qu°°d71 p(Tl)fwde p(rz)e‘kz’z(fl”z)].
tially uniform in both the liquid and amorphous solid phases. 0 0

(2.19

F. Behavior near the amorphous solidification transition

For the regime close to the transition which occurs at 3. Gel fraction
w?=1, it is convenient to define a variable=3(u?—1)
that measures the distance to the transition. &0 the
system is in the liquid phase, and fer-0 the system is in
the amorphous solid phase. 0=—2qe+ 30> (2.20

By taking the limitk?>— 0, the above equation reduces to
a condition for the gel fraction,

1. Free-energy functional For negative or zere, corresponding to a cross-link density

Close to the transition the order parameter is dominate{)esfS tha_m or e_qual to its cri_tical value, the only_physical SO
by long localization lengths. This is to be expected on physilution (i€, with 0<g=<1) is q=0, corresponding to the
cal grounds, because the system is “barely solid,” allows thdiduid state. For positivee, corresponding to a cross-link
monomers to thermally fluctuate over long distances; and {ff€NSity in excess of the critical value, there are two solu-
has also been shown directly by computipgr) [19,20. tions. One, unstable, is the continuation of the liquid state
Here we take this as an assumption, and later show that tlgb: 0; the other, stabl¢33], corresponds to a nonzero gel
solution obtained for the order parameter is consistent witraction, i.e., to the amorphous solid state,
this assumptioh32]. _ ' q=2e. (2.21)
As that saddle point value of the order parameter is zero
for wave vectors lying in the one replica sector, any term inAs mentioned above, the gel fractigand consequently the
the expansion ofF,({Q;}) that contains it as a factor will order parametgr change continuously at the transition,
automatically vanish. We therefore ignore all such termswhich means that a¢=0 there is a continuous phase transi-
henceforth. tion between the liquid and the amorphous-solid state. More-
By expanding Eq(2.7) in powers of the order parameter over, the linear dependence of the gel fraction witimplies
and the wave vectors, assuming that the order parameter gsimilar linear dependence with the excess of the cross-link
zero in the one replica sectnd, in order to simplify later density[ M ]/N above the critical valué /N at the transi-
algebra, rescaling- by an overall factor of 6), we obtain for tion: g=~2e/3~([M]/M.—1)=([M]/M.—1)?, with g=1,
the regime near the transition a free energy of the form: i.e., we recover the classical exponent for the gel fraction.
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4. Distribution of localization lengths

_ ” k2120
In the amorphous solid state, by assuming that(BZ0 (k) fo o m(6)e ' (2.260

is satisfied, Eq.(2.19 reduces to a nonlinear integro- Hence, we see that the order parameter is also described in
differential equation involving only the distribution din-  tayms of a scaling function, in this case(k). As

verse squapelocalization lengthsp(r): for 7(6), the asymptotic forms ofs(k) can be obtained
2 4 analytically: w(k)~1+ck®+dk* (for k<1) and w(k)
Tap_ (f —rlp(r)- fj’dﬁ p(r)p(7—71). ~(97k3/\/8b) *2exp(~2bK?) {1+ (27/40J2bk?)} (for k
2dr \2 2J)o >1). A numerical calculation yields(k) for all k, and de-

(2.22  termines the coefficients~—0.4409 andd~0.1316 (see

The form of this equation immediately suggests that, to théqef' [19)).

present level of approximation, ak dependence can be
eliminated by the scalings34]: IIl. RESPONSE TO SHEAR STRAIN

In this section we discuss the effects of an externally ap-
plied strain, both on the semimicroscopic macromolecular
, ) , L structure of the system and on the value of its free energy. To
Thus, the universal scaling functiom(¢) satisfies the pa-  yq this, we repeat the preceding followed in the previous

p(r)=(2le)m(0), 1=(€l2)6. (2.23

rameter free equation section to obtain the order parameter and the free energy of
5 the system, but this time we consider in detail the effects of

9_ d_T’ —(1-0)m(6) - jgdﬁf (6" )7(6—0") deforming the boundaries of the container. As we did before,

2 do 0 ' we are going to concentrate on the behavior near the amor-

(2.29 phous solidification transition, and we are going to employ
together with the normalization condition the stationary-point approximation in order to obtain explicit
results.

1= Jo do (). (2.25 A. Description of the deformation

This normalization condition directly follows from the fact ~ We characterize the deformation of the system by the (
that the order parameter of E2.4) has to be unity at the *d) deformation matriXS, that describes the change in po-
origin [19,20, and is consistent with the physical interpreta- sition of any pointb at the boundary of the syster-S-b,
tion of p(7) as a probability distribution. with S independent o_b. For any matrixS, it is possible to
The scaling functionm(6) determines the behavior of find a diagonal matris and two rotationd) andV such that

