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SUMMARY

The connectivity principles underlying the emer-
gence of orientation selectivity in primary visual cor-
tex (V1) of mammals lacking an orientationmap (such
as rodents and lagomorphs) are poorly understood.
We present a computational model in which random
connectivity gives rise to orientation selectivity that
matches experimental observations. The model pre-
dicts that mouse V1 neurons should exhibit intricate
receptive fields in the two-dimensional frequency
domain, causing a shift in orientation preferences
with spatial frequency. We find evidence for these
features in mouse V1 using calcium imaging and
intracellular whole-cell recordings.
INTRODUCTION

Since its initial description by Hubel and Wiesel (1962), orienta-

tion selectivity has served as a platform for studying neocortical

computations (Priebe and Ferster, 2012). V1 neurons in primates

and carnivores are characterized not only by their preference for

the orientation of bars or edges but also by the preference for a

bar or edge of a specific orientation being invariant to the spatial

structure of the object displayed. For example, a V1 neuron that

responds best to a vertical orientation shouldmaintain that orien-

tation preference despite changes in the width or movement of a

presented bar (De Valois et al., 1982; Jones et al., 1987; Webster

and De Valois, 1985).

Orientation selectivity emerges in V1 of primates and carni-

vores where a functional organization for this selectivity is

also observed: neurons are organized in a columnar fashion

with shared orientation preference across cortical layers and

smooth changes in selectivity along the V1 surface (Hubel and

Wiesel, 1977). This functional architecture is the product of

the spatial arrangement of ON and OFF thalamocortical inputs

that innervate V1 (Kremkow et al., 2016; Lee et al., 2016a)

and of the vertical bias of intracortical connectivity (Song

et al., 2005). These spatially offset ON and OFF afferents

converge on individual V1 neurons to generate receptive fields

that are orientation tuned (Alonso et al., 2001) and well
2042 Cell Reports 24, 2042–2050, August 21, 2018 ª 2018 The Autho
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described by Gabor functions (Jones and Palmer, 1987)

(Figure 1A).

Such a functional architecture for orientation selectivity, how-

ever, is not common to all mammals: V1 of rodents and lago-

morphs lack it, but their neurons are still orientation selective

(Dräger, 1975; Girman et al., 1999; Métin et al., 1988; Murphy

and Berman, 1979; Van Hooser et al., 2005). This raises the

question of what connectivity rules guide afferent and intracort-

ical circuitry to generate orientation selectivity in mammals that

lack a functional architecture for orientation selectivity (Ohki

and Reid, 2007).

We recently showed in a model of rodent V1 that layer 2/3

(L2/3) can inherit orientation selectivity from orientation selective

neurons in layer 4 (L4) even if recurrent as well as feedforward (L4

to L2/3) connectivity is random (Hansel and van Vreeswijk, 2012).

In this model, the L2/3 network operates in a ‘‘balanced’’ regime

(van Vreeswijk and Sompolinsky, 1996, 1998), in which excit-

atory and inhibitory inputs are both strong and roughly cancel

each other (Hansel and van Vreeswijk, 2012; Pehlevan and Som-

polinsky, 2014).

In this report, we address the question of whether orientation

selectivity can emerge in rodent V1 from random connectivity.

We present a strongly recurrent model of the rodent V1 network

in which neurons receive inputs from randomly chosen non-

selective lateral geniculate nucleus (LGN) cells. The model

does not necessitate sparse connectivity to generate selectivity,

as is required in previous random network-based models of

orientation tuning (Ringach, 2004; Soodak, 1987; von der

Malsburg, 1973). Remarkably, orientation selectivity emerges

in this network despite the lack of a Gabor-like structure of the

thalamocortical input with well-segregated ON and OFF sub-

fields. Furthermore, orientation selectivity in this network is

robust to changes in the number of inputs. A key prediction of

this model is that the orientation selectivity of V1 neurons may

vary with the spatial content of the presented stimulus (Miller,

2016). It thus predicts that in mouse V1 receptive fields in the fre-

quency domain are intricate, containing dependencies between

orientation and spatial frequency, in stark contrast to observa-

tions made in primates and carnivores, and predictions of Gabor

receptive fields (De Valois et al., 1982; Jones et al., 1987;

Webster and De Valois, 1985). To test these predictions, we

quantified in mouse V1 the degree to which orientation prefer-

ence is linked to the stimulus spatial frequency using a
r(s).
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Figure 1. Receptive Fields, RandomConnectivity, Spatial Frequency

(SF) Tuning, and Orientation Tuning

(A) Hubel and Wiesel connectivity in which ON (red) and OFF (blue) thalamo-

cortical afferents, with spatial receptive fields indicated by each circle,

converge onto a neuron in primary visual cortex. The summation of these

afferent receptive fields generates a Gabor-like receptive field in visual cortex

(inset).

(B) Orientation preference does not change with SF for such receptive fields.

Tuning curves of the temporal modulation of the response for low (red),

medium (green), and high (blue) spatial frequencies are plotted. In frequency

space, these receptive fields maintain a peak response at a consistent angle

that points toward the origin at the midpoint of the graph (inset).

(C) Random connectivity from the lateral geniculate nucleus (LGN) in which ON

and OFF thalamocortical neurons with similar spatial receptive fields converge

on cortical neurons also generates orientation selectivity in the temporal

modulation of the response. The linear summation of LGNON and OFF neuron

receptive fields shows oriented profiles (inset). Scale bar indicates 35 degrees.

(D) Orientation preference shifts for random connectivity as SF changes.

Orientation tuning curves are plotted as in (B). In frequency space, these

receptive fields tilt in a manner that does not project back to the origin.
combination of electrophysiological and imaging measure-

ments. In agreement with our model, we found that orientation

preference depends on spatial frequency for some V1 neurons.

RESULTS

To contrast different circuitry that could give rise to cortical

orientation selectivity, we constructed two model V1 neurons

that receive input from the thalamus. In onemodel, the V1 neuron

receives ON and OFF thalamic inputs that are sampled on the

basis of a Gabor filter: ON and OFF inputs have spatial prefer-

ences elongated along the preferred orientation axis and are

spatially segregated (Figure 1A). The temporally modulated
component (F1) of the response is largest to horizontally oriented

drifting gratings regardless of the spatial frequency (Figure 1B).

