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Bound entangled states are states that are entangled but from which no entanglement can be distilled if all
parties are allowed only local operations and classical communication. However, in creating these states one
needs nonzero entanglement resources to start with. Here, the entanglement of two distinct multipartite bound
entangled states is determined analytically in terms of a geometric measure of entanglement and a related
quantity. The results are compared with those for the negativity and the relative entropy of entanglement.
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INTRODUCTION

We are motivated to study the quantification of entangle-
ment for the basic reason that entanglement has been identi-
fied as a resource central to much of quantum-information
processing(see, e.g., Ref.[1]). To date, progress in the quan-
tification of entanglement for mixed states has resided pri-
marily in the domain of bipartite systems[2]. For multipar-
tite systems in pure and mixed states, the characterization
and quantification of entanglement present even greater chal-
lenges.

Among all entangled states, there is a peculiar class of
states, bound entangled states, originally discovered in the
bipartite setting, where some connection to zero negativity
was identified[3]. These are states that are entangled, but
from which no pure entangled state can be distilled if all
parties are allowed only local operations and classical com-
munication (LOCC). The distillable entanglementsEDd is
thus zero. Bound entangled states can be either bipartite or
multipartite, the latter possibly exhibiting more structure
than the former. However, it does take nonzero entanglement
to create bound entangled states under LOCC. It is thus de-
sirable to see how much entanglement is needed.

However, the two most important measures—
entanglement of distillation sEDd and of formation
sEFd—have so far been limited to bipartite settings, as there
are ambiguities in generalizing them to multipartite systems
[4]. In order to explore multipartite settings, it is thus, on the
one hand, necessary to lay down bounds on the entanglement
content for distillation and formation. On the other hand,
applying other measures, such as the relative entropy of en-
tanglementsERd, to multipartite states may prove helpful in
quantifying entanglement. Recently, a multipartite entangle-
ment measure based on the geometry of Hilbert space has
been proposed[5–7], and has been applied to several bipar-
tite and multipartite cases. The merit of this measure is that it
is suitable for any-partite systems with any dimension, al-
though determining it analytically for generic states remains
a challenge.

In the present paper, we study the entanglement content of
two distinct bound entangled states: Smolin’s four-party un-
lockable bound entangled state[8,9] and Dür’sN-party Bell-
inequality-violating bound entangled states[10]. For each,

we determine analytically their geometric measure of en-
tanglement and a related quantity. Under certain circum-
stances, these give lower bounds on their multipartiteEF. In
addition, we make conjectures concerning their relative en-
tropies of entanglement. Although quantities such as the geo-
metric measure or the relative entropy of entanglement may
not be able to reveal the exact nature of bound entanglement,
they nevertheless quantify for these bound entangled states
the content of entanglement that is unextractable.

GEOMETRIC MEASURE OF ENTANGLEMENT

We begin by briefly reviewing its formulation. Consider a
general n-partite pure state(expanded in the local bases
hepi

sidj)

ucl = o
p1¯pn

xp1p2¯pn
uep1

s1dep2

s2d
¯ epn

sndl. s1d

As shown in Ref.[7], its closest separable(i.e., product) pure
state(with i being the party index)

ufl ; ^
i=1

n

ufsidl = ^
i=1

n

So
pi

cpi

siduepi

sidlD s2d

satisfies the condition(and its complex conjugate)

o
p1¯p̂i¯pn

xp1p2¯pn

* cp1

s1d
¯ c

pi

si d̂
¯ cpn

snd = Lcpi

sid* , s3d

where the eigenvalueLP f−1,1g is associated with the
Lagrange multiplier enforcingkfufl=1, and the caret de-
notes exclusion. Moreover,L is the cosine of the angle be-
tween ucl and ufl; the largest oneLmax, which we call the
entanglement eigenvalue, corresponds to the closest sepa-
rable state, and is the maximal overlap:Lmaxsucld
=maxfzkfuclz, whereufl is separable but otherwise arbitrary.
Esin2;1−Lmax

2 sucld was defined to be the geometric measure
of entanglement[7] for stateucl, and it measures the degree
of inseparability via the squared sine of the angle away from
the closest separable pure state.

