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Measures of entanglement in multipartite bound entangled states
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Bound entangled states are states that are entangled but from which no entanglement can be distilled if all
parties are allowed only local operations and classical communication. However, in creating these states one
needs nonzero entanglement resources to start with. Here, the entanglement of two distinct multipartite bound
entangled states is determined analytically in terms of a geometric measure of entanglement and a related
guantity. The results are compared with those for the negativity and the relative entropy of entanglement.
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INTRODUCTION we determine analytically their geometric measure of en-
tanglement and a related quantity. Under certain circum-

We are motivated to study the quantification of entanglestances, these give lower bounds on their multipaBjteln
ment for the basic reason that entanglement has been idengiddition, we make conjectures concerning their relative en-
fied as a resource central to much of quantum-informationropies of entanglement. Although quantities such as the geo-
processingsee, e.g., Ref1]). To date, progress in the quan- metric measure or the relative entropy of entanglement may
tification of entanglement for mixed states has resided prinot be able to reveal the exact nature of bound entanglement,
marily in the domain of bipartite systenfig]. For multipar-  they nevertheless quantify for these bound entangled states
tite systems in pure and mixed states, the characterizatiofhe content of entanglement that is unextractable.
and quantification of entanglement present even greater chal-
lenges.

Among all entangled states, there is a peculiar class of
states, bound entangled states, originally discovered in the We begin by briefly reviewing its formulation. Consider a
bipartite setting, where some connection to zero negativityeneral n-partite pure statgexpanded in the local bases
was identified[3]. These are states that are entangled, bu{e“)})
from which no pure entangled state can be distilled if all "
parties are allowed only local operations and classical com- = > Xowps-p leVe@... gy, (1)
munication (LOCC). The distillable entanglementEp) is orp, 12 PP T
thus zero. Bound entangled states can be either bipartite gr . . .
multipartite, the latter gossibly exhibiting more strr)ucture%‘S shov_vn In Rgf[?], its cIose;t separabige., product pure
than the former. However, it does take nonzero entangIemeﬁttate(wIth | being the party index
to create bound entangled states under LOCC. It is thus de- n n o
sirable to see how much entanglement is needed. gy = |pVy=& <2 c(p'_’|eg_)>> 2

However, the two most important measures— i=1 =\ pi
entanglement of distil!at@on(ED)_ anc_i of _formation satisfies the conditiofand its complex conjugate
(Ep)—have so far been limited to bipartite settings, as there
are ambiguities in generalizing them to multipartite systems > X:) . C<p1> oo g ---cg‘) = ACS)*, (3)
[4]. In order to explore multipartite settings, it is thus, on the oy by 2ot B " '
one hand, necessary to lay down bounds on the entanglemen . . . .
content for distillati())/n an}(; formation. On the other gand,where the eigenvalue\ e[-1,1] is associated with the
applying other measures, such as the relative entropy of ef-2drange multiplier enforcing¢|¢)=1, and the caret de-
tanglementEg), to multipartite states may prove helpful in notes exclusion. Moreovel is the cosine .of the angle be-
quantifying entanglement. Recently, a multipartite entangletWeen|) and|¢); the largest one\,,, which we call the
ment measure based on the geometry of Hilbert space h&&itanglement eigenvalueorresponds to the closest sepa-
been proposefb—7], and has been applied to several bipar-fable state, and is the maximal OVerlaF_"‘maﬂ@)
tite and multipartite cases. The merit of this measure is that it Max;|(#|)|, where| ) is separable but otherwise arbitrary.
is suitable for any-partite systems with any dimension, alEsiz=1-A%_./|#)) was defined to be the geometric measure
though determining it analytically for generic states remainsof entanglemenf7] for state|), and it measures the degree
a challenge. of inseparability via the squared sine of the angle away from

In the present paper, we study the entanglement content tfie closest separable pure state.
two distinct bound entangled states: Smolin’s four-party un- The extension to mixed states can be built upon the pure-
lockable bound entangled stg&9] and Dur'sN-party Bell-  state theory and is made via the use of th@vex hullcon-
inequality-violating bound entangled statgl0]. For each, struction, as was done fdr [2]. The essence is a minimi-
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zation over all decompositionp=X;p;|#i){¢;| into pure 1 1
states: . Xz = =(0102+]1010), [X5) = (/0110 +|100D).
v v
Esie(p) = minz PiEsire([ ). (4) The most general decomposition of a mixed siatato
LA pure states can be expressed as