We also constructed a model V1 neuron that receives ON and

OFF inputs with nearby spatial preferences (dispersion SD,

7 degrees), which are randomly intermixed (Figure 1C). Remark-

ably, this random connectivity model also exhibits orientation

selectivity in the F1 component of the response. It emerges

from the imbalances in ON and OFF inputs onto the target

neuron. Unlike the ordered receptive field neuron, however, the

preferred orientation of the F1 response of the cell changes

with the stimulus spatial frequency. At high spatial frequency,

the F1 responses of the model neuron are largest for stimuli

oriented at 30 degrees, while at low spatial frequency responses

are largest at �10 degrees (Figure 1D). This shift in orientation

preference is a product of the random connectivity onto the

neuron: the imbalances of ON and OFF thalamic inputs are

different as spatial scale changes, causing shifts in orientation

preference.

Orientation Selectivity Emerges in a Model of Rodent V1
with Random Wiring
To study whether orientation selectivity in mouse V1 could result

from random connectivity, we constructed a large-scale

conductance-based spiking network model of V1 (Figure S1) in

which cortical neurons receive feedforward excitation from

randomly chosen thalamic relay cells as well as other cortical

cells of similar retinotopic preferences (Figure S1B; see STAR

Methods). Previously it has been shown that orientation selec-

tivity can emerge on the basis of random inputs alone (Ringach,

2004; Soodak, 1987; von derMalsburg, 1973). Orientation selec-

tivity arises in these models because of asymmetries in the

spatial preferences of the sparse inputs that converge onto a

cortical neuron. As the number of convergent inputs increases,

however, the selectivity declines because the tuned temporally

modulated component of the LGN input decreases relative to

the time-averaged untuned component. To surmount this

dependence of orientation selectivity on the number of inputs,

we employ a network model in which excitatory and inhibitory in-

puts are strong but balanced (van Vreeswijk and Sompolinsky,

1996, 1998) such that the mean and variance of the net input is

on the order of the distance to threshold (Figure S1E).

Networks with random connectivity operating in a balanced

regime have previously been shown tomaintain preferences pre-

sent in the input (Hansel and van Vreeswijk, 2012). We hypothe-

sized that orientation selectivity would emerge in our model if the

spatial inhomogeneity in the aggregate thalamic input were

maintained in the output by the balance of excitation and

inhibition. In the balanced state, the untuned time-averaged

component of the input is largely suppressed by the intracortical

feedback, leading to a net input in which the tuned modulation is

comparable to the untuned component. Indeed, orientation

selectivity emerges in our model (Figure 2A), varying between

highly selective neurons (e.g., model neuron E10371) to weakly

selective (e.g., model neuron E11763). This diversity of selectivity

results in a distribution of orientation selectivity index (OSI)

demonstrating that orientation selectivity emerges naturally in

a random connectivity model (Figures 2, S1F, S2, and S3). The

emergent cortical orientation preference is matched to the
Cell Reports 24, 2042–2050, August 21, 2018 2043
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Figure 2. Orientation Selectivity Emerges in the Mouse V1 Model

(A) Examples of tuning curves (peak firing rate) of three excitatory V1 neurons in the model. SF of the drifting grating is 0.03 cyc/deg. OSIs from left to right are as

follows: 0.62, 0.23, and 0.15. Error bars represent the SEM.

(B) Distribution of OSI (peak response) over all the neurons (neurons in the central part of the network; see STARMethods; n = 5,041). MeanOSI = 0.24 (meanOSIs

of the F0 and F1 components of the response are 0.29 and 0.19).

(C) Examples of tuning curves of excitatory neurons in networks with different average number of thalamic inputs per neuron. From left to right: OSI = 0.47, 0.48,

and 0.49.

(D) Population average OSIs versus average number of thalamic inputs. Red: Peak spike response. Black: F1 component of the spike response. Blue: F1

component of the thalamic excitatory input.
preferred orientation of aggregate thalamic input (Figures S2A

and S2B), as observed in mouse visual cortex (Li et al., 2013).

In this balanced model, the emergent orientation selectivity

should be insensitive to the number of inputs. To verify this, we

varied this number from 25 to 100 and found that the degree of

orientation selectivity was maintained (Figures 2C, 2D, and S3).

The emergent selectivity is also robust to changes in network

size and in synaptic strength (Figures S3A and S3B).

Orientation selectivity emerges in our random connectivity

model because of the spatial inhomogeneity in inputs to cortical

neurons. In particular, the convergence of ON and OFF thalamic

inputs onto model neurons are spatially offset from one another.

The orientation of this offset may be related to the emergent

orientation preference of neurons (Lien and Scanziani, 2013;

Liu et al., 2010). To assess this relationship, we estimated the

ON and OFF subfields of the thalamic inputs by presenting spots

at different locations to the model network as in Lien and Scan-

ziani (2013) (see STAR Methods). The estimated ON and OFF

subfields for four example neurons reveal different offsets.

When ON and OFF subfields have large horizontal displace-

ments (E14493, E14847) preference for the vertical orientation

of the drifting grating at 0.03 cyc/deg tends to emerge, whereas

when ON and OFF subfields are vertically displaced preference

for horizontal orientations tends to emerge (Figure 3A, E14664).

The offsets in ON and OFF subfields that emerge from the

random connectivity model (Figure 3B) are similar to those

observed experimentally (Lien and Scanziani, 2013). When the

ON/OFF offset is large, there is a strong correspondence
2044 Cell Reports 24, 2042–2050, August 21, 2018
between the axis of the offset and the preferred orientation of

the thalamic input (Figure 3). The ON and OFF displacement,

however, is not the only factor that contributes to this orientation

preference. The randomness in the feedforward connectivity

generates ON and OFF subfields of the thalamic excitation that

deviate from circularity. The shape of the subfields, and the inter-

action between the subfields, can create orientation preferences

that deviate from that predicted from the offset of ON and OFF

subfields (Figure 3A, example 15022). In sum, the offset of ON

and OFF subfields, their interaction, and their shape influence

the emergent thalamic orientation selectivity. Because the

thalamic input selectivity is directly related to the cortical output

selectivity (Figures S2A and S2B), these factors impact the emer-

gent cortical orientation selectivity in the same way. The emer-

gent orientation preference, however, is particularly sensitive

to the spatial structure of the stimulus (Figure 1).