The extension to mixed states can be built upon the pure-
state theory and is made via the use of theconvex hullcon-
struction, as was done forEF [2]. The essence is a minimi-
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zation over all decompositionsr=oipiucilkciu into pure
states:

Esin2srd ; min
hpi,cij

o
i

piEsin2sucild. s4d

This convex hull construction ensures that the measure gives
zero for unentangled states; however, it also complicates the
task of determining mixed-state entanglement.Esin2 was
shown to be anentanglement monotone[6,7] (i.e., the mea-
sure does not increase under LOCC), hence is a good mea-
sure of entanglement. As there is no explicit generalization
of EF to multipartite states, we shall calculateEsin2 analyti-
cally for two bound entangled states, Smolin’s and Dür’s.
BecauseEFsrd is the minimum average ebit to create a single
copy of r, we can regardEsin2srd as the minimum average
degree of pure inseparability needed to realize the stater.

In bipartite settings, it is known[11] that ERsrdøEFsrd,
and that for pure statesucl, ERscd=EFscd. It is also known
[12] that for any bi- and multipartite pure stateucl, Elog2

scd
;−2 log2 LmaxscdøERscd. Together with the inequalitys1
−x2dlog2 eø−2 log2 x (for 0øxø1), one has

o
i

piEsin2scidlog2 eø o
i

piElog2
scid ø o

i

piEFscid,

and thusslog2 edEsin2srdøElog2
srdøEFsrd for any bipartite

stater. If the generalization ofEF to multipartite states main-
tains the property thatEFscdùERscd then the inequality
slog2 edEsin2øElog2

øEF will continue to hold for multipartite
mixed states. We remark that

Elog2
srd ; min

hpi,cij
oi

pif− 2 log2 Lmaxscidg s5d

is not an entanglement monotone[12]. However, we see that
both slog2 edEsin2 and Elog2

could serve as lower bounds on
multipartite entanglement of formation.

We now turn to the calculations of entanglement for the
two bound entangled states, Smolin’s and Dür’s.

SMOLIN’S FOUR-PARTY UNLOCKABLE BOUND
ENTANGLED STATE

This is a four-qubit mixed state

rABCD;
1

4o
i=0

3

suCilkCiudAB ^ suCilkCiudCD, s6d

where theuCl’s are the four Bell statessu00l± u11ld /Î2 and
su01l± u10ld /Î2. Now, the staterABCD can be conveniently
rewritten as

rABCD=
1

4o
i=0

3

uXilkXiu, s7d

where theuXl’s are the four orthogonal Greenberger-Horne-
Zeilinger-(GHZ) like states

uX0l ;
1
Î2

su0000l + u1111ld, uX1l ;
1
Î2

su0011l + u1100ld,

uX2l ;
1
Î2

su0101l + u1010ld, uX3l ;
1
Î2

su0110l + u1001ld.

The most general decomposition of a mixed stater into
pure states can be expressed as

r = o
k=1

M
uw̃klkw̃ku with uw̃kl = o

i=1

n

Uki
Îliujil, s8d

whereM is an integer not smaller thann, the number of
orthonormal eigenvectorshujilj (with nonzero eigenvalues
hlij) of r, the uw̃l’s are unnormalized, and U satisfies
ok=1

M UkiUkj
* =di j . Thus, the most general pure state that ap-

pears in the decomposition of Smolin’s state is

uw̃kl = o
i=0

3
1

2
UkiuXil. s9d

Our goal is to minimizeokpkEpuresuwkld over all possibleU’s,
whereEpure is some pure-state entanglement(Esin2 or Elog2

in
our considerations), pk;kw̃kuw̃kl, and uwkl is the normalized
stateuwkl;uw̃kl /Îpk. Making a general minimization for an
arbitrary mixed state is extremely difficult. However, for the
mixed staterABCD we shall show that the decomposition in
Eq. (7) does indeed minimize the average entanglement over
pure-state decompositions. As in Eq.(9), uwl can be explic-
itly written as uwl=oi=0