both the distribution of localization lengths and the orderthe decompositiors= USV holds [35,36. This decomposi-
parameter near the transition. It has a pealﬁ:aﬂ. of width tion can be interpreted in terms of a physica| process per-
of order unity, and decays rapidly both &-0 and formed in three steps: in the first, the system is rotated in
9—>°°-2 The asymptotic forms of the decays are{f) space as described b, in the second, it is deformed with
~ad “exp(-2/6) (for ¢<1) and m(0)~3(b6—3/5)€Xp 1o diagonal deformation matrig; and in the third, it is
(—bg) (for 6>1). These forms are obtained analytically \qated as described Hy. The only part of this process that
from Eq.(2.24); the coefficientsa~4.554 ancb~1.678 can  epresents a genuine strain, and can therefore possibly alter
be extracted from the complete numerical solution of Eqihe free energy of the system, is the second step. Therefore,
(2.24 [19]. ) ) we may(and shall always assume, without loss of general-
Due to the fact thatr(#) has a well-defined, unique peak v, that the deformation matrix is diagonal. As an example
that concentrates most of the weight, it makes sense to defing o qeformation matrix fod=3, let us consider the case in
atypicallocalization 'eQ%t;ftyp’ and from Eq(2.23 we see  \\hich thex, y and z Cartesian components of the position
that it scales agy,~e ™ In particular, it diverges at the gcior are, respectively, elongated by the fachrs\,, and
transition, as anticipated above. It is interesting to notice tha}\zy the matrixS has the form diag(;,\,,\,). As we are

this typical length scales with the same exponent as the ongncemed with the effects of pure shear strains, we shall
obtained in the classical theory for the correlation length..qcider only deformations that leave the volumef the
However, &y, is a quantity that describes the localized system unchanged, i.e.

monomers, whereas the correlation length of the classical
theory describes the delocalized monomers. detS=1. (3.2

5. Order parameter For considering infinitesimal strains, it is convenient to de-

The order parameter also has a scaling form near the traﬁ'—ne the(diagonaJ strain tensor

sition, which follows directly from its parametrization in
terms ofg andp(7), Egs.(2.133 and(2.13b, and the scal-
ing form for p(7), Eq. (2.23:

J=S-1, (3.2

wherel is the identity matrix. For small shear deformations,
we have

Qp=(1-2€l3) 5 o+ (2€l3) 5% g (N 2K €),

(2.263 1=detS=1+tr(S—1)+0((S—1)?), (3.3
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and consequently C. Free-energy functional for the deformed system
Conceptually, there are two sources for the change in free

rJ=0, 34 energy, Eq(2.11), under deformation: the change in the ex-

to first order in the deformation. pression for the free-energy functional itself, and the conse-
quent change in the value of the order parameter that solves

B. Deformation and replicas the stationary-point equation. The free-energy functional for

the strained systerfr;({Q;}) is obtained by repeating, step-

_Before taking the thermodynamic limit, the system is fi- 10 the procedure followd@0] to construct the free-
hite in extent, and thus the Fourier representation of anyfunCs ooy functional for the unstrained systef({Qz)). The
tion of position consists of a superposition of plane wave

th belonai di h X %nly change resides in the fact that integrals over the posi-
with wave vectors belonging to a discrete set. The precise st < ot the monomers in replicas=1, . .. n now range

of wave vectors is determined by the periodic boundary CONgyer the region occupied by the strained sample instead of

ditions. In particular, the order parameter is represented by fhe region occupied by the unstrained sample and, conse-

func_noan tha'g is only defined at a dlscrgte set of points in uently, the summations over replicated wave vectors now
replicated Fourier space. Now, under strain the boundanesﬁ

L ; un over the new seR® of wave vectors in replicated space:
position space are displaced and, as a consequence, the dis-
crete set of points in replicated Fourier space move. As pre-

viously mentioned in Sec. Il B, any external strain applied to 55(c)= T > explip-C). (3.5
the system after the permanent constraints have been created V> pere

will affect replicasa=1, ... n, but not replicaa=0 [10].

Therefore, the change in the discretization of the wave vecAs a result, one has

tors occurs only fo=1, ... n, but nota=0. For replicas

a=1,...n, the set of allowedl-dimensional wave vectors 2, N 1 1 2N

r' corresponding to the unstrained system is replaced by £ E dsf dt&s(f:i(s)—f:j(t))= . 2 |Qb|2'
new setr® corresponding to the strained system. Conse- N i7=1 Jo 0 2V" pcre
quently, the seR® of allowedreplicatedwave vectors in the (3.6
strained system is composed of all replicated wave vectors

k={k% k2, ... K"} such that and the expression fdiz"] in terms of monomer densities
k®erY andk®er* (for replicasa=1, ... n). becomes

~ 2
) 1 |dci(s ~r N TN
e‘N“"’J Dc exp‘ -1 2 f dSL —NRﬁNE ! Qpl2+NE ! |Qk|ZJ
e 2i=1Jo ds VﬁERS Vkers
(7= . (3.7

Noorro|de(s)]? -~
chexp{—%E ds‘—’( )‘ —N)\%NET |Qp|2]
ji=1 Jo ds \Y p

Two features should be noted here. One is that the denominator in fofBidldas not affected by the deformation, because
it is the normalization factor for the disorder distribution, which is fixed before the system is deformed. Thus, the normaliza-
tion constantV in Eq. (2.6), which reads

exp(—Nng)
A= f - 1 EN: fld dc;(s)|? N~2N ST o)?
cex 22, S — on : |Ql

, (3.9

ds

is unchanged by the deformation, as anticipated in Sec. Il Dihe region of integration for the variabte and in that the
The second feature is that the general form of the expressiagmmations over replicated wave vectors run over either the
for [Z"] in Eq. (3.7) is unchanged with respect to the corre- setRY or the setRS.

sponding expression in the unstrained system, even to the From Eq. (3.7 one immediately obtains, with the

point that the values of the prefactors multiplying the sumsjubbard-Stratonovich transformation as in Sec. 11D, the
over replicated wave vectors are unchanged. The only diffefree energy functional

ences between the unstrained and strained system reside in
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~ N . + 2 = +
ndFs{Q)=R2" 2 Q2+ A X T 02 £ .
VbERS VnkERS