This convex hull construction ensures that the measure gives
zero for unentangled states; however, it also complicates the _ -\~ g~ —
task of determir?ing mixed-state entanglemeﬁging was p_gl|¢k><¢"| with |¢k>_§1u“‘\")‘i‘§‘>' (8)
shown to be aentanglement monotoré,7] (i.e., the mea-
sure does not increase under LOC@8ence is a good mea- where M is an integer not smaller tham, the number of
sure of entanglement. As there is no explicit generalizatiororthonormal eigenvector§&)} (with nonzero eigenvalues
of Er to multipartite states, we shall calculdig,e analyti-  {\}) of p, the |¢)’s are unnormalized and I/ satisfies
cally for two bound entangled states, Smolin’s and Dl'jr’s.zl'z/lzlukizjl'(j:@j_ Thus, the most general pure state that ap-
BecauseEx(p) is the minimum average ebit to create a singlepears in the decomposition of Smolin’s state is
copy of p, we can regardEg;2(p) as the minimum average
degree of pure inseparability needed to realize the gtate 31

In bipartite settings, it is knowiil1] that Ex(p) < Eg(p), (@) = 2 Euki|xi>- 9)
and that for pure statdg), Ex(¢/) =Ex(#). It is also known =0
[12] that for any bi- and multipartite pure statg), &ogz(z//)
=-2log Amad¥) <Eg(¥). Together with the inequalityl
-x?)log, e<-2 log, x (for 0<x=<1), one has

M n

Our goal is to minimizeZ,pEpyrd| @) over all possibléf's,
whereE,,is some pure-state entanglemegy;z or Elog, in
our considerations p,=(¢|¢y, and|¢y) is the normalized
o <o V=S hE() state| ¢ =@/ Vpr. Making a general minimization for an
Ei PiEsiw(41)log; 2. Pi€log,(%h) E| PiEE(Y1), arbitrary mixed state is extremely difficult. However, for the
o mixed statep”8°P we shall show that the decomposition in
and thus(log, &)Egir2(p) < €iog,(p) <Er(p) for any bipartite  Eq. (7) does indeed minimize the average entanglement over
statep. If the generalization ofEg to multipartite states main- pure-state decompositions. As in E), |¢) can be explic-
tains the property thaEr(y)=Eg(#) then the inequality itly written as|g)=32 Vg€ %|X;), where theqg's are non-
(log, ©)Egirp = Eiog, < Er Will continue to hold for multipartite  negative, satisfyingq;=1, and theg's are phases. For fixed

mixed states. We remark that g's, the state has a maximal entanglement eigenvalue when
. all phases are zero. We shall show shortly that its maximal
Eiog,(p) = {mi{‘}Ei pil= 210G, Ama)(th)] (5  entanglement eigenvalue is 2, which is achieved by the
Pith IX)'s.

is not an entanglement monotofk?]. However, we see that The _ entanglement eigenvalue of the state)
both (log; €)Esiz and &4, could serve as lower bounds on =32 VgX) is the maximal overlap with the separable state
multipartite entanglement of formation. |Py=®%,(c|0)+s]|1)), wherec;=cos 6, ands =sin 6, with
We now turn to the calculations of entanglement for theO< 6, < w/2. Thus
two bound entangled states, Smolin’s and Dir’s. — o
(D) = VOo/2(C1CxC5C4 + $15,5384) + V1/2(C1C5S554

SMOLIN'S FOUR-PARTY UNLOCKABLE BOUND + $,5,C4C4) + V0ol 2(C1S,C5S4 + $1C5S:Ca)
ENTANGLED STATE —
+ 03/ 2(C1$,85C4 + $1C5C554)
This is a four-qubit mixed state _
which has maximum 1y2. To see this, use the Cauchy-
1 Schwarz inequality, treating as one vector
ABCD _ — T | ) . i~
P - 42) (T)WiDas ® (W) ¥iDco, ©) {Nao/2,Va,/2,Vg,/ 2 ,Was/ 2} (whose modulus is L/2), and
_ the corresponding coefficients as another vediwhose
where the[W)’s are the four Bell state§00)%[11))/v2 and  modulus can be shown to be no greater than 1; see Appendix
(|01 %]10))/v2. Now, the statep”BCP can be conveniently A). The stategX;) clearly saturate this bound; hence