Dependence of Preferred Orientation on Spatial
Frequency in the Model
We then characterized how much the properties of the neuronal

responses vary with spatial frequency in the model. First, we

investigated how the population average peak response and

OSI were affected when changing spatial frequency (SF). We

found that, although the mean population response was modu-

lated by SF (maximal response for SF, 0.035 cyc/deg), the overall

selectivity of the populationwas less sensitive to SF (Figures S2D

and S2E). This mild effect across the population contrasts with

the effect of SF changes on the preferred orientation of individual
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The ON and OFF subfields of the thalamic inputs

were estimated by presenting spots at different

locations to the model network as in Lien and

Scanziani (2013) (see STAR Methods).

(A) Top panels: ON (red) and OFF (green) subfields

of the thalamic excitation for four example neu-

rons. Dark spots: Center of mass of the subfields.

The solid line indicates the axis of the offset of

the two centers ofmass. Receptive fields based on

the summed ON and OFF thalamic inputs are

shown on the right. The scale bar on the right

applies to all receptive fields. Bottom panels:

Tuning curves of the thalamic excitation for these

neurons. The SF of the drifting grating is

0.03 cyc/deg. Vertical dashed line indicates the

orientation of the offset axis (0� corresponds to an

horizontal axis). Offset amplitude and orientation

and preference of the thalamic excitation are as

follows: E14493, 11.4�, 166.1�, 160.3�; E14847,

4.7�, 18.2�, 31.1�; E14664, 3.9�, 111.4�, 80.7�;
E15022, 2.8�, 20.6�, 88.0�.
(B) Offset distribution across neurons (n = 361;

neurons are at the center of the network, see STAR

Methods). Mean offset: 4.1�.
(C) Orientation preference of the thalamic input

conductance (drifting grating with 0.03 cyc/deg)

versus orientation from the offset axis (perpen-

dicular to the offset axis) for all neurons with an

offset larger than 4� (n = 170). The CC is 0.24.
neurons. As we varied SF, the preferred orientation of neurons

often changed (top and bottom left panels in Figure 4A; Figures

4B and 4C, pink). We quantified this change by computing the

circular correlation (CC, see STAR Methods) of the preferred

orientation at different spatial frequencies across neurons. This

correlation was strong for nearby spatial frequencies, whereas

for spatial frequencies far apart it was weaker (Figures 4B and

4C). It declined from 0.71 for 0.04–0.03 cyc/deg to 0.00 for

0.04–0.01 cyc/deg (Figure 5, DCC = 0.71). We found that this

effect was robust to changes in the network size, the number

of connections per neuron, and the synaptic conductance

strengths (Figure S3). We also found that it was qualitatively

robust to changes in the spatial dispersion of the thalamic feed-

forward connections but that the decorrelation was weaker for

smaller dispersions (Figures S3C and S3D).

Dependence of Preferred Orientation on SF in Mouse V1
These theoretical results prompted us to determine whether SF

has a similar effect on orientation preference in mouse V1. Vary-

ing SF yielded shifts in orientation preference for many, but not

all, neurons when measured using intracellular, whole-cell, re-

cordings (Figure 4A, middle: top and bottom panels; Figure 4C,

blue panels). Changes in orientation preference were observed

both at the level of spike rate and membrane potential (38 total

cells; Figure S4). To gain access to this effect in large populations

of V1 neurons, we also examined it by measuring calcium re-

sponses using two-photon microscopy (606 total cells; Fig-

ure 4A, left: top and bottom panels; Figures 4B and 4C, green

panels; Figure S5). As with our electrophysiological data, we
found a diversity of changes with SF: preference shifted dramat-

ically for some neurons and not for others.

These differences in preferred orientation observed from our

Ca2+ responses could be due to noise in our measurements.

To be included in our population analysis, cells were required

to have a minimum peak response of 8% at both frequencies.

Using different thresholds to include cells yields similar

declines in correlation when comparing orientation preference

at 0.04 cyc/deg to 0.03 and 0.01 cyc/deg (8%: DCC = 0.46

with 90 cells for 0.01 and 0.04 cyc/deg and 288 cells for 0.03

and 0.04 cyc/deg; 10%: DCC = 0.4 with 43 cells for 0.01 and

0.04 cyc/deg and 182 cells for 0.03 and 0.04 cyc/deg; 12%:

DCC = 0.52 with 22 cells for 0.01 and 0.04 cyc/deg and 139 cells

for 0.03 and 0.04 cyc/deg). To address whether the observed

effect was influenced by differences in response amplitude for

different spatial frequencies, we also restricted our analysis to

neurons with differences in peak response amplitudes less

than 10% (Figure S6). This also did not alter the decline in CC

(DCC = 0.49, n = 86 for 0.01 and 0.04 cyc/deg and n = 259 for

0.03 and 0.04 cyc/deg). Furthermore, we examined whether

the reduction in CCwas related to the OSI of neurons by restrict-

ing our analysis to only those cells within the top 25% of our dis-

tribution. This restriction yields a similar DCC of 0.45 (n = 23,

0.01–0.04 comparison, n = 72 for 0.03–0.04 comparison). In

sum, orientation preference changed with SF in electrophysi-

ology records as well as calcium imaging measurements.

We have found that both the model and actual mouse V1 neu-

rons exhibit changes in orientation preference with SF in a similar

fashion (Figure 5). That is, for small-frequency shifts, the model
Cell Reports 24, 2042–2050, August 21, 2018 2045
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Figure 4. SF and Orientation Selectivity in

the Model and Mouse V1

(A) Example orientation tuning curves based on

spike rate are plotted for neurons in the spiking

network model (left), electrophysiology (middle),

and based on fluorescence changes from calcium

imaging experiments (right). Orientation tuning

curves are plotted for different spatial frequencies,

from 0.01 to 0.04 cyc/deg, indicated by line

thickness. If the error bars are not visible, they

are smaller than the symbol size. Error bars

represent SEM.

(B) Top row: The relationship between preferred

orientation in the model. Left: 0.04 cyc/deg

and 0.01 cyc/deg. Middle: 0.04 cyc/deg and

0.02 cyc/deg. Right: 0.04 cyc/deg and

0.03 cyc/deg. Bottom row: The same for the cal-

cium and electrophysiological records (green and

blue symbols, respectively). The bootstrapped

vector average is used as the estimate of the

preferred orientation. For calcium and spiking

data, statistically significant shifts in orientation

preference are indicated by filled circles. Number

of cells in the imaging data for comparison of 0.01

and 0.04 cyc/deg is 90, for comparison of 0.02 and

0.04 cyc/deg is 228, and for comparison of 0.03

and 0.04 cyc/deg is 288. Number of cells in the

electrophysiological data for comparison of 0.01

and 0.04 cyc/deg is 19, for comparison of 0.02 and

0.04 cyc/deg is 19, and for comparison of 0.03 and

0.04 cyc/deg is 17.