~22N
—In<exp{|)\ﬁ—A2 ReQpph
peR®

Sb Si

2ul ot W
ALY Rngp’k*)> . (3.9
V" ReRrs nt1

As in the case of the undeformed system, we are going to
take one further step, and restrict ourselves to the regime

() (b)

near the amorphous solidification transition. FIG. 1. Change of the localization region for an individual
monomer due to an externally imposed stré@:assuming that the
D. Free-energy and stationary-point equations fluctuation region around the mean position deforms affingdy;

assuming that the fluctuation region around the mean position stays

. . spherically symmetric.
In the regime close to the transition, we can expand the

free energy functional in powers of the order parameter and in localized in the deformed system. The ve@eb; (s)

the wave vectors, as we did in Sec. Il F 1, and obtain the?S the affine displacement of the old positif®]. We now

analog of Eq(2.17) for the deformed system: make the assumption thgi(s) is a random additional dis-
placement, uncorrelated with)(s).

near the vulcanization transition

ndF3{Q= > (—e+ 5kl For each localized monomer, we also need some conjec-
keRS ture about the behavior under strain of the size and shape of
= the region within which it thermally fluctuates. We assume
- 2 Qi Ok, Qi Gy 4yt 0 that this localization region need not remain spherieal it
kakaks e R® was in the unstrained systerout might be deformed due to

(3.10 the external strair(Fig. 1). We will consider the position

. . . _fluctuations for the monomers:
As a result, the stationary-point equation for the strained

system becomes 8ci(s)=cj(s) —bj(s) (3.12
022(—6+%|R|2)Qk—3A E Qi O Bk i k- for the unstrained system, and
kik,e RS
o (3.1 55(s)=¢;(s)— (S-bj(s) +;(s)) (3.13

Although, superficially, this equation looks the same as Edfor the strained system, and also the individual monomer

entering in Eq(2.18 belong toRY, i.e., the set of replicated andp$. (r), as defined by X
1,8, x !

wave vectors corresponding to the undeformed system, and
all the wave vectors entering in E(8.11) belong toR®, i.e., pi s (1)=(3(r—ci(s))), . (3.14
the set of replicated wave vectors corresponding to the de- hex ! X
formed system. Therefore, while E.18 is invariant un-  one possible assumption is that the fluctuation region de-
der all permutations of thein replicas, Eq(3.11) is only  forms affinely, i.e., that
invariant under permutations of tereplicasa=1, ... n.
8¢;'(s)— 6¢(s) =S 6¢j/(s). (3.19
E. Proposing a hypothesis for the order parameter

We shall obtain the order parameter for the strained stat-é—hIS gives rise to the individual monomer density

by finding a solution of Eq(3.11). To do this, we shall use s _u “1 (S _
physical arguments similar to those used in the case of the P} sx (1 =pjs (S - (r=bj(s))+bj(s)) (3.1
unstrained system to motivate our guess for a possible sol

: . 1 real space, and
tion. As our guess will turn out to solve E¢3.11) exactly, pace,

this justifies,a posteriori our physical assumptions. As the iK-Ci(\S — k1S b (S) .
shear modulus is determined by an expansion of the free (€50 =explik-{S-by(s) +1(s)})
energy to quadratic order in the deformation, for the moment X exp(— £(s)k- S ki2) (3.19

we will only consider infinitesimal deformations.

For each localized monomer in the unstrained system weor the Fourier-transformed version. In what follows, we will
envisage that its old mean positidn(s) is displaced to a replace the matrixs? by its expansion to first order in the
new mean positiorbjs(s)=8~ bj(s)+t;(s). Up to this point  deformation
the only assumption is the physically intuitive one that those
monomers that are localized in the undeformed system re- SP~1+2J+0(F?). (3.18
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Thus, for an infinitesimal strain, the assumption of affine Here, ¢(t,7, %) is the joint statistical distribution for the

distortion of the fluctuation region gives the density parameters, 7, and#, i.e.,
(€% () =explik-{S-bi(s)+1;(s)}) 1 18
' e Gitnm=|5 3 [ dsst-b(9)at-y(s)
xexp(— & (s)k-{1+23}-k/2). (3.19 i=1Jo
An alternative assumption is that the fluctuation region X 8(7— (gj(s))—Z)g(n_ 7i(s)|. (3.2

remains spherical as in the unstrained system, i.e., that
In order for Eq.(3.24) to reproduce the order parameter of

8¢;'(s)— 6C5(s) = ¢ (S). (320  Eq.(2.16 in the limit of zero strain, the following condition
on (t,7,n) has to be satisfied:
This, in turn, gives rise to the individual monomer density
lim y(t, 7, 7)=&(t)p(7)d(7). (3.29
P o (1) =pl's (r—b5(s)+bi(s)) (3.2 S

The integral overb in Eq. (3.24 factorizes for the same

in real space, and . .
reason as in the undeformed system, namely bechuse

elk-G(9VS = axn(ik- S b (S)+t:(s)Vexn(— £2(s)k2/2 uncorrelated with all the oth_er param_eters. _
{ >X Aik-{S-bj(s)+1(s)hexpt §i(s) (3)22) In order to solve the stationary-point equations, we need
an expression fof);, wherek is a generic replicated wave
in wave-vector space. vector inR®. Obtaining this expression is less straightforward

Motivated by the above special cases, we propose ththan in the undeformed case: we have to take into account
following parametrization f0r<eik'cj(5)>i' which contains the fact that replicaa=0 is different from all the others