3 Îqie
ifiuXil, where theq’s are non-

negative, satisfyingoiqi =1, and thef’s are phases. For fixed
q’s, the state has a maximal entanglement eigenvalue when
all phases are zero. We shall show shortly that its maximal
entanglement eigenvalue is 1/Î2, which is achieved by the
uXl’s.

The entanglement eigenvalue of the stateuwl
=oi=0

3 ÎqiuXil is the maximal overlap with the separable state
uFl= ^ i=1

4 sciu0l+siu1ld, whereci ;cosui andsi ;sin ui with
0øui øp /2. Thus

kFuwl = Îq0/2sc1c2c3c4 + s1s2s3s4d + Îq1/2sc1c2s3s4

+ s1s2c3c4d + Îq2/2sc1s2c3s4 + s1c2s3c4d

+ Îq3/2sc1s2s3c4 + s1c2c3s4d,

which has maximum 1/Î2. To see this, use the Cauchy-
Schwarz inequality, treating as one vector
hÎq0/2 ,Îq1/2 ,Îq2/2 ,Îq3/2j (whose modulus is 1/Î2), and
the corresponding coefficients as another vector(whose
modulus can be shown to be no greater than 1; see Appendix
A). The statesuXil clearly saturate this bound; hence

Esin2srABCDd = 1/2, Elog2
srABCDd = 1. s10d

This suggests that, although bound entangled, Smolin’s state
has a very high degree of entanglement, the same as that of a
four-partite GHZ state. This high degree of entanglement
seems to manifest in some bipartite partitioning, e.g.,
hA:BCDj (as we discuss below).

We conjecture(and later prove) that ER=1 for this state
and one of its closest separable mixed states is
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1

8
su0000lk0000u + u1111lk1111u + u0011lk0011u + u1100l

3k1100u + u0101lk0101u + u1010lk1010u + u0110lk0110u

+ u1001lk1001ud.

We remark that the negativityN [2] [a value used to quantify
the degree of bipartite inseparability of states and defined as
twice the absolute sum of negative eigenvalues of the partial
transpose(PT) of the density matrix with respect to some
bipartite partitioning] is zero for any 2/2 partitioning, e.g.,
hAB:CDj, but nonzero for 1/3 partitioning, e.g.,hA:BCDj.
Specifically,NA:BCD=1 butNAB:CD=0.

Let us now turn to Dür’s bound entangled states.

DÜR’S N-PARTY BOUND ENTANGLED STATES

Dür [10] found that forNù4 the following state is bound
entangled:

rN ;
1

N + 1
SuCGlkCGu +

1

2o
k=1

N

sPk + P̄kdD , s11d

where uCGl;su0^Nl+eiaNu1^Nld /Î2 is an N-partite GHZ
state; Pk;uuklkuku is a projector on to the stateuukl
;u0l1u0l2¯ u1lk¯ u0lN; and P̄k;uvklkvku projects ontouvkl
;u1l1u1l2¯ u0lk¯ u1lN. For Nù8 this state violates the
Mermin-Klyshko-Bell inequality[10]; violation was pushed
down toNù7 by Kaszlikowskiet al. [13] for a three-setting
Bell inequality; it was pushed further down toNù6 by Sen
et al. [14] for a functional Bell inequality. The phaseaN in
uCGl can be eliminated by local unitary transformations, and
hence we shall takeaN=0 in the following discussion.