(C) Histograms of the difference in orientation

preference between 0.04 cyc/deg and 0.01 (left),

0.02 (middle), and 0.03 (right) cyc/deg. Filled bars

for electrophysiology and calcium imaging data

indicate statistically significant changes in orien-

tation preference.
and actual neurons have similar orientation preferences, as indi-

cated by a high CC, whereas large changes in SF cause substan-

tial decreases in CC. One notable discrepancy between the

model and actual data is that nearby spatial frequencies have

higher correlations for the model than for the data. A factor

that contributes to this discrepancy is the amount of data

collected in the model records relative to the physiological re-

cords (between 10 and 24 s for each orientation and SF).

When we limit the records from which the model data are based

to 20 s, instead of 80 s, DCC declines from 0.71 to 0.58. An addi-

tional factor we considered is the nature of the thalamocortical
2046 Cell Reports 24, 2042–2050, August 21, 2018
input. Orientation selectivity does exist

in mouse thalamic neurons (Piscopo

et al., 2013; Scholl et al., 2013; Zhao

et al., 2013), so we also explored the

impact of elongated thalamic receptive

fields on the properties of the cortical

model (Figure S7). This impact was

modest, slightly altering the dependence

of orientation preference on SF (Figure 5,

elongated thalamic receptive field model,

DCC = 0.73; Figures S7F and S7G), while

increasing the overall orientation selec-
tivity of V1 excitatory neurons (mean OSI = 0.32 versus 0.23 for

circular thalamic receptive field; Figure S7B).

Two-Dimensional SF Filters of Neurons in Mouse V1 Are
Non-separable
The observed dependence of orientation preference on SF for

some V1 neurons indicates that these neurons’ receptive fields

are not simple orientation detectors. Instead, they may be

measuring components of the visual scene that are better char-

acterized by a conjunction of two-dimensional SF filters. We

therefore measured responses of V1 neurons while varying
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vertical and horizontal SF components (Ringach et al., 2016)

(24 cells, Hartley gratings; see STAR Methods; Figure 6A). Neu-

ronswhose orientation selectivity is invariant to SF, would exhibit

preference profiles for which angle (orientation) does not change

with the distance from the origin (SF). As before, different neu-

rons revealed a diversity of behaviors (similar to kernels shown

in Ringach et al., 2016), from invariance (Figure 6A, left) to sys-

tematic change in selectivity with SF (Figure 6A, middle). We

also recorded from a small number of inhibitory neurons (identi-

fied based on spike rate and action potential width) with broad

selectivity for orientation and SF (Niell and Stryker, 2008) (Fig-

ure 6A, right). Measures of orientation preference based on the

Hartley stimulus qualitatively agree with those made by

measuring orientation tuning curves at different spatial

frequencies (compare top and bottom panels in Figure 6A).

This indicates that many V1 neurons are better characterized

as containing receptive fields that are a conjunction of horizontal

and vertical SF filters instead of invariant selectivity for orienta-

tion. We performed a comparable analysis in our V1 network

model (see STARMethods) and found a similar behavior (Figures

6B and S8).

DISCUSSION

We have presented a network model for rodent V1 that demon-

strates that orientation selectivity can emerge from random con-

nectivity even if LGN cells are not selective. It makes the specific

prediction that this selectivity should be sensitive to spatial form

for some V1 neurons. Testing that prediction in mouse visual cor-

tex, we found a similar effect. Using a model that receives

thalamic inputs that exhibited some orientation selectivity

increased thedegreeofcortical orientationselectivity yieldingdis-
tributionsofOSIcloser toexperimental estimates. Thismodel also

exhibited a similar dependence of orientation preference on SF.

In our models, there is a strong overlap of the ON and OFF

subregions of the thalamic inputs as seen in experiments (Li

et al., 2013; Lien and Scanziani, 2013; Liu et al., 2010). When

the offset between the centers of the ON and OFF subfields is

large, the orientation of this offset can be predictive of the orien-

tation preference of the neuronal response. Nevertheless, even

when this offset is large, the orientation preference can change

substantially with SF. In our model, the orientation of the offset

and the orientation preference of the neuronal response are

strongly correlated for intermediate SF only (Figure S9).

Quantitatively, the decorrelation of preferred orientation with

SF is somewhat weaker in experiments when compared to our

models. One source of this discrepancy is related to the amount

of data collected for the model and the experiments. When

records for the model are limited to 20 s, the model DCC was

0.59, close to the experimental value of DCC = 0.46. The change

in DCC is due to the decline in CC between 0.03 to 0.04 cyc/deg

from 0.71 to 0.59. Another possible source for this difference is

that we did not incorporate any feature-specific component in

the connectivity even though this has been shown to be present

in mouse V1 after the critical period (Ko et al., 2011, 2013; Lee

et al., 2016b).

We have demonstrated that V1 neurons’ receptive fields are

surprisingly intricate (Figures 6 and S8). This complexity stands

in contrast to the V1 receptive fields in cats (Hammond and Pom-

frett, 1990; Jones et al., 1987; Webster and De Valois, 1985) and

primates (De Valois et al., 1982), where orientation preference is

represented in a separable manner from spatial form. A similar

dependence in the mouse V1 was reported in a study based

on calcium imaging (Ayzenshtat et al., 2016). There, it was

demonstrated that a reduction in SF by one octave causes a

mean shift in preferred orientation by 22.1�, comparable to our

own estimates of the change in orientation when shifting from

0.04 to 0.02 cyc/deg (model, mean DPO = 29.8�; ephys,

DPO= 30.2�; Ca2+,DPO= 22.2�). They proposed that the depen-

dence could arise from separable selectivity in frequency

domain. We demonstrate here that while some V1 neurons do

have separable frequency domain receptive fields, V1 receptive

fields exhibit diverse dependencies that yield SF-invariant orien-

tation preferences (Figure 6, first column) or SF-dependent

orientation preferences (Figure 6, second column).

