Life eternal in the face of
senescence



Mutations in mtDNA
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Mitochondrial theory of aging

Outside the
* Aging is caused by a mitochondrion
decrease in mt function Ay
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* Free-radical theory of
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e Mt dysfunction caused by
accumulation of mt
mutations caused by ROS

* Replication error theory
of aging
e Mt dysfunction caused by
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mutations caused by
replication errors

rix
Inside the
mitochondrion




ROS and the mutational “vortex” or vicious

cycle

* Mitos are main sites of ROS production
* mtDNA is located right there
» “Keeping cookbook next to the fire”

COMMENTARY
Are mitochondria the main contributor of reactive oxygen species in cells?

Yufeng Zhang, Hoi Shan Wong
Journal of Experimental Biology 2021 224: jeb221606 doi: 10.1242/jeb.221606 Published 11 March 2021
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Sighatures in the sequences
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Sighatures in the sequences
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Evidence against ROS o PLOS

Oxidative Stress Is Not a Major Contributor to Somatic
Mitochondrial DNA Mutations

o S u p po rt fo r Leslie S. Itsara’?, Scott R. Kennedy?, Edward J. Fox3, Selina Yu’, Joshua J. Hewitt"4,

Monica Sanchez-Contreras®, Fernando Cardozo-Pelaez®, Leo J. Pallanck'*
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GCloTA TAtCG* 0% (0) 0% (0) 0% (0) 1% (1) 0% (0) 0.5% (1)
G:Cto C:G; TAto C:G * 3% (1) 2% (1) 2% (2) 0% (0) 0% (0) 0% (0)
HTAto G:C 3% (1) 0% (0) 1% (1) 0% (0) 0% (0) 0% (0)
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G:Cto C:G 6% (2) 11% (6) 9% (8) 7% (6) 3% (3) 5% (9)
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Other lines of evidence

Liver mitochondria oxygen
consumption (ng atom O/min/mg)

e polG mice (Kendra!) ©

* Increased mtDNA mutations do not
cause increased ROS

e OGG1-null mice

* |Increased 8oxoG mtDNA mutations

Heart mitochondria oxygen
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MITOCHONDRIAL phenotype

fU n Cti O n O r a gi n g of young Mclk1+- mutants

Changes resulting
from the Mclk1+- phenotype
during chronological aging

e MCLK1/* mice
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Stabilization and improvement of
mitochondrial function.

Gradual reduction of mitochondrial
oxidative stress.

Slower accumulation of global
oxidative damage to:

- DNA (8-OHdG)
- Membrane lipids (isoprostanes)



In general... this theory of aging is dead ©

Cell. Mol. Life Sci. (2010) 67:1-8
DOI 10.1007/500018-009-0138-8 Cellular and Molecular Life Sciences

VISIONS & REFLECTIONS (MINIREVIEW)

When a theory of aging ages badly

Jérome Lapointe - Siegfried Hekimi



Long live the MFRTA
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Replication error theory Vortex

e Supported by polG mice

System collapse

and death

No. of mt DNA mutations




Do mitos really cause aging?

Check for
updates

Mutations of mitochondrial DNA are not major
contributors to aging of fruit flies

Timo E. S. Kauppila®', Ana Bratic®"2, Martin Borch Jensen®, Francesca Baggio?, Linda Partridge®, Heinrich Jasper®,
’ Sebastian Gronke€, and Nils-Goran Larsson®9-2
2Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; ®The Buck Institute for Research on Aging,

Novato, CA 94945; “Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany;
and “Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
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* Antagonistic pleiotropy in nuc genes too



Can we stop aging or live forever?

* Gilgamesh and whatnot

* Hill says no: “Because aging is a fundamental property of humans, the
only way humans could stop aging would be to stop being human”
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polG mice

* They accumulate mt
mutations and age rapidly

* They give birth to
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Immortal germline vs. disposable soma

Somatic (non-reproductive)
tissue

Somatic
mutation

Population of cloned mutant cells

Mutant somatic cell

@; Germ-line mutatations are

passed to approximately
Mutant germ-line cell half of the next generation

= All cells carry
Sexual ‘ : 5 mutation

Germ-line
mutation

-

reproduction

No cells carry
mutation

Germ-line (reproductive)
tissue in ovary or testis

Clancy 2008



Who has a germline?

Germline replications and somatic mutation
accumulation are independent of vegetative life
span in Arabidopsis

J. Matthew Watson?, Alexander Platzer?, Anita Kazda?, Svetlana Akimcheva?, Sona ValuchovaP, Viktoria Nizhynska?,
Magnus Nordborg®, and Karel Riha®®"

e Animals

* Plants?

e Surprisingly, the number
of cell divisions within the
gamete lineage is nearly
iIndependent of both life
span and vegetative
growth.

* These results suggest that
stem-cell organization has G
independently evolved in
plants and animals to
minimize mutations by
limiting DNA replication.

* Probably not unicellular
eukaryotes

2Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria; and “Central European
Institute of Technology, Masaryk University, 612 65 Brno, Czech Republic
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Animal-centric ideas
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Selection on the germline — prior to

proliferation
..13’

* Mitos are “turned off” during

most of female gamete cell
life

* Most female gametes do not
get the chance for fertilization

* Not many cell divisions either

e “Quiescent”

Germ cell
e Nuc vs. mt selection “"} -



Continued selection after proliferation
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Selection on mt genomes vs. mitonuclear
function vs. organismal fitness

* Hard to tease these apart

* Respiration rate/mt function is
screened during oogenesis

* Apoptosis
e Selection on other nuc genes?



Selection on male germ line

* Lots of mt respiration
* Selection on energetics during fertilization
e 200M sperm per ejaculate, 1 gets to fertilize = pretty intense selection

* Mt genes aren’t passed on, so selection on N-mt genes and other nuc
genes

e But... sperm don’t really rely on respiration, mainly glycolysis
* So... what?



Selection on mitonuclear function throughout
development

* Continued selection during early development, juveniles, adults,
gametes, etc...

 All these things (bottlenecks, glycolysis, mitos turned off) are all
based on mice

* How do some of these things relate to plastid-nuclear ecology?