Egs.(3.19 and(3.22 as particular limits: because it is not affected by the deformation. This suggests
that for localized monomers we parametrize the Fourier-
<eik'cj(5)>i:exp(ik.{s. bi(s)+1,(s)}) transformed individual particle density by using E8.15
for =0 and Eq.3.23 for «=1, ... n, and thus we obtain
X exp(— £ (s)k- {1+ 7;(s)J}-k/2). the following form for Qj :

(3.23
The rationale for this generalization goes as follows. We
know that in the undeformed system the probability cloud is
asymptotically isotropic. For an infinitesimal deformation, * * =" k).t
one might expect the localization region to be slightly dis- X | dt o dr | d7y(t,7,n)e e
torted. To lowest order in the deformation, the matrix char-

n
db . -
Q=1 [ Seagtq| et orumiksn
a=0

acterizing the deformation i& The other ingredient that can w @ (K20 _ k{147 3} k)2 (3.27a
influence the shape of the localization region is the disorder:

thus we include a random factay;(s) that weights the de- =(1=) 85+ S0rasn e gWE(K).

parture of the localization region from spherical symmetry. ' Ta=1"

For example, ifn;(s)=2, Eq.(3.23 would reduce to Eq. (3.279
(3.19, meaning that the probability cloud is affinely dis- To arrive at the second line we have observed that the prod-
torted. By contrast, ify;(s)=0 Eq.(3.23 would reduce to  uct of wave-vector Kronecker delta functions corresponds to
Eq. (3.22, i.e., the probability cloud would remain spheri- a delta function for replicated wave vectors, we have identi-
cally symmetric, as it is in the undeformed system. In thefied the integral oveb as a representation of a Kronecker
same spirit as in the undeformed case, we assume that tigelta function in wave-vector space, and we have denoted the
parameters; and ¢ describing the exterfand shapeof the integral overt, r and 7 asWs(k), i.e., the continuous part of
fluctuation region are uncorrelated with the original meanthe order parameter in the strained system.
positionb. Although it is not trivial to propose a general form for the
By consideringg real copies of the system, and adding theprobability distribution (t,,7), under fairly mild condi-
contributions of all monomers, we can explicitly constructtions it is possible to expand its Fourier transform with re-
the order parameter of E¢R.4): spect to the random displacemerib first order in the strain
and to lowest nontrivial order in wave vectors:
Q. KI=(1-Q) 810X - - - X Sya g

f dt e’y (t,7,7)=p(7) 8(7) +m(r,7)p-J-p+0O(3),
(3.28

% U G+ +k9.t With m(r,7) an unknown function. The correctness of this
f dtfo de_wdﬂ Pt 7, m)e expansion can be justified as follows. The value of the right

+qJ (i/_bei(k1+m+kg)~s~b

L . . . hand side of Eq(3.28 in the limit of zero strain is dictated
x @~ (A Ikt H ISy 3527 (324 by Eq.(3.26). The first order correction in the strain is de-
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termined by assuming that it is invariant under a rotation ofinvariant under rotations is d which is zero for infinitesi-

the coordinate systeifwhich is equivalent to a simultaneous mal shear strains, as mentioned above. In addition, by using
rotation ofp andJ). This condition only allows for the fol- Eq.(3.29, any term of typdiiv) is reduced to a term of type
lowing terms:(i) a linear function ofp-J-p times any func-  (ii). Thus only terms of typeii) and (iii) are left, and we
tion of p? and(ii) a product of an invariant linear function of recover Eq.(3.30. Note that in Ref[4] the term(ii) was

J times any function op?. The only quantity linear id and  omitted from Eq.(9); the results, however, are not altered by
invariant under rotations is dr which is zero for infinitesi-  this omission.

mal shear strains, as mentioned above. Thus we only have

term (i), which, to lowest nontrivial order in wave vectors, F. Solving the stationary-point equations

reduces to the contribution appearing in E828). ) ,
The integral ovet in Eq. (3.273 is the same as thatin Eq. & now show that the hypothesis proposed does indeed
(3.28, but with p replaced by satisfy the stationary-point equations in the deformed sys-

tem, provided that the gel fractianand the scaling functions
m(0), {(6), andw(0) satisfy appropriate conditions.

n In order to perform the summation over wave vectors in
> k*=—-5"1.Kk0~ -k (3.29 the stationary-point equation, E.11), one has to take into
a=1 account the fact that the sum excludes vectors in the one and

zero replica sectors. For any expressiQrihat is zero in the

The approximation in the second line is consistent with ou®ne replica sector, the following identity is valid in the large

keeping only terms linear in the deformation in £8.29. volume limit:

We are now in the position of being able to simplify the _
form of Eq. (3.273 substantially, by taking the following E fR:VJ’Afg—JimAfg. (3.3)
steps:(i) we use Eqs(3.28 and (3.29 to perform the inte- k k k=0

gration over the random dlsplacement(u) we expand. all To simplify our notation, we make use of the following
terms consistently to linear order ily and (iii) we define shorthand:

scaling variables in a way analogous to that shown in Eg.
(2.23. dk
As a result of these manipulations, we arrive at the fol- fo=\yN | ——— f; (3.32
; ; ; ) L (1+n)d X’ :
lowing hypothesis for the continuous part of the order pa k (2m)
rameter:
the factorV" in front of the integral will be irrelevant in the
replica limitn—0, and we will ignore it from now on. Then