Such receptive field complexity likely has an impact on con-

nectivity patterns within V1. In primates and carnivores where

preferred orientations are similar for different spatial frequencies,

neurons with similar orientation preferences are much more

likely to be connected (Bosking et al., 1997; Wilson et al.,

2016). In mice, neurons with similar orientation preference

have been reported to be somewhat more likely to be connected

(Ko et al., 2011, 2013). However, in these experiments, differ-

ence in preferred orientation was measured at only one SF

(0.045 cyc/deg). As we have shown, this difference varies with

SF and the connectivity is likely to depend on the similarity in

response at all spatial frequencies. Indeed, correlation in the

response to natural stimuli was found to be a stronger factor

than orientation preference at one SF in determining connection

probability (Cossell et al., 2015; Ko et al., 2013).
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Figure 6. Neuron Receptive Fields in the Frequency Domain Are Intricate

(A) Mean membrane potential responses to Hartley stimuli (see STAR Methods) are plotted for combinations of horizontal and vertical spatial frequencies

(top row). Circles indicate stimulus combinations corresponding to oriented gratings at fixed spatial frequencies. The red and black dots indicate the peak

response at those spatial frequencies. Each panel corresponds to a different example cell. Orientation tuning curves for drifting gratings at 0.014 cyc/deg (red)

and 0.044 cyc/deg (black) are shown for these four neurons (bottom row). Error bars represent SEM.

(B) Example frequency receptive fields for four neurons in the model. Orientation tuning curves at 0.01 cyc/deg (red) and 0.04 cyc/deg (black) are shown for these

neurons (bottom row) based on responses to drifting gratings.
The intricate receptive field profiles described here are akin

to those observed in primary auditory cortex. Auditory cortex

neurons are sensitive to the combination of many auditory

cues (Wang et al., 2005), which may comprise a synthesis suf-

ficient to detect auditory objects (Bar-Yosef and Nelken, 2007).

The frequency domain receptive field profiles observed in

mouse V1 neurons may therefore reflect a similar progression

toward a representation for objects using a random connectiv-

ity scheme that occurs as information flows through the visual

pathway.

To conclude, our investigation demonstrates that random

connectivity can be the dominant component accounting for

emergent properties such as orientation selectivity. An important

advantage of random wiring schemes is that they occur natu-

rally, following the broader patterns of retinotopy that are formed

by biochemical gradients. This natural emergence may thus

reflect a wiring strategy that allows for selectivity without the

cost associated with constructing specific afferent wiring

connections.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

C57BL/6J mouse strain Jackson Labs 000664

Software and Algorithms

MATLAB 7.4.0 Mathworks (https://www.mathworks.com) N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Hansel (david.hansel@parisdescartes.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Experiments were conducted using normal, adult male and female C57 mice (n = 33, P34 - P60). All procedures were approved by

The University of Texas at Austin Institutional Animal Care and Use Committee.

METHOD DETAILS

Detailed Experimental Methods
Physiology

Procedures for two-photon imaging and physiology were based on those previously described (Scholl et al., 2015, 2017). Mice were

anesthetized with intraperitoneal injections of 1000 mg/kg urethane and 10 mg/kg chlorprothixene. Brain edema was prevented by

intraperitoneal injection of up to 10 mg/kg dexamethasone. Animals were warmed with a thermostatically controlled heat lamp to

maintain body temperature at 37�C. A tracheotomy was performed and the head was placed in a mouse adaptor (Stoelting). A crani-

otomy and duratomy were performed over visual cortex. Eyes were kept moist with a thin layer of silicone oil. Primary visual cortex

was located and mapped by multi-unit extracellular recordings with tungsten electrodes (1 mU, Micro Probes). The V1/V2 boundary

was identified by the characteristic gradient in receptive locations (Dräger, 1975; Métin et al., 1988). Eye drift under urethane anes-

thesia is typically small and results in a change in eye position of less than 2 degrees per hour (Sarnaik et al., 2014).

Dye Loading and In Vivo Two-Photon Microscopy

Bulk loading of a calcium sensitive dye under continuous visual guidance followed previous protocols in V1 (Golshani and Portera-

Cailliau, 2008; Kerr et al., 2005; Mrsic-Flogel et al., 2007; Ohki et al., 2005; Stosiek et al., 2003). Dye solution contained 0.8 mM

Oregon Green 488 BAPTA-1 AM (OGB-1 AM, Invitrogen) dissolved in DMSO (Sigma-Aldrich) with 20% pluronic acid (Sigma-Aldrich)

and mixed in a salt solution (150 mM NaCl, 2.5 mM KCl, 10 mM HEPES, pH 7.4, all Sigma-Aldrich). 40-80 mM Alexa Fluor 594

(Invitrogen) was also included for visualization during and immediately after loading. Patch pipettes (tip diameter 2-5 mm, King

Precision Glass) containing this solution were inserted into the cortex to a depth of 250-400 mmbelow the surface with 1.5% agarose

(in saline) placed on top the brain. The solution was carefully pressure injected (100-350 mbar) over 10-15 minutes to cause the least

amount of tissue damage. OGB-1-AM is only weakly fluorescent before being internalized, so the amount of dye injectedwas inferred

through the red dye. To ensure full loading wewaited 1 hour before adding a glass coverslip for imaging. Metal springs were fastened

on the attached head plate to place pressure on the glass coverslip and reduce brain pulsations. Fluctuations in calcium fluorescence

were collected with a custom-built two-photon resonant mirror scanning microscope (Scholl et al., 2015) and a mode-locked

(925 nm) Chameleon Ultra Ti:Sapphire laser (Coherent). Excitation light was focused by a 16X or 40x water objective (0.8 numerical

aperture, Nikon). Images were obtained with custom software (Labview, National Instruments). A square region of cortex 300 mm

wide was imaged at 256x455 pixels. In all experiments, multiple focal planes, separated by 20-25 mm, were used to collect data,

starting around 150 mm below the cortical surface. Before each experiment neuron drift was measured over a 2-3 min period. If drift

occurred then the glass coverslip and agarose were readjusted to stabilize the brain during stimulus protocol (7-20 minutes each

focal plane).
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Stimuli

Visual stimuli were generated by a Macintosh computer (Apple) using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) for

MATLAB (Mathworks). Gratings were presented using a Sony video monitor (GDM-F520) placed 25 cm from the animal’s eyes.