In fact, if we consider the family of states

rNsxd ; xuCGlkCGu +
1 − x

2N
o
k=1

N

sPk + P̄kd, s12d

we find that forNù4 the state is bound entangled if 0,x
ø1/sN+1d and is still entangled but not bound entangled if
x.1/sN+1d. This can be seen from the fact that the nega-
tivities of rNsxd with respect to the two different partitions
s1:2¯Nd and s12:3¯Nd are

N1:2̄ N„rNsxd… = maxh0,fsN + 1dx − 1g/Nj, s13ad

N12:3̄ N„rNsxd… = x. s13bd

By applying arguments similar to those used to calculate
entanglement for Smolin’s state, we have that the general
pure state in the decomposition ofrNsxd is

Îyeif0uCGl + Î1 − yo
k=1

N

sÎqke
ifiuuil + Îrke

ifi8uvild,

where theq’s and r ’s are non-negative and satisfyoksqk

+rkd=1. In this family, the state with the least entanglement
(or maximumLmax) for fixed hy,qk,rkj is the one with all
phase factors zero:

uCsy,hq,rjdl ; ÎyuCGl + Î1 − yo
k=1

N

sÎqkuuil + Îrkuvild.

Next, we ask: For fixedy, what is the least entanglement that
the above state can have? Take a separable state of the form
uFl= ^ i=1

N sciu0l+siu1ld; its overlap withuCsy,hq,rjdl is then

kCuFl = Îy/2sc1 ¯ cN + s1 ¯ sNd

+ Î1 − yo
k=1

N

sÎqkc1 ¯ sk ¯ cN + Îrks1 ¯ ck ¯ sNd.

This can be shown to be no greater thanÎs2−yd /2, again by
a Cauchy-Schwarz inequality, taking

hÎy/2,hÎs1 − ydqkj,hÎs1 − ydrkjj

as the first s2N+1d-component vector(with modulus
Îs2−yd /2) and the corresponding coefficients as the second
one (whose modulus can be shown to be no greater than 1
for Nù4; see Appendix A). The bound can be saturated, e.g.,
by

uc±,u,ksydl ; ÎyuCGl ± Î1 − yuukl, s14ad

uc±,v,ksydl ; ÎyuCGl ± Î1 − yuvkl, s14bd

for which Lmaxsyd=Îs2−yd /2 [15]. As 1−Lmax
2 syd is linear

in y and −2 log2 Lmaxsyd is convex iny, one gets

Esin2„rNsxd… =
x

2
, Elog2

„rNsxd… = log2
2

2 − x
, s15d

and one of the optimal decompositions is

rNsxd =
1

4N
o
k=1

N

o
a=±

o
b=u,v

uca,b,ksxdlkca,b,ksxdu. s16d

The above calculations show that forrNsxd the entanglement
depends on the portionx of the GHZ state in states
uca,b,ksxdlkca,b,ksxdu and it never becomes zero unless there is
no GHZ mixture.

We conjecture that, forNù4, rNsxd has ERsxd=x, with
one closest separable mixed state being

x

2
su0¯ 0lk0¯ 0u + u1¯ 1lk1¯ 1ud +

1 − x

2N
o
k=1

N

sPk + P̄kd,

which seems plausible assu0¯0lk0¯0u+ u1¯1lk1¯1ud is
the closest separable mixed state touCGl.

CONCLUDING REMARKS

We have presented analytical results on how much en-
tanglement is bound in two distinct multipartite bound en-
tangled states. The measure we have used to quantify their
entanglement is the geometric measure of entanglement
(GME), whose construction, similiar to the entanglement of
formation sEFd, is via the convex hull. In contrast to the
GME, EF has not been explicitly generalized to multipartite
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states, and hence is still unavailable for these bound en-
tangled states. However, under the circumstances discussed
previously, the results forEsin2 as well as a related quantity
Elog2

, might provide lower bounds onEF. For the Smolin
state, its bound entanglement is as large as that of a four-
partite GHZ state, whereas that for Dür states is related to the
portion of theN-partite GHZ state. For each case, an optimal
decomposition is given. Furthermore, we have conjectured
that the relative entropy of entanglementsERd for the Smolin
state is unity(proved below), whereas we conjecture thatER
for Dür’s state is equal to the portion that isN-particle GHZ.