~ o - L(0) the stationary point equation for the deformed system can be
V\/S(k)=0|f0 doe X< m(6)— Tk0~J~kO rewritten as:
) S oy e
T e Z Kk ) (3.30 0:2(3q—e+%|R|2)m—3vﬁn;,m_;,. (3.33
p

Here, {(#) andw(6) are new scaling functions, which de- Two observations are in order here. One is technical, namely
scribe the change in the continuous part of the order paranthat the volume prefactor in the second term, although it
eter due to the deformation. They are unknown at this pointmight appear dangerous, is in fact compensated by a factor
but they will be determined later by demanding that the hy-of 1V coming from the integrand. The second is more pro-
pothesis(3.30 satisfy the stationary point equations for the found: at this point in the argument, all explicit dependence
deformed system, Eq3.11). on the deformation has been removed from the stationary
The motivation for the hypothesis, E(B.30, can be re- point equation. The only dependence that remains resides in
phrased in a more compact way as follows. Let us assumthe fact that the order parameter field entering in it has to be
that for small strain§V3(k) is unchanged by a rotation of the consistent with the boundary conditions for the strained sys-
coordinate systentor, equivalently, by simultaneous rota- tem, i.e., it must be chosen so that for a system of large but

tions of S andk). This is evidently true foW"(k) (which is finite volume the order parameter is nonzero for replicated

. ~y . wave vectors that belong to the discreteRetather tharR".
a function ofk). Therefore the difference between the two This restriction has nontrivial effects: it will be shown in the

quantitiesWs(k) and W*(k) has the same property. If we penyitimate paragraph in this section that a proposed order
further assume permutation symmetry among replieas parameter of the form given by E(.133, which would be
=1,...n, this difference can only contain, up to lowest perfectly acceptable if one completely neglected the discrete-
nontrivial order in the deformation and in the wave Vectors,ness of the SdRS, must be rejected because it cannot simul-

the following terms:(i) the product of an invariant linear taneously satisfy the boundary conditions and depend con-
function of J and a linear combination of a constark?)?, tinuously on the strain.

and=}_,(k*)? (ii) a linear function ok®-J-k®; (iii) a lin- By inserting the hypothesis for the order parameter, Egs.
ear function of2" _ k*-J-k% and (iv) a linear function of (3.27h and (3.30, into the stationary-point condition, Eq.
(20-1k")-J-(2}_1k"). The only quantity linear i) and  (3.33, and expanding to first order in the strain, we obtain
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o=5;syo[ 2(3¢%— eq+qk?12) J d0 m()e /- 3¢? J J doym(6y) J d0, m(9,)e PI<te (k-Pe;
0 pJo 0

{0 o .
—p°-J-p

. ~ " o 6 ~ o
><J’ dme'™mP —2(3q2—eq+qk2/2)J d0¥k°~.]-k°ek2’59+6q2ﬁf dé,
0 pJoO

” D k—p im.os ~ »  w() -
Xf 9, W(02)e_p2/fgle_(k_p)2/602f dmelm'p_2(3q2—eq+qk2/2)f da% S ke J.kee ke
0 0 a=1

) 0 n ® ~ A A . ~s
+6q2fﬁJ’0 dﬁlm c ) Zl p“.\].p“j0 dé, 77(Gz)e’pz’fﬁle*(k*p)z’fgzj dme'mP J (3.34

Here we have made use of the notation

n

ks=k°+S- > ke, (3.39

a=1

and the integral representation for the Kronecker delta
1 ok
5k'°:V dme'™¥, (3.36
After performing the integrations, first over, then ovemm, Eq. (3.34 reduces to

0= 2(3q2—eq+qi<2/2)f dew(e)e‘k2’69—3q2f delf d6, 7(6y)7(6,)e KIe(01+62)
0 0 0

01
01+ 65

2 ~
{(0y) m(0,)e Kletrt o)

1 R ) N 0 )
—Z{kO.J.kO}[2(3q2—eq+qk2/2)f deg(o)e—szf"—equ delf de,
0 0 0

€| a=1

1 n R 0 ~ ) 0 2 ~
——[Z k“-J-k“][2(3q2—6q+qk2/2)f dﬁm(e)e’kz/“’—quf dalf dez( )m(&l)ﬂ'(ﬁz)ek2/5(91+92)}.
0 0 0

1
0.+ 0,
(3.37

Now, what conditions are forced on the unknown quanti- 2 d¢ 2 o
tiesq, 7(0), £(0), andw () by this stationary-point equa- > ﬁz(l— 0)L(6)— _;J de'e'?z(6")m(6—0"),
tion? First, by taking the limik’—0 we recover the condi- =Jo

tion for the gel fraction (3.39h
0=—2qge+309°? 3.3 0 dw 1-0)w (6 Zfeda'a'z 0')m(6—6'
=—20e+3Q°%, (3.39 ?ﬁ—( )@ (6) R w(6")m( ).
(3.399

which implies thaig=2¢€/3 for e>0. It is not surprising that
we obtain the same gel fraction for the amorphous solid state As for the boundary conditions satisfied by the scaling
as in the unstrained system, as in our motivation for the ordefunctions=(6), {(6), andw (), they are obtained by study-

parameter hypothesis we assumed that the monomers thay the values of the order parameter in different regioris of
were localized in the strained system would also be thosgpace_ First, as noticed in Sec. Il F 4 for the casp(af, the

that were localized in the unstrained system. . . A
Next, we observe that demanding tf?at E2)37) be valid fa(A:t that the order parameter is unity at the oridim., k
for all ke RS is equivalent to the above equation for the gelzo) determines the following normalization condition for
fraction, together with the following integro-differential m(0):

equations for the scaling functions( 6), {(0), andw(6):

f do=(0)=1. (3.40

0

02d77— 1-0)w(6 jgda’ 0')m(6—6'