rewritten as

3

3 Esinz(PABCEv =1/2, 5IogZ(PABCE5 =1. (10
ABCD — 1 . .
prTE ZE X)Xl (7)  This suggests that, although bound entangled, Smolin’s state
i=0 has a very high degree of entanglement, the same as that of a
where the|X)'s are the four orthogonal Greenberger-Horne-four-partite. GHZ state. This high degree of entanglement
Zeilinger{GHZ) like states seems to manifest in some bipartite partitioning, e.g.,
{A:BCD} (as we discuss below
_1 _1 We conjecturgand later provethat Eg=1 for this state
X0 = \EOOOOQ ), Xy = \E(|001]) +1100), and one of its closest separable mixed states is
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1 N —
§10000(000q +[1113(1113 +]001(0013 +[1100 [W(y,{0,r1) = Yo+ VT=y S (Vadup + Vrdoi)).
k=

%(1100 + 01010107 +]1010(1014 + |0110(0114 Next, we ask: For fixed, what is the least entanglement that

+1002¢1001). the above state can have? Take a separable state of the form

—oN (n s - :
We remark that the negativity/ [2] [a value used to quantify [®)=&24(ci|0) +s]1); its overlap with[¥(y.{q,r}) is then

the degree of bipartite inseparability of states and defined agy|p) = \;’ﬁ(cl. ey FS e Sy)

twice the absolute sum of negative eigenvalues of the partial N

transposgPT) of the density matrix with respect to some — — —

bipartite partitioning is zero for any 2/2 partitioning, e.g., V1 ‘ykz_: (VORC1 "+~ S O+ IS+ G o Sy).-

{AB:CD}, but nonzero for 1/3 partitioning, e.dA:BCD}. =t

Specifically, Na.gcp=1 but Nag.cp=0. This can be shown to be no greater thﬁﬂ—y)lz, again by
Let us now turn to Diir's bound entangled states. a Cauchy-Schwarz inequality, taking

(W2, (VL -y)ad, (@ -y}

as the first (2N+1)-component vector(with modulus

Dur [10] found that forN= 4 the following state is bound \,/(2 -y)/2) and the corresponding coefficients as the second

DUR’S N-PARTY BOUND ENTANGLED STATES

entangled: one (whose modulus can be shown to be no greater than 1
N for N=4; see Appendix A The bound can be saturated, e.g.,
1 1 — b
pn= 7| [WeXWe|+ =X (P+PY |, (11 y
N+1 25 - o
| ux(¥)) = YW £ V1 -ylug, (148

where [W¢)=(|0®N)+&N[12M)) /42 is an N-partite GHZ

ot Pe=ladlul s 2 prector o 1o e etk o) = WP =T oylog, (14D

=1(0)4/0)5 |1}y - |0)n; @and Py=|v\){vy projects ontoju ) o .

=|1)1/1),+ |0} --| ). For N=8 this state violates the [OF Which Ana(y)=\(2-y)/2 [15]. As 1-Aqaly) is linear

Mermin-Klyshko-Bell inequality[10]; violation was pushed Ny and —210og Ana(y) is convex iny, one gets

down toN=7 by Kaszlikowskiet al.[13] for a three-setting X 2

Bell inequality; it was pushed further down M=6 by Sen Esire(pn(X)) = > Eiog,(PN(X)) = IogZZT, (15

et al. [14] for a functional Bell inequality. The phase, in X

|Ws) can be eliminated by local unitary transformations, andand one of the optimal decompositions is

hence we shall takey=0 in the following discussion.
In fact, if we consider the family of states

N
0= 3 S S U0l (19

1-x k=1 a=B=uv

N
= X|WeNWe| + ——> (P + P, 12
PO =X W) (V| 2N gl( <+ P, (12 e above calculations show that fay(x) the entanglement

depends on the portiorx of the GHZ state in states

we find that forN=4 the state is bound entangled it | e 510X, (¥ @nd it never becomes zero unless there is
<1/(N+1) and is still entangled but not bound entangled if no GHZ mixture.

