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Abstract
The alcohol research field has amassed an impressive number of gene expression datasets spanning key brain areas for addiction,
species (humans as well as multiple animal models), and stages in the addiction cycle (binge/intoxication, withdrawal/negative
effect, and preoccupation/anticipation). These data have improved our understanding of the molecular adaptations that eventually
lead to dysregulation of brain function and the chronic, relapsing disorder of addiction. Identification of new medications to treat
alcohol use disorder (AUD) will likely benefit from the integration of genetic, genomic, and behavioral information included in
these important datasets. Systems pharmacology considers drug effects as the outcome of the complex network of interactions a
drug has rather than a single drug-molecule interaction. Computational strategies based on this principle that integrate gene
expression signatures of pharmaceuticals and disease states have shown promise for identifying treatments that ameliorate
disease symptoms (called in silico gene mapping or connectivity mapping). In this review, we suggest that gene expression
profiling for in silico mapping is critical to improve drug repurposing and discovery for AUD and other psychiatric illnesses. We
highlight studies that successfully apply gene mapping computational approaches to identify or repurpose pharmaceutical
treatments for psychiatric illnesses. Furthermore, we address important challenges that must be overcome to maximize the
potential of these strategies to translate to the clinic and improve healthcare outcomes.
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Introduction

Developing more effective pharmacotherapies to treat disease
is an important goal in public health. This is especially true for
complex psychiatric diseases like alcohol use disorder (AUD),
where there are limited pharmaceutical treatment options. We
use AUD throughout this review for consistency as this is the
terminology used in the current edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM5), but this does

not exclude previous DSM version diagnostic criteria or
preclinical/clinical trials based on those. AUD is a chronic,
relapsing disease that devastates individuals, families, and so-
ciety and is a major public health problem. Though recovery is
possible regardless of disease severity, there are few pharma-
ceutical treatments available to aid in the recovery process.
There are several points of intervention along the time course
of AUD where pharmacotherapies might be effective, includ-
ing AUD initiation (initial alcohol use), development (sporad-
ic intermittent alcohol use; the binge-intoxication phase), pro-
gression (regular use), early abstinence (the withdrawal—neg-
ative affect stage) or protracted abstinence (the preoccupa-
tion—anticipation (craving) stage) (Koob et al. 2009; Kreek
et al. 2002). Sleep disturbances are a key contributor to relapse
in abstinence and therefore offer another target for treatment
(Brower 2015;Miller et al. 2017). Therapeutic interventions at
any point along this continuum could improve the health of
the individual.

Pharmaceutical treatments can either be developed de novo
for a specific drug target, repurposed, or rescued. While the
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usage and definition of the terminology Bdrug repurposing^
and Bdrug rescue^ can be complex (Langedijk et al. 2015),
here we define drug repurposing as finding a novel clinical use
for an approved drug and drug rescue as finding a clinical use
for a stalled drug (whether the drug is in development but not
yet approved or failed for one indication but could be useful
for another disease or patient subgroup; phase 2 or beyond).
Drug repurposing (also referred to as drug repositioning) is
appealing because it reduces the overall costs of drug devel-
opment and expedites the availability of treatments to those
who need them (Nosengo 2016). Drug repurposing has large-
ly centered around side-effect data, and, while this approach
has been somewhat successful for brain diseases, there is a
great need for improved strategies for drug selection. De novo
drug development has traditionally relied on target identifica-
tion through basic research. Over four decades of alcohol re-
search has identified key neurotransmitter systems and brain
regions that contribute to the various stages of AUD patholo-
gy and represent potential targets for pharmaceutical develop-
ment. Despite these advancements, there has been sparse
translational success clinically. There are only three FDA ap-
proved drugs for AUD: naltrexone (oral: ReVia®, injectable:
Vivitrol®), acamprosate (