For Smolin’s state we can establish itsEF, ED, ER, and
Esin2 for certain bipartite partitionings. For example, if we
group the four partiesABCD into two,A:BCD, we can write
the state as

rA:BCD =
1

4o
i=0

3

uX̄ilkX̄iu, s17d

with the three-qubit states ofBCD mapped on to the eight-
level systems000→0I ,001→1I , . . . ,111→7Id, involving the
locally orthogonal and convertible states(by BCD)

uX̄0l = su00Il + u17Ild/Î2, uX̄1l = su03Il + u14Ild/Î2,

uX̄2l = su05Il + u12Ild/Î2, uX̄3l = su06Il + u11Ild/Î2.

In order to find the entanglement of this bipartite state(in
C2 ^ C8), we need to consider the entanglement of the gen-
eral (properly normalized) pure state

ucl ; o
i

Îxie
ifiuX̄il

that appears in the pure-state decompositions. In fact, regard-
less of the values of thexi’s, this pure state has a reduced
density matrix (tracing over BCD) of the form su0lk0u
+ u1lk1ud /2. This shows thatrA:BCD hasEF=1, Esin2=1/2, and
Elog2

=1. In fact, there is a general result due to Horodeckiet
al. [16] thatED=EF for mixtures of locally orthogonal bipar-
tite states, e.g.,C2 ^ C2m states that are derived from mixing
Bell-like states

uCk
±l ; su0,kIl ± u1,2m− k − 1I ld/Î2, s18d

having distinct k’s, where k=0,1, . . . ,m−1. As EDøER
øEF, we have thatERsrA:BCDd=1 as well. What about the
original four-partite state rABCD? As ERsrABCDd
ùERsrA:BCDd, we haveERsrABCDdù1. But we also have that
ERsrABCDdø1, as our previous conjecture gives at least an
upper bound; we thus have thatERsrABCDd=1 and the con-
jecture is proved. Naively, we expect that any arbitraryrABCD

has greater entanglement thanrA:BCD. However, for the Smo-
lin state, they have the same entanglement as quantified by
both the GME and the relative entropy of entanglement.

Although Dür’s bound entangled state violates a Bell in-
equality, it has nonzero negativity under certain partitionings.
One may raise the question: Does there exist a bound en-
tangled state that has positive PT(PPT) under all partition-
ings but that still violates a Bell’s inequality? For example,

does an unextendible-product-basis bound entangled state
[17] violate a Bell inequality? We shall see shortly that the
answer is “no,” at least for the three different Bell inequali-
ties [10,13,14] mentioned earlier. Acín has shown[18] that if
anN-qubit state violates a two-setting Bell inequality then it
is distillable under certain bipartite partitioning. Using the
results of Refs.[19,20] regarding distillability, we can repeat
the same analysis for the other two inequalities[13,14] and
indeed obtain the same conclusion; see Appendix B. This
bipartite distillability then implies a negative PT(NPT) un-
der that bipartite partitioning according to Horodeckiet al.
[3]. Hence, violating these Bell inequalities implies NPT un-
der certain bipartite partitionings. Said equivalently, if an
N-qubit state has PPT under all bipartite partitionings then
the state never violates these Bell inequalities. This seems to
suggest that PPT bound entangled states are truly bound in
nature and cannot give deviation from local theories.
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APPENDIX A

In this appendix we sketch proofs of two useful inequali-
ties and describe the deriviation of the entanglement eigen-
value for the states in Eqs.(14). We start with the first sought
inequality:

sc1c2c3c4 + s1s2s3s4d2 + sc1c2s3s4 + s1s2c3c4d2 + sc1s2c3s4

+ s1c2s3s4d2 + sc1s2s3c4 + s1c2c3s4d2 ø 1.