The video monitors had a non-interlaced refresh rate of 100Hz,a spatial resolution of 1024x768 pixels, which subtended

40x30 cm, and a mean luminance of 40 cd/cm2. Drifting gratings (38 deg diameter for imaging, variable diameter for electrophysi-

ology, 0.01-0.04 spatial frequency, 100% contrast, 2 Hz temporal frequency) were presented for 2-3 s. Each stimulus was followed

by a 3 s blank (mean luminance) period in the imaging protocol. Spontaneous activity was measured during blank (mean luminance)

periods interleaved with drifting grating stimuli, all presented in a pseudorandom sequence. Direction presented ranged from

0-330 deg. Different spatial frequencies used were either presented individually in separate blocks (n = 15) or interleaved

(n = 591) within the same block. Hartley stimuli were presented for each spatial frequency combination for 250 ms (Malone and Ring-

ach, 2008; Ringach et al., 2016). For each spatial frequency combination four phases were presented and the response to these

phases were averaged. These were repeated 5-30 times per cell. During imaging sessions, each stimulation protocol was repeated

7-10 times at each focal plane. For each orientation and spatial frequency data was recorded between 10 and 24 s. The microscope

objective and photomultiplier tubes were shielded from stray light and the video monitors.

Detailed Computational Model of Mouse V1
Themodel is composed of two networks. One represents LGN and has NL neurons. The second network represents layer 4 and layer

2/3 in mouse V1. For simplicity these two layers are collapsed into one single network, with NE excitatory and NI inhibitory neurons. In

both networks the neurons are arranged on a square grid and the position (xiA,yiA), where (i,A) denotes the neuron i = 1,...,NA of pop-

ulation A = E,I,L. The position of neuron (i,A) is given by xia =Mðix=
ffiffiffiffiffiffi
NA

p Þ; yia =Mðiy=
ffiffiffiffiffiffi
NA

p Þ where M is the size of the network (2mm),

ix = ði � 1Þmod
ffiffiffiffiffiffi
NA

p
and iy = ði� 1Þ= ffiffiffiffiffiffi

NA

p
. Here x is the largest integer equal to or smaller than x. All NA are square integers so that ix

and iy are integers between 0 and
ffiffiffiffiffiffi
NA

p � 1. Unless said otherwise we take NE = 32400, NI = 8100, NL = 25600.

Cortical Neurons

They are described in terms of conductance-based models. The membrane potential of neuron (i,A), A = E,I, evolves in time

according to

C
dViA

dt
= � Il;iA � INa;iA � IK;iA � Iadapt;iA + ILGN;iA + Irec;iA + Ib;iA (1)

where C is the membrane capacitance, Il;iA, is the leak current, and INa,iA, IK,iA are the intrinsic sodium and potassium currents that

shape the action potentials and Iadapt,iA is an adaptation potassium current which included in E neurons, only. The dynamics of these

currents are as in (Hansel and van Vreeswijk, 2012). The current ILGN,iA describes the input from LGN, Irec,iA is the recurrent input from

other cortical neurons and Iback, iA represents a background input from other cortical regions not explicitly included in the model.

LGN Neurons

LGN cells are modeled as Poisson neurons with time varying rates that depend on the visual stimulus. Neuron (i,L) responds to a

luminosity field L(x,y,t) with an instantaneous firing rate

riLðtÞ=
�
r0 +

ZZ
dxdyRilðx; yÞLðx; y; tÞ

�
+

(2)

where r0 is the spontaneous firing rate of the neuron, assumed to be the same for all LGN cells, RiL(x,y) is its receptive field and [x]+ = x

for x > 0, [x]+ = 0 for x < 0. The luminosity field of a sinusoidal drifting grating with orientation q, spatial wavelength l, and temporal

frequency u, is

Lðx; y; tÞ= L0

�
1+ ε cos

�
kx x + kyy � ut

��
(3)

where L0 is the average luminosity, ε is the contrast, and the wave-vector of the grating is: k = ðkx; kyÞ= ðk cosq; k sinqÞ with

k = 2 p=l. The parameters used in our simulations are listed in Tables S1 and S2.

The receptive field of neuron (i,L) has the form

Rilðx; yÞ= ±R

266664
exp

 
� x

02

2s2
cx

� y
02

2s2
cy

!
2pscxscy

� b

exp

 
� x

02

2s2
sx

� y
02

2s2
sy

!
2pssxssy

� U

S

377775 (4)

where x
0
= x � xilð ÞcosqiL + y � yilð ÞsinqiL, y0

= � x � xilð ÞsinqiL + y � yilð ÞcosqiL, b is a parameter that controls the relative weights of

the two subfields, R is a constant (1 Hz). U is a constant such that
RR
S

dx dy Rilðx; yÞ = 0. The integral is performed over a surface

of size S that is much larger than the size of the network. The long and short axis of the center (resp. surround) region are denoted

here by scx and scy (resp. ssx and ssy ). The global sign is +1 if the receptive field is ON center and �1 if it is OFF center. We take this

sign at random with equal probability to be +1 or �1.
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In all simulations except those in Figure S7 we assume circular receptive fields for both center and surround subfields. In the

simulations described in Figure S7 surrounds are circular but centers are elongated. We use the following parametrization:

scx =
ffiffiffiffiffiffiffiffiffiffi
1+a

p
s; scy = ðs= ffiffiffiffiffiffiffiffiffiffi

1+a
p Þ;ssx = ssyhss with sh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
scxscy

p
. Therefore, a= 0 corresponds to a circular center and surround

subfields. In this case the LGN cell is not selective to orientation. The degree of selectivity increases with a.

The response of the LGN cells to a drifting grating can then be calculated based on

riLðtÞ= ½r0 + εbr iLðq; lÞcosðut � DiLðq; lÞÞ�+ (5)

where, in the limit of large S,

br iLðq; lÞ=RL0

"
exp

 
� ðksÞ2ðA+B cos 2ðq� qiLÞÞ

2

!
� b exp

 
� ðkssÞ2

2

!#
(6)

with A= ða2 + 1Þ=2~a and B = ð~a2 � 1Þ=2~a, with ~a = 1 + a

The phase DiLðq; lÞ is: DiLðq; lÞ= 2pðxiL cos q+ yiL sin qÞ=l ðDiLðq; lÞ=p+ 2pðxiL cos q+ yiL sin qÞ=lÞ for an ON (OFF) cell.

