Life eternal in the face of senescence

Mutations in mtDNA

- "All main theories of aging... focus on decline in mt function and accumulations of mt mutations"
- "...there is broad consensus among aging researchers that mt dysfunction is the root cause of aging."

Mitochondrial theory of aging

- Aging is caused by a decrease in mt function over time
 - Free-radical theory of aging
 - Mt dysfunction caused by accumulation of mt mutations caused by ROS
 - Replication error theory of aging
 - Mt dysfunction caused by accumulation of mt mutations caused by replication errors

ROS and the mutational "vortex" or vicious cycle

- Mitos are main sites of ROS production
- mtDNA is located right there
- "Keeping cookbook next to the fire"

COMMENTARY

Are mitochondria the main contributor of reactive oxygen species in cells?

Yufeng Zhang, Hoi Shan Wong

Journal of Experimental Biology 2021 224: jeb221606 doi: 10.1242/jeb.221606 Published 11 March 2021

Signatures in the sequences

- G -> T = 8-oxoG
- transversion
- INDICATIVE OF ROS

В

Α

8-0x0G (G0):C

8-0x0G (G0):A

Signatures in the sequences

- C->T deamination
- transition
- Characteristic of replication error

Evidence against ROS

 Support for replication causing majority of mtDNA mutations in mammals and drosophila OPEN ORCESS Freely available online

PLOS GENETICS

Oxidative Stress Is Not a Major Contributor to Somatic Mitochondrial DNA Mutations

Leslie S. Itsara^{1,2}, Scott R. Kennedy³, Edward J. Fox³, Selina Yu¹, Joshua J. Hewitt^{1,4}, Monica Sanchez-Contreras⁵, Fernando Cardozo-Pelaez⁶, Leo J. Pallanck¹*

1 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America, 2 Molecular and Cellular Biology Program, University of

Other lines of evidence

- polG mice (Kendra!)
 - Increased mtDNA mutations do not cause increased ROS
- OGG1-null mice
 - Increased 80xoG mtDNA mutations don't caused decreased mt function or aging
- MCLK1^{-/+} mice
 - Increased ROS, but ages slower

In general... this theory of aging is dead \odot

Cell. Mol. Life Sci. (2010) 67:1–8 DOI 10.1007/s00018-009-0138-8

Cellular and Molecular Life Sciences

VISIONS & REFLECTIONS (MINIREVIEW)

When a theory of aging ages badly

Jérôme Lapointe · Siegfried Hekimi

Long live the MFRTA

Replication error theory

• Supported by polG mice

Do mitos really cause aging?

Mutations of mitochondrial DNA are not major contributors to aging of fruit flies

Timo E. S. Kauppila^{a,1}, Ana Bratic^{a,1,2}, Martin Borch Jensen^b, Francesca Baggio^a, Linda Partridge^c, Heinrich Jasper^b, Sebastian Grönke^c, and Nils-Göran Larsson^{a,d,2}

^aDepartment of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; ^bThe Buck Institute for Research on Aging, Novato, CA 94945; ^cDepartment of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; and ^dDepartment of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden

Edited by Ruth Lehmann, New York University Medical Center, New York, NY, and approved August 27, 2018 (received for review December 13, 2017)

• Antagonistic pleiotropy in nuc genes too

Can we stop aging or live forever?

- Gilgamesh and whatnot
- Hill says no: "Because aging is a fundamental property of humans, the only way humans could stop aging would be to stop being human"

cells

polG mice

- They accumulate mt mutations and age rapidly
- They give birth to "normal" young

Immortal germline vs. disposable soma

Who has a germline?

- Animals
- Plants?
 - Surprisingly, the number of cell divisions within the gamete lineage is nearly independent of both life span and vegetative growth.
 - These results suggest that stem-cell organization has independently evolved in plants and animals to minimize mutations by limiting DNA replication.
- Probably not unicellular eukaryotes

Germline replications and somatic mutation accumulation are independent of vegetative life span in *Arabidopsis*

J. Matthew Watson^a, Alexander Platzer^a, Anita Kazda^a, Svetlana Akimcheva^a, Sona Valuchova^b, Viktoria Nizhynska^a, Magnus Nordborg^a, and Karel Riha^{a,b,1}

^aGregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria; and ^bCentral European Institute of Technology, Masaryk University, 612 65 Brno, Czech Republic

PNAS

Animal-centric ideas

Selection on the germline – prior to proliferation

- Mitos are "turned off" during most of female gamete cell life
- Most female gametes do not get the chance for fertilization
- Not many cell divisions either
- "Quiescent"
- Nuc vs. mt selection

Developmental stage of germ line

Selection on mt genomes vs. mitonuclear function vs. organismal fitness

- Hard to tease these apart
- Respiration rate/mt function is screened during oogenesis
- Apoptosis
- Selection on other nuc genes?

Selection on male germ line

- Lots of mt respiration
- Selection on energetics during fertilization
- 200M sperm per ejaculate, 1 gets to fertilize = pretty intense selection
- Mt genes aren't passed on, so selection on N-mt genes and other nuc genes
- But... sperm don't really rely on respiration, mainly glycolysis
- So... what?

Selection on mitonuclear function throughout development

- Continued selection during early development, juveniles, adults, gametes, etc...
- All these things (bottlenecks, glycolysis, mitos turned off) are all based on mice
- How do some of these things relate to plastid-nuclear ecology?