We have simplified the notation by usingci ;cosui and si
;sin ui. By subtracting the left-hand side from 1 and doing
some algebraic manipulation, we arrive at the non-negative
expression(hence the sought result)

sc1c2c3s4 − s1s2s3c4d2 + sc1c2s3s4 − s1s2c3s4d2 + sc1s2c3c4

− s1c2s3s4d2 + ss1c2c3c4 − c1s2s3s4d2.

The next sought inequality is(for Nù4)

fN ; sc1 ¯ cN + s1 ¯ sNd2 + o
k=1

N

hsc1 ¯ sk ¯ cNd2

+ ss1 ¯ ck ¯ sNd2j ø 1.

First, making similar arguments, one can show thatf4ø1.
One can also show thatfN+1ø fN. Thus, by induction, we
have the sought result.

We now discuss why ÎyuCGl±Î1−yuukl and
ÎyuCGl±Î1−yuvkl have as their maximal entanglement ei-
genvalueLmaxsyd=Îs2−yd /2. As one can make local rela-
tive phase shifts to transformÎyuCGl+Î1−yuukl to ÎyuCGl
−Î1−yuukl, they have the same entanglement. The change
from ÎyuCGl±Î1−yuukl to ÎyuCGl±Î1−yuvkl is simply a
flipping of 0 to 1, and vice versa. The mapping fromk to k8
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is just a relabeling of parties. Thus, we need only consider
the state

Îy/2su00¯ 0l + u11¯ 1ld + Î1 − yu10¯ 0l.

As this state is invariant under permutation of all parties
except the first one, and as the coefficients are non-negative,
in order to find the maximal overlap we can make the hy-
pothesis that the closest separable state is of the form

sÎpu0l + Î1 − pu1ld ^ sÎqu0l + Î1 − qu1ld^N−1.

We further see that in order for the overlap to be maximalq
must be either 1 or 0. For the former case, we can further
maximize the overlap to getÎs2−yd /2. For the latter case,
the maximum overlap isÎy/2, which is less thanÎs2−yd /2
(as 0øyø1). Hence, the stateÎyuCGl±Î1−yuukl has the
entanglement eigenvalueÎs2−yd /2.

APPENDIX B

In this appendix we analyze the connection between vio-
lation of three Bell inequalities and bipartite distillability as
was done in Ref.[18] for the two-setting inequality. It was
shown by Dür and Cirac[20] that an arbitraryN-qubit stater
can be locally depolarized into the form

rN = l0
+uC0

+lkC0
+u + l0

−uC0
−lkC0

−u + o
j=1

2N−1−1

l jsuC j
+lkC j

+u + uC j
−l

3kC j
−ud,

while preserving l0
±=kC0

±uruC0
±l and l j =kC j

+uruC j
+l

+kC j
−uruC j

−l, whereuC0
±l;su0^Nl± u1^Nld /Î2, and theuC j

±l’s
are GHZ-like states, i.e., the states in Eq.(18), unfolded into
qubit notation. Normalization gives the condition

l0
+ + l0

− + 2o
j

l j = 1.

Now defineD;l0
+−l0

−, which we assume to be non-negative
(without loss of generality). The condition that there is no
bipartite distillability for some bipartite partitioningPj is
[19]

2l j ù D.

Assuming nondistillability for all bipartite splittings, we
have

2o
j

l j = 1 − sl0
+ + l0

−d ù s2N−1 − 1dD.

As l0
++l0

−ùD, we have further that

1 − D ù s2N−1 − 1dD. sB1d

For the two-setting Bell inequality considered by Acín[18],
violation impliesD.1/2sN−1d/2. For the three-setting Bell in-
equality considered in[13], violation impliesD.Î3s2N/3Nd.
For the functional Bell inequality in[14], violation implies
D.2s2N/pNd. One can easily check that the three Bell in-
equalities considered are inconsistent with the non-bipartite-
distillability condition Eq.(B1). Hence, the violating of these
three Bell inequalities implies the existence of some bipartite
distillability.
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