Thalamo-cortical and Recurrent Connectivity

The connectivity between model LGN and cortex is random and does not depend on the functional properties of the cells. The prob-

ability that cortical neuron (i,A) is connected to LGN cell (j,L) is

Pij;AL =KALGðxiA � xjL; sALÞG
�
yiA � yjL; sAL

�
(7a)

where KAL is the mean number of LGN inputs received by a cortical cell in population A and

Gðx;sÞ= 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
X+N

k;l =�N

exp

 
� ½x �Mk�2

2s2

!
(7b)

is the periodic Gaussian with variance s2.

The recurrent interactions in the cortical network are also random and non specific. The probability of connection between neuron

(j,B) and (i,A) (A = E,I; B = E,I) is

Pij;AB =KABGðxiA � xjB;sABÞG
�
yiA � yjB;sAB

�
: (8)
The Feedforward and Recurrent Synaptic Currents
Thalamo-cortical synapses on cortical population A are all excitatory, have a reversal potential VE , a strength gAL and a synaptic time

constant tL. The thalamo-cortical current, ILGN;iA, in neuron (i,A) is

ILGN; iAðtÞ= � giLðtÞ½rðViA � VEÞ+ ð1� rÞðVL � VEÞ� (9)

with: giLðtÞ = ðgAL=tLÞ
PNL

j =1C
AL
ij

P
kexpð� ðt� tk;jÞ=tLÞ;whereCAL is theNAXNL connectivity matrix of the thalamo-cortical projections

(CAL
ij = 1 if there is a connection from neuron (j,L) to neuron (i,A); CAL

ij = 0 otherwise), and tk;j is the time of the k-th spike generated by

neuron (j,L). The sum over k is over all the spikes with tk;j < t.

The total recurrent current into neuron (I,A) is Irec;iA = IiA;E + IiA;I where

IiA;B = � giA;BðtÞ½rðViA � VBÞ+ ð1� rÞðVB � VLÞ� (10)

with giA;BðtÞ = ðgAB=tABÞ
PNL

j = 1C
AB
ij

P
kexpð� ðt� tk;jÞ=tABÞ:

Finally, the background current in Equation (1) is modeled as

Ib;iA = � gb;iAðtÞ½rðViA � VEÞ+ ð1� rÞðVL � VEÞ� (11)

where gb;iAðtÞ is a random Gaussian variable with mean Kbgbr0 and variance
ffiffiffiffiffiffi
Kb

p
gbr0. This represents the effect of Kb uncorrelated

Poisson inputs, each of synaptic strength gb:

Note that in Equations (9,10) the right hand-sides comprise two contributions. The first is proportional to the driving force ViA � VB.

Thus it modifies the input conductance of the neuron. This contrasts with the second contribution which does not depend on the

membrane potential of the post-synaptic cell. We adopted this description to incorporate in a simplified manner the fact that the

change in input conductance induced by a synapse depends on its location on the dendritic tree. Proximal synapses which substan-

tially affect the neuron’s input conductance are represented by the first contribution. The second contribution accounts for the

synapses which are distal and which affect the input conductance of the neuron less (see also Hansel and van Vreeswijk, 2012).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental Analysis
Two-Photon Calcium Imaging Analysis

Images were analyzed with custom MATLAB software (Mathworks). Cells were identified by hand from structure images based on

size, shape, and brightness. Cell masks were generated automatically following previous methods (Nauhaus et al., 2012). Glia were

easily avoided due to their different morphology from both OGB-1 AM filled neurons. Time courses for individual neurons were

extracted by summing pixel intensity values within cell masks in each frame. Responses ðFtÞ to each stimulus presentation

were normalized by the response to the gray screen ðF0Þ immediately before the stimulus came on:

DF=F = ðFt � F0Þ=F0:

For each stimulus, the mean change in fluorescence DF=F was calculated from a 0.66 s window of the response centered at the

time of the global peak to all visual stimuli. Visually responsive cells were required to fulfill 4 criteria in order for them to be included in

our analysis. First, the response to the preferred orientation was significantly different than the spontaneous response (t test for

unequal variances, p < 0.05). Second, the response amplitude must be greater than 8% DF=F. Third, responses were required to

have distinct different trial-to-trial fluorescence time courses, as determined by measuring the type II regression of the time course

of each cell’s response and the neuropil response, extracting the slope of that relationship and determining if it was significantly

different from unity (Sokal and Rohlf, 1995). Finally we restricted our analysis to cells with OSI greater than 0.08 at the spatial fre-

quencies being compared. Fewer cells meet our inclusion criteria for comparison of 0.01 cyc/deg to 0.04 cyc/deg (8%) than

0.02 cyc/deg to 0.04 cyc/deg (40%). Mean changes in fluorescence from visually responsive neurons were used to generate tuning

curves for orientation selectivity. 95%confidence intervals (CI) were generated on the preferred orientation of the neurons at different

spatial frequencies using method described below. The mean CI length on preferred orientation for 0.04 cyc/deg was 5.1 degrees

whereas for 0.01 cyc/deg it was 6.4 degrees and the distributions of CI are not significantly different (unpaired t test, p < 0.5).

Electrophysiology Analysis

Spiking responses for each stimulus were cycled-averaged across trials after removing the first cycle. The Fourier transform of mean

cycle-average responses was used to calculate themean (F0) andmodulation amplitude (F1) of each cycle-averaged response, after

mean spontaneous activity was subtracted. The subthresholdmembrane potential responseswere also similarly computed afterme-

dian filtering the voltage traces to remove spikes. Peak responses were defined as the sum of the mean and modulation (F0 + F1).

Peak responses per trial across each condition for neuronal responses measured using electrophysiology and imaging were

bootstrapped to compute the vector average orientation (number of bootstrap resamples = 10000). This was used as the preferred

orientation for the neuron. For electrophysiology, cells were only included in the analysis, if the bootstrapped confidence intervals on

mean of themaximum amplitude spiking response (number of bootstrap resamples = 10000) did not include zero. A double Gaussian

curve was fit to the responses for characterizing orientation tuning (Carandini and Ferster, 2000):

RðqÞ=ae�ðq�qprefÞ2
	
ð2s2Þ + be�ðq�qpref +pÞ2

	
ð2s2Þ + k:

Here RðqÞ is the response of the neuron to different orientations ðqÞ, s is the width of the tuning curve, k is the mean background

activity, a and b are peak amplitudes, and qpref is the orientation preference. Gaussian fits were used only for qualitative description of

the tuning. The actual fit parameters have not been used in the analysis. The orientation selectivity index was also computed (Ringach

et al., 2002; Tan et al., 2011):

OSI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
RðqÞsinð2qÞ

�2
+

P

RðqÞcosð2qÞ
�2r

P
RðqÞ :

The circular correlation (cc) between the preferred orientations (PO) is defined as:

cc=

P
i;j sinðPOi � POjÞsin



PO

0
i � PO

0
j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jsin
2ðPOi � POjÞ

P
i;jsin

2


PO

0
i � PO

0
j

�r
where POi is the preferred orientation of neuron i for one spatial frequency and PO’i is the preferred orientation of the same neuron for

another spatial frequency. This number is always in the range [-1:1], reaching 1 for perfect linear correlation between the preferred

orientations in the two conditions. 95% confidence intervals are generated on the circular correlation using bootstrapping (Sokal and

Rohlf, 1995) (number of bootstrap resamples = 10000).