2 deo = )m(6) 0 (&)l ) Next, to derive boundary conditions fg(6) andw(6) we
(3.393 observe that, from Eq2.4),
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lim le ’’’’’ K9 0, (34])
(KH2+ -+ (k9?0
and consequently that
lim Q;=0. (3.42
kzﬂoc

In order to benefit from this information, we perform the

change of variables
6—y=Kk% €6 (3.43

in Eq. (3.30), thus obtaining

(3.44

Here, we have defined the functiong ), Z(6), andw(6)
by
w ()= 6w (h),

m(0)=60?m(0), T(0)=6%L(0),

(3.45
and the unit vector={x°, ... x"} by
ka
X¢=—— (@=0,...n) (3.46
k2

From the expressiofB.44) for the order parameter hypoth-

esis, and the exponential decaymfd) for §— oo, it follows
that

n

lim Qg=—lim [ Z(0)x°-3-X°+w(0) >, x*-J-x*|.
QZHOC 0— o0 a=1
(3.47
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e—2/0

with A an arbitrary constant. Consequently, all three scaling
functions vanish rapidly at the origin.

As the reader has probably already noticed, the integro-
differential equations and the boundary conditions that apply
to both {(6) and w(#) are linear and homogeneous. This
implies that one of two possibilities must hold for each one
of these functions: either it is identically zero, or it is only
determined up to an arbitrary multiplicative constay
contrast, in the case af(#0), the integro-differential equa-
tion (3.393 is nonlinear, and the condition of E¢3.40 is
linear but inhomogeneous, and the scale of the solution is
well determined|. The latter possibility does not seem to be
easy to justify on physical grounds, as it would imply that
the stationary-point equations leave the order parameter un-
determined. In fact, if this were the case, there would be a
continuous family of order parameters such that the continu-

ous partsiVs(k) for members of the family differ to varying
degrees from the continuous part of the order parameter cor-
responding to the amorphous solid state of the unstrained
system. One could, however, imagine that we are missing
some additional physical constraint that fixes the scale of
these two functions, and therefore the above argument is
suggestive but not conclusive. To settle the issue of which of
the two possibilities holds fof(6#) andw(6), we show, in
Appendix A, by analytic manipulation of the integro-
differential equations and boundary conditions, that both
£(0) andw () are identically zero.

The fact that both{(8) and w(#) are identically null
implies thea priori most surprising result of this paper: the
continuous part of the order parametizes not chang¢o

first order in the strain, i.eMWs(k) =WU(k). This conclusion
is consistent with the phantom network pict{ige12). It also
suggests thatVs(k)=W(k) for finite (and not merely in-
finitesima) deformations. Indeed, our order-parameter hy-
pothesis turns out to satisfy the stationary-point equation for
arbitrarily strained systems.

To see this, let us return to the stationary point equation

However, this limit must be zero regardless of the direction(3.33. As was mentioned earlier, E(3.33 applies both for
of X, and consequently we obtain the following boundarythe unstrained and for the strained systems, the only differ-

conditions for(6) andw (6):

lim 62£(6)=0,

f— 0

(3.483

lim 6°w(6)=0.

H— 0

(3.48b

To obtain boundary conditions #&=0, one only needs to
examine the integro-differential equatiof3.393, (3.39h,

ence between the two cases being that in the unstrained case
the “external” replicated wave vectdt belongs to the dis-

crete seRY, whereas in the strained caséelongs to the set
RS. By inserting the form for the order parameter given by
Eq. (3.27h, but now withws(k) =WU(Kk) [i.e., given by Eq.
(3.30 with {(#)=w(6)=0] we find that the stationary
point equation is satisfied providet( §) satisfies Eq(2.24).
One way of understanding this result is to consider that in
order for the shape of the fluctuation region to be affected by

and (3.399 themselves. Near the origin, the integral termsthe externally imposed strain, this strain has to be somehow
can be neglected, and all three equations reduce to the forrsommunicated to the individual monomers. This is most

0% df
=(1-6)f(0), (3.49

2dg

wheref stands forw, ¢, or w. This is a first-order linear
differential equation having the solution

likely the effect of the deformation of the “cage” of sur-

rounding polymers that form the local environment at each
point. However, when the interlocking of loops is neglected,
as in the present calculation, this “cage” exerts no effect.
Therefore, this result should be taken with caution, as its
validity might not extend beyond the region near the transi-
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tion, in which the approximation of neglecting the interlock- Af=d lim{FsdQN) — £ Q. 35

ing of loops is fully justified. nao{ (1) = Fa({ 4 359
At first sight, it might appear possible to propose alterna-

tive hypothesis for the structure of the deformed amorphougere)$

_ _ : - . andQE are, respectively, the stationary-point values
solid state. One possible alternative hypothesis would be t

assume that the order parameter is completely unchang 8& the order parameter for the strained and unstrained sys-
when the system is deformed. However, this is not quit ems. Similarly, 7, and 7, respectively, denote the free-

correct. In addition to the stationary-point equation, the ordefn€rgy functionals for the strained and unstrained systems.
parameter has to satisfy the boundary conditions in reaf's We show in Appendix B, the free-energy change due to
space for the deformed system. This means that the hypotfie deformation is