x>1/(N+1). This can be seen from the fact that the nega- \we conjecture that, foN=4, py(x) has Ex(x)=x, with
tivities of py(x) with respect to the two different partitions e closest separable mixed state being
(1:2--*N) and(12:3---N) are

N
N n(pn(¥) =maxO0,[(N+ 1)x— 1]/N}, (133 )—2((|0- < 0X0---0[ +|1---1)1--- 1)) + 12—NXE (Pe+ Py,
k=1

Niz3.n(pn(X) = X. (13D which seems plausible df0---0)(0---0|+|1---1)(1---1|) is

By applying arguments similar to those used to calculatéhe closest separable mixed state't;).

entanglement for Smolin’s state, we have that the general
pure state in the decomposition gf(x) is CONCLUDING REMARKS
We have presented analytical results on how much en-
tanglement is bound in two distinct multipartite bound en-
. _ tangled states. The measure we have used to quantify their
where theqg's and r's are non-negative and satisBy, (g entanglement is the geometric measure of entanglement
+r,)=1. In this family, the state with the least entanglementGME), whose construction, similiar to the entanglement of
(or maximumA,,,,,) for fixed {y,qy,r.} is the one with all formation (Eg), is via the convex hull. In contrast to the
phase factors zero: GME, Er has not been explicitly generalized to multipartite

N
WD We) + V1 -y (Vo&lu) + \re? o)),
k=1
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states, and hence is still unavailable for these bound erdoes an unextendible-product-basis bound entangled state
tangled states. However, under the circumstances discussgl7] violate a Bell inequality? We shall see shortly that the
previously, the results foEg;z as well as a related quantity answer is “no,” at least for the three different Bell inequali-
E|Og might provide lower bounds o&g. For the Smolin  ties[10,13,14 mentioned earlier. Acin has shoyi8] that if
state, its bound entanglement is as large as that of a fouln N-qubit state violates a two-setting Bell inequality then it
partite GHZ state, whereas that for Diir states is related to thig distillable under certain bipartite partitioning. Using the
portion of theN-partite GHZ state. For each case, an optimalresults of Refs[19,2Q regarding distillability, we can repeat
decomposition is given. Furthermore, we have conjecturethe same analysis for the other two inequalifi8,14 and
that the relative entropy of entangleméBg) for the Smolin ~ indeed obtain the same conclusion; see Appendix B. This
state is unity(proved belovy, whereas we conjecture theg, ~ bipartite distillability then implies a negative RNPT) un-
for Diir's state is equal to the portion thatNsparticle GHz. ~ der that bipartite partitioning according to Horodeekial.

For Smolin’s state we can establish Es, Ep, Eg, and  [3]. Hence, violating these Bell inequalities implies NPT un-
E2 for certain bipartite partitionings. For example, if we der certain bipartite partitionings. Said equivalently, if an

group the four partieABCDinto two, A: BCD, we can write N-QUbit state has PPT under all bipartite partitionings then
the state as the state never violates these Bell inequalities. This seems to

5 suggest that PPT bound entangled states are truly bound in

. - = — nature and cannot give deviation from local theories.
prEP= 22 X)X, (17
i=0
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In2 ordgr to find the entanglement of this bipartite stéte In this appendix we sketch proofs of two useful inequali-
C®C®), we need to consider the entanglement of the genties and describe the deriviation of the entanglement eigen-
eral (properly normalizegipure state value for the states in Eq&l4). We start with the first sought

=3 el neaually:

i (C1C2C5C4 + $19,5384)° + (€184 + $19,C5C) + (C18,C38,
that appears in the pure-state decompositions. In fact, regard- +51C)$384)2 + (C19,85C4 + $1CoC384)° < 1.
less of the values of thg’s, this pure state has a reduced
density matrix (tracing over BCD) of the form (|0)0]
+|1)(1])/2. This shows that"BP hasEx=1, E;2=1/2, and
Elog,=1. In fact, there is a general result due to Horodextki
al. [16] that Ep=E for mixtures of locally orthogonal bipar-
tite states, e.gG?® C?™ states that are derived from mixing  (C1C,C3Ss — $;5,55C4)2 + (C1C5S55; — $1,C354)? + (C15,C5C4

Bell-like states
— 51C;8384)° + (S1C2C5C4 — C15,S55)°.