Statistical Analysis

For both calcium data and electrophysiological data we determined if the difference in the preferred orientations estimated at

different spatial frequencies was statistically significant using the studentized method of generating 95% confidence intervals (Sokal

and Rohlf, 1995). The same method was used for generating 95% confidence intervals on the circular correlation.
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Model Analysis
Numerical Procedures and Analysis

Numerical simulations were performed using a 4th-order Runge-Kutta scheme to integrate the neuronal dynamics (Press, 1992). The

synaptic interactions and the noise were treated at first order. The time step is dt = 0:05ms.

For each cortical neuron the mean firing rate, F0ðqkÞ, and firing rate temporal modulation (first Fourier component of the response)

F1ðqkÞ were estimated for each orientation, qk = ðk� 1Þ20�;k = 1; ::;9, by averaging the response upon 40 s of stimulation, unless

specified otherwise. We then computed the orientation averaged responses

Fn =
1

9

X9
k = 1

FnðqkÞ n= 0;1

and the complex numbers

Zn =
1

9

X9
k = 1

FnðqkÞe2iqk n= 0;1:

The Orientation Selectivity Index (OSI) and the Preferred Orientation (PO) of the peak response is then estimated from

OSI=
jZ0 +Z1 j
F0 +F1
PO=ArgðZ0 +Z1Þ:
The OSI is 0 if the response has no tuning and 1 if the neuron responds at only one orientation. These definitions for the OSI and PO

are equivalent to those used in the analysis of the experimental data (see above).

The definition of correlation coefficient is same as described above.

We also fit the tuning curves of the mean, F0ðqÞ, and temporal modulation, F1ðqÞ, of the spike to periodic Gaussian functions

fFnðqÞ=An +Bn

X+N

k;l =�N

exp

 
�
h
q� kp� bqni2

2s2
n

!

with n = 0,1. We estimated the parameters An;Bn, bqn, sn, for each neuron by minimizing the quadratic error: EðAn;Bn; bqn; snÞ =
ð1=9ÞP9

k = 1ðfFnðqkÞ � FnðqkÞÞ2.
Robustness of the Results

To check that a time step, dt = 0:05ms, was sufficiently small, we also performed several simulations with dt = 0:025ms. To verify that

our results were also robust to changes in system size we performed several simulations on networks with NE = 78560, NI = 19600,

NL = 40000, keeping the average number of connections into E and I cells the same.

Structure of the ON and OFF Subfield of the Thalamic Input

We characterized the thalamo-cortical input in the model by performing simulations with a protocol similar to the one in the

experiments of Lien and Scanziani (2013). The stimuli used tomap the receptive fields were Gaussian spots with a standard deviation

of 5.6 degrees. The spots were presented in one of 64 locations arranged regularly in a square of 8x8 in the center of the network. The

distance between the centers of adjacent spots was 7�. In order to characterize both ON and OFF receptive fields the stimuli were

either brighter or dimmer than the background illumination. Each stimulus was presented during 1sec. During that time we evaluated

the average of the conductance of the thalamic to each cortical neuron. We checked that the results were robust with respect to

longer simulation times. The intensity of the stimulus (with respect to the background value) at the center of the Gaussian was

l0 = ± 0.075. After performing the simulations, the centers of the ON and OFF subfields were estimated by evaluating their center

of mass: < r > = Si fi ri /Si fi, where fi is the average thalamic input for a stimulus at position is ri. In order to reduce the noise level

we performed the sum only over the locations for which the average input is larger or equal than 30% of the maximal average input.

Let us note that this way of estimating the center of the fields is only valid for cortical neurons whose feedforward inputs do not

come from the border of the LGN network. Otherwise, because of the periodic boundary conditions of the LGN receptive fields,

the linear estimation could combine inputs from opposite sides of the visual field. As the feedforward connectivity profile is topo-

graphically organized, neurons in the center of the cortex receive inputs from neurons in the center of the LGN. Therefore, boundary

effects can be avoided by evaluating the center of mass only for neurons in the central part of the cortical network. In particular all the

statistics of the ON and OFF subfields were estimated from neurons the square region of 14�x14� at the center of the network

(361 neurons).

Parameters of the Computational Model

The cortical network is assumed to have a size of 2mm x 2mm representing 140�x 140� in the visual field (Kalatsky and Stryker, 2003).

The synaptic dispersion of the recurrent connectivity is taken to be 200 mm, consistently with values reported in Reyes and

Sakmann (1999). Unless indicated otherwise, the dispersion of the feed-forward connectivity was 100 mm.
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The synaptic efficacies were as in Table S1. With these parameter values post-synaptic potentials have peak size is 0.5 mV

(E- > E interaction), �0.3 mV (I- > E), 2.7 mV (E- > I), �0.9 mV (I- > I), 0.9 mV (LGN- > E), 0.8 mV (LGN- > I). See Figure S1A.

We introduced heterogeneity in the parameters scx, ssx, a;b. For each thalamic neuron these parameters were chosen from a log-

normal distribution

PðxÞ= 1

xs
ffiffiffiffiffiffi
2p

p e�ðln x�mÞ2
2s2 ;

where the parameters m and s are given by scxm, scxs, ssxm, ssxs; am; as; bm; bs respectively. The values of these parameters are

given in Table S2. Examples of receptive fields of LGN neurons in the model are plotted in Figure S1B. The heterogeneity in the

LGN receptive fields is depicted in Figure S1C.

In the simulations of Figure S7, the preferred orientations of LGN neurons are chosen randomly with a distribution

PðqÞ=P0

�
aq +bqexp

�
� q2

2c2
q


�
;

where P0 is a normalization constant. The parameters we used in these simulations are given in Table S3.
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