esis of Eq.(3.27h for Qf is physically meaningful only for

k belonging to the set of allowed replicated wave vecRis Af= 363 tr(S2—1). (3.52

If the order parameter corresponding to the unstrained sys- 27

tem were retained, there would be a facfr, in the term

corresponding to the localized monomers that would be zerdhus we can extract the value of the static shear mod&lus
for generic values of the deformation mat$xunlessboth ~ of the amorphous solid state near the solidification transition
k°=0 and =" _,k*=0. As in the undeformed system this (with physical units restorgd

same factor is nonzero faE!_ k*=—k%#0, this would 3

give rise to an unphysical discontinuity in the order param- E=kgTNCe”, (3.53

eter as a function of the deformation. On the other hand, the

modified delta factoys o that appears in Eq3.27h takes wherekB is Boltzmann’s con.s.tanﬂ,' is the temperature, and
into account the shift in the reciprocal lattice due to the de-C iS @ model-dependent positive constant. Hence, we see that

formation, and displays no such discontinuity. In mathemati-the static shear modulus near the vulcanization transition is

cal terms, finding the intersection between the set of measufd'aracterized by the exponent 3, in agreement with the
zero in Fourier space that corresponds to macroscopicallgiassical resulf5,2]. A simple scaling argument, viz., that
translation invariant states and the discrete set of points afl'® mc;dulus should scale as two powers gf the order param-
lowed by the strained boundary conditions plays a cruciafter @) and two powers of the gradien£ (), leads to the
role in selecting the correct order parameter for the deformegame value for the exponent
system. In more physical terms, the order parameter needs to
somehow “remember” that when the system was cross IV. CONCLUDING REMARKS
linked, it had a different shape. The factéts o is the one
that keeps this memory, by correlating the=0 replica(as-
sociated with the cross linkingwith the replicas «
=1,...n (associated with the present, strained state of th
system in a way that explicitly depends on the strain. If this
information was lost, we would be computing the free en-
ergy of a system that was cross linkafter being deformed,
and this would be independent of the deformation.

A second possibility would be to keep for the order pa-
rameter the form proposed in E@.27h, and to choose for

In this paper we have presented a microscopic derivation
of the static elastic response of a system of randomly cross-
dinked macromolecules near the amorphous-solidification
transition.

From the technical point of view, we have modeled the
deformation of the system by changing the boundary condi-
tions in real space. A point that required special care was
how to include in our formulation the physical information
that the system had been cross linkeefore it was de-
formed. This results in an asymmetry in the replica formula-

its continuous part the formAS(k)=WU({k®,S-k*, ..., . L ; -

i . tion of the problem: in the case we are studying, replica
S-k"}) [37]. Although this hypothesis might appear natural, =0 describrzas the systebeforethe deformatioill ig appr;ied
since it represents an affine deformation of the localization, - | replicasa= 1 n describe the system in its actual

clouds for each monomdin the manner of Eq(3.19], it state of deformation.

turns out that it is not a stationary point of the free energy The physical picture that emerges from the results of this
[38]. This nonstationary point does not represent a phySiCE:[Laper has the following featuresi) the amorphous-solid
state because the thermal weight_s of the configuration_s aéate, which had been previously .shown to be characterized
not pgakgd around it. Indegd, Itis easy to show by direc tructurally by the localization of a nonzero fraction of par-
Insertion in Eq.(3.33 tha_t this hypotheS|§ wou!d be a sta- ticles, is also characterized by having a nonzero static shear
tionary point for a modified free energy in which the term modulus; (i) the static shear modulus scales as the third
quadratic in{j had a modified coefficienﬁA— e+3((k%)? power of’ the excess cross-link densityeyond its value at
+(S-kH)?+ - -+ (S k"?)] instead of (- e+k?/2). Inmore  the transitiop [39]; and (iii) the form of localization exhib-
physical terms, since this state describes monomers that fluged by the particles is left unchanged by the strain.
tuate in regions whose shape is not spherical, it fails to maxi- A possible explanation for the spherical localization re-
mize the entropy, given the constraints imposed on the sysgions that the particles exhibit even under externally applied
tem. stress might be that in the regime near the transition most
monomers in the infinite cluster are very loosely connected,
and thus their behavior is dominated by the maximization of
We now have all the ingredients necessary to calculate thentropy, which is obtained by allowing them to fluctuate in
change in the free energyf, to leading order ire, due to  all directions. It is not implausible that strain-induced
the deformation of the system: changes in the pattern of localization would emerge from a

G. Change in free energy with deformation; shear modulus
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more detailed analysis of the effects of the excluded-volumerhe function 7(s) appearing in Eq(A4) is the Laplace
interaction, at least at higher cross-link densities. This is betransform of the scaled probability distributior( 6) for the
cause at higher crosslinks densities, the macromolecular neinstrained system. By using its expansion for snsll
work is more tightly bound, and the topological barriers gen-ngmely

erated by interlocking of macromolecular loops are more

Sign?ficant. - - ;T(S): 1_5< 6>7r+ O(Sz), (A6)
Finally, let us point out that since the treatment presented

here only depends on the form of the free-energy functionghne can immediately show that E¢hd) has a regular sin-
[26] near the transition, and not any specific SemimiCrogyjar point at the origin, and thence use the Frobenius

scopic model, the approach to elasticity described hergethod[40] to obtain the asymptotic forms near the origin of
should be generally applicable not only to systems of ranyqg |inearly independent solutions:

domly cross-linked flexible macromolecules, but also to
other equilibrium amorphous solid forming systems. @l(s)=s—52+0(s3), (A7a)
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We have not been able to integrate E44) analytically.
APPENDIX A: CORRECTION TO THE ORDER However, it is straightforward to integrate it numerically,
PARAMETER UNDER STRAIN using the behavior given by EgA7a) as the initial condi-