We have simplified the notation by usimg=cos 6, and s
=sin 6.. By subtracting the left-hand side from 1 and doing
some algebraic manipulation, we arrive at the non-negative
expressionhence the sought resplt

Wiy = (0. £[1,2m- k- 1))/\2, (18)  The next sought inequality i§or N= 4)
having distinct Ks, where k=0,1,... m-1. As Ep<Eg N
<Eg, we have thaEgx(p"B°P)=1 as ‘well. What about the fy=(Cr Oy +S )2+ 2 (e S+ Cy)?

original  four-partite  state p"B¢P? As Eg(p"BP)
=ER(p"BCP), we haveEr(p"BCP) = 1. But we also have that e =
Ao : : ) (s sy <1

Er(p"BCD)<1, as our previous conjecture gives at least an

upper bound; we thus have thBg(p*B°P)=1 and the con- First, making similar arguments, one can show that1.

jecture is proved. Naively, we expect that any arbitraf§c®  One can also show thdf.,;=fy. Thus, by induction, we

has greater entanglement thafB°P. However, for the Smo- have the sought result.

lin state, they have the same entanglement as quantified by We —now discuss  why WWe)£\V1-yluy and

both the GME and the relative entropy of entanglement.  VY|¥a)+\1-ylv have as their maximal entanglement ei-
Although Diir's bound entangled state violates a Bell in-genvalueA,(y)=v(2-y)/2. As one can make local rela-

equality, it has nonzero negativity under certain partitioningstive phase shifts to transforny| W) +V1-y|uy to \y|¥e)

One may raise the question: Does there exist a bound en=V1- yj_uk> they have the same entanglement. The change

tangled state that has positive PFPT) under all partition-  from y|¥g)+y1-ylu) to \y|¥e)+\V1-ylvy is simply a

ings but that still violates a Bell's inequality? For example, flipping of O to 1, and vice versa. The mapping frdnto k'’

022322-4



MEASURES OF ENTANGLEMENT IN MULTIPARTITE.. PHYSICAL REVIEW A 70, 022322(2004)

is just a relabeling of parties. Thus, we need only consider(¥;|p|¥}), where|WE) = (/02N +|12N)) /2, and thg¥s)'s

the state are GHZ-like states, i.e., the states in EIB), unfolded into
— — qubit notation. Normalization gives the condition
\y/2(]00--- 0y +]11--- 1)) + y1 —y|10--- 0).

As this state is invariant under permutation of all parties 7‘3”‘0"’22 A =1
except the first one, and as the coefficients are non-negative, '
in order to find the maximal overlap we can make the hy-Now defineAE)\g—)\a, which we assume to be non-negative
pothesis that the closest separable state is of the form (without loss of generality The condition that there is no

(\"JF_)|0>+ \"1——[2)|1>) % (\G|0>+ \e"'mIl))@N_l. ?ig?mte distillability for some bipartite partitioning; is
We further see that in order for the overlap to be maximal
must be either 1 or 0. For the former case, we can further
maximize the overlap to ge{(2-y)/2. For the latter case, Assuming nondistillability for all bipartite splittings, we
the maximum overlap isy/2, which is less thar/(2-y)/2  have
(as O<y=1). Hence, the statey|¥c)*+\1-y|u) has the
entanglement eigenvalug2-y)/2. 22N =1-(\g+2p) = (V- DA.

i

2)\j>A.

APPENDIX B .
As Ay+N\o=A, we have further that

In this appendix we analyze the connection between vio-
lation of three Bell inequalities and bipartite distillability as 1-A= (2% -1A. (B1)
was done in Ref[18] for the two-setting inequality. It was
shown by Dir and Ciraf20] that an arbitraryN-qubit statep
can be locally depolarized into the form

For the two-setting Bell inequality considered by A¢fi8],
violation impliesA > 1/2N-Y2 For the three-setting Bell in-
equality considered ifiL3], violation impliesA > y3(2V/3N).
N1g For the functional Bell inequality in14], violation implies
PN = AT TG| + NG| T (| + N+ [)) A>2(.2.N/77N). One can easily check that the three Bell in-
j=1 equalities considered are inconsistent with the non-bipartite-
X (W) distillability condition Eq.(B1). Hence, the violating of these
e three Bell inequalities implies the existence of some bipartite
while preserving \;=(Wglp|¥g) and N\j=(¥][p|¥])  distillability.
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