Compensatory coevolution

Some definitions

- Cytonuclear coevolution a change in one genome causes selection for *complementary* changes in the other genome
- Compensatory coevolution a type of coevolution where a deleterious change in one genome is offset by a compensatory change in the other genome
- Nuclear compensation *deleterious* changes in the mt genome are offset by *compensatory* changes in the nuclear genome

Many possible forms of cytonuclear coevolution (C) Deleterious - Compensatory

 Changes in one genome reshape the fitness landscape of possible changes in the other genome

Why organelle genomes are expected to accumulate deleterious mutations

Muller 1964; Hill and Robertson 1966; Charlesworth et al. 1993; Moran 1996; Lynch and Blanchard 1998; Neiman and Taylor 2009

Some evidence

Plant mt Fungal mt Invertebrate mt Vertebrate mt Plant cp Plant nu

Fungal nu Animal nu

Eubacteria

.

Lynch 1997

New studies

Christie et al. 2017

• Disease alleles in humans are common in animals

• Stability and supernumerary proteins

• Gas-1 and restored fitness

- Disease mutations in humans
- Supernumerary proteins and stability
- Gas-1 and restored fitness

Osada and Akashi 2012

d_N/d_s as a metric for molecular evolution

- $d_N/d_S < 1$
 - Most mutations are deleterious
 - Negative selection dominates
 - Most functional genes
- $d_N/d_S = 1$
 - Mutations are neutral
 - Drift dominates
 - Pseudogenes
- $d_N/d_S > 1$
 - Mutations are beneficial
 - Positive selection dominates
 - Immune genes

Human locus		Antigen recognition site (ARS) $(N = 57)$		Remaining codons in exons 2 and 3 ($N = 124$)	
(No. cor	nparisons)	ds	$d_{\rm N}$	ds	d _N
Α	(45)	32.8 ± 8.8	39.3 ± 5.0	30.4 ± 6.0	$12.9 \pm 2.9^{**}$
B	(36)	29.4 ± 8.0	36.6 ± 4.4	32.0 ± 6.0	$14.4 \pm 2.0^{**}$
C	(27)	27.7 ± 7.8	35.4 ± 4.8	36.5 ± 7.8	$14.8 \pm 2.0^{**}$
Mean	(108)	30.4 ± 8.0	37.4 ± 4.2	32.5 ± 5.8	$13.9 \pm 1.8^{**}$
$d_{\rm S} > d_{\rm N}$: $d_{\rm N} > d_{\rm S}$		22:86		108:0	

Hughes and Nei 1998

dN/dS ratios are elevated in N-mt compared to mt genes

dN/dS ratios are elevated in N-mt compared to control N genes

Why elevated dN/dS ratios?

- Almost always << 1
- Increase due to positive selection for coevolutionary nuclear changes
- Increase due to relaxed purifying selection

Reasons to expect relaxed relaxed selection

Nabholz et al. 2013

Using plants to disentangle these ideas

Evolutionary rate correlations

Supernumerary subunits and constructive neutral evolution

- Adaptation precedes deleterious mutation
- Likely happening in lots of PPR editing
- Not compensatory coevolution
- "Gap filling" hypothesis
- Interesting CII stuff

Mt rescue introgression

- Co-introgression
- Fitness tradeoffs
- Little data
- Not nuclear compensation

	Hybrid fitness					
	No introgression (a)					
Fitness						
	Aftitution al enough of the second se					
	(b) Introgression of mt genome					
	Introgression of coadapted N-mt genes					
	Gain in fitness from restored coadaptation					
	At utility of the second secon					
l	(c) Introgression of mt genome					
	Evolutionary time					

Mt rescue introgression

• Complete vs. ongoing replacement