In this appendix we show that the only solution to Eq_t[ion. The nymeri.cal solution thus obtained diverges f"‘t infin-
(3.39h that satisfies the boundary condition Eg.483 is  ity; but as¢(s) is the Laplace transform of a function, it
the null functionZ(#)=0 for all 6. Our approach is to as- 90es to zero at infinity. Therefore, by assuming that a non-
sume that a nonzero solution exists, and then to arrive at g0 solution can be found satisfying both &g.39H and
contradiction. As the equations and boundary conditions arEd- (3.489, we have arrived at a contradiction.
identical for{(#) andw (), showing that/(0) is identically
null would imply that the same holds fas(6). APPENDIX B: FREE-ENERGY CHANGE UNDER STRAIN

It is convenient to work withZ(¢) instead of(6). In

terms ofZ(#6), the integro-differential equation reads:

05(5)=3%—sIns+0(s). (A7h)

We need to compute the difference between the free en-
ergy of the deformed systemﬁﬁ({QE}), and the undeformed

0 d7 - 0 _ systemfn({QE}), as a function of the deformation mati®x
> g4 0)—2f0 do"f(6")m(6—6").  (Al)  From Eq.(3.10 we see thatF5({Q5}) contains both a qua-
dratic and a cubic term mi We first study the quadratic

The boundary condition is simply term. We make use of E¢3.31) to write, in the large vol-
B ume limit,
limZ(6)=0. (A2)
f— 0 _ P
S |- er )iy (®1)
It turns out that it is possible to derive a simple differential keRS 2
equation for the Laplace transforér(s) of the function |R|2
i e nm|m|2+vﬁ —er gl @2
Poa k
—_> k—0
e(0)= g, (A3)

_ _ . . The term associated with the linkt—0 has the valueq?,
By starting with Eq. (A1), and using properties of the jndependent of, and is thus irrelevant for the present pur-
equation

- K[>

d?o(s) 2. R IEVI —e+—||Q¢f2 (B3)
s - k 2
e S2(9A-m(s)), (Ad) k
N To make the analysis more digestible, we define the no-
and the boundary condition tations

é<0>=fmde—dz=Iime)—Zm):o (A5) [=[ a0 mo) anda=(7+o) @4
0 %a6 " | )T )40 andascigt g ) (B
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The first step is to insert the form of the order parameter exd — L (m.m-)A(™2
for the solid phase, Eq$3.27H and(3.30, and use the fact =2 (MMo) A, )]
that /() =w(6)=0. We then have (47 detA)9?
il2 X 2 Smy ||\ "
IZVJ _6+|ﬂ q‘SESOJ o Koleo ex;{—%(Smlsmg)A(sz”
k 2 o x , (BY)
(472 detA )92
|2
<[ [ [ B L = - |
6,J 0,k 2 where the 22 matrix A is the inverse of the matrix
xJ.mném‘w+5214W) 1 1 1
J— + J— J—
e—m2/2a e—(Sm)Z/za n 3 01 0s s (B10)
— ~2y/N o 1 1 1
quJ( T d fdm di2 di2 - 4=
017 67 a (2ma) (2ma) 0, 0, 0;
— 2Vn _ _i 2 )nd d I+nSZ) —-1/2
=4 0 Jo € da 1(2ma)™ de( I; By performing the Gaussian integration ovey andm,, and
e expanding in powers afi, we obtain
(BS)
n . _
—g2(1+nInV)(- e+O(n))(1—§tr(Sz)) +0(n?), J=—q3V2”L L | (4n* detA) "Y2[detl+ns?)] "
1 2 3
(B6)

=—qg%(1+2nInV)(A—ntr($))(1L+0(n))+0O(n?).
where we have only kept the lowest two powers of the num-

; ; R (B11)
bern of replicas in the result. The change in this term due to

the deformation is . o
For this term, the change due to the deformation is

n

Al =5 eq?tr(SP=1)+O(n?). (B7) AJ=ng’tr(S=1)+0(n?). (B12)
Now, to compute the cubic term, we use E§.31) re-  Similarly, the second term on the right-hand side of @&f)

peatedly to obtain can be evaluated to yield

—&&%E Vi B iy K=3vg fd i
PR ) n
= —VZL J‘kzﬂklﬂkzﬂ—kl—kz"" 3quklﬂk|2—2q3- =3g3%(1+n InV)( 1- Etr(sz))(1+ O(n))+0(n?),
1

(B8) (B13)

Next, by inserting the fornjEgs.(3.27b and(3.30] of the _ o
order parameter, the first term on the right-hand side yieldsand its change under deformation is

E—qSJ J f f J' efkf/eol—kg/eoz—(&ﬁkz)z/eas 3n , ,
0, 0,) 05k, J iy AK=—7q3tr(S—l)+O(n ). (B14)

imy-(k9+s-=_ k) imy-(kK3+S-="_ k)
XJ dm, e o f dmg e 2 o By combining the contributions given in Eq&7), (B12),
and(B14), dividing by the numben of replicas, and taking
=_q3v2nf f f fdmlf dm, into account the fact that=2¢/3, we obtain the free-energy
017 62 03 change due to the deformation given in Eg§.52).
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