# Forms and consequences of incompatibility

#### OXPHOS again





## Types of mitonuclear interactions and potential for incompatibilities



#### Protein-protein interactions



Assembly factors

Mitochondria are critical for cellular energy generation and house oxidative phosphorylation (OXPHOS) complexes, which are under dual genetic control. A study finds that transcript translation and complex assembly are partitioned, and OXPHOS complexes III, IV and V are built at spatially defined regions of the mitochondrial inner membrane.

Stoldt, S. et al. *Nat. Cell Biol.*, <u>https://doi.org/10.1038/s41556-</u> 018-0090-7 (2018).





#### Supercomplexes



#### Protein-DNA



Ellison and Burton 2006

#### Protein-DNA interactions

| Process       | Gene Type                                    | Origin | Gene Tally | Gene Products                    |
|---------------|----------------------------------------------|--------|------------|----------------------------------|
| Transcription | Polymerase and<br>transcriptional<br>factors | N      | ~5         | POLRMT, TFAM, TFB1M, TFB2M, Abf2 |
| Transcription | Initiation sites                             | mt     | ~3         | HSP1,* HSP2,* LSP*               |
| Transcription | Termination<br>factor                        |        | 1          | mTERF                            |
| Replication   | Transcriptional<br>initiation sites          | mt     | 2          | P H1,* P H2*                     |
| Replication   | Replication proteins                         | Ν      | ~4         | mtSSB, Pol γ, Twinkle, POLRMT    |

#### Protein-RNA



COX2 ATP8 Complex IV Complex V Translation Replication POLY POLRMT mt DNA MA rRN Inner mitochondrial membrane Mitochondrial gene product Nuclear gene product

Electron Transport System



Adrion et al. 2015

#### mt tRNAs



Sharbrough et al. 2017

#### Ribosomal proteins – mt rRNA

- Also nuc ribosomes with nuc rRNA
- 12S, 16S, 18S, 28S, etc.
- Lots of gains/losses in N proteins



Sharbrough et al. 2017

#### Proteins – mt mRNA

- 100s of PPR proteins
- CMS



#### Evidence of incompatibilities - mismatching

- Cybrids
  - Make a mismatched cell in the lab





### Cybrids

- Can create mismatches from anything, even non-viable combinations
- Primates, rodents, yeast, model species
- Biomedical



#### THE WORST THING IN THIS BOOK

individuals with identical N genotypes (hence the army of identical warriors in *Star Wars Clone Wars*). When SCNT has been used to combine a N genome of one species

### Hybrid parental backcrossing

F,

- Must be reproductively compatible
- More realistic
- Labor intensive
- Subject to selection



#### A few examples



#### A few examples



Two populations from different geographical areas with divergent coadapted N and mt genotypes

Wild type

fitness

#### Mitonuclear epistasis and DMIs

#### MOLECULAR ECOLOGY

Molecular Ecology (2012)

doi: 10.1111/mec.12006

INVITED REVIEW AND META-ANALYSES A disproportionate role for mtDNA in Dobzhansky– Muller incompatibilities?

RONALD S. BURTON and FELIPE S. BARRETO Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0202, USA

Table 1 Summary of mitonuclear interactions. Although there are many examples of disrupted interactions impacting fitness in the context of human diseases, the potential role of protein–DNA and protein–RNA mitonuclear interactions in Dobzhansky–Muller interactions remains understudied

| Mitochondrial<br>function | Dominant interactions | mtDNA- encoded genes                                      | nucDNA- encoded genes                                                                               | Example studies                                                                                                                                                                                                                |
|---------------------------|-----------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATP production            | Protein-protein       | 13 protein subunits                                       | ~75 protein subunits                                                                                | Many studies of evolutionary<br>rate interactions (e.g., Osada &<br>Akashi 2012), functional<br>interactions and fitness<br>consequences (reviewed by<br>Ballard & Melvin 2010)                                                |
| Transcription             | Protein-DNA           | Non-coding control regions<br>(promoters and terminators) | mtRPOL, TFAM, TFB1,<br>TFB2                                                                         | Functional interactions between<br>mtRPOL and mtDNA:<br>human/mouse (Gaspari <i>et al.</i><br>2004); copepod populations<br>(Ellison & Burton 2008b)                                                                           |
| Replication               | Protein-DNA           | Non-coding origin of<br>replication                       | DNA polymerase, mtRPOL,<br>TFAM,<br>helicase, ligase                                                | mtDNA copy number in<br>hybrids: Ellison & Burton<br>(2010)                                                                                                                                                                    |
| Translation               | Protein-RNA           | 12S and 16S rRNAs<br>22 tRNAs                             | ~80 ribosomal proteins<br>17 aminoacyl tRNA synthases,<br>initiation factors,<br>elongation factors | Translation deficiency in<br>hybrids: Lee <i>et al.</i> (2008); poor<br>intron excision: Chou <i>et al.</i><br>(2010); Ribosomal protein<br>divergence: Matthews <i>et al.</i><br>(1978); Pietromonaco <i>et al.</i><br>(1986) |





#### G x G x E effects



Mossman et al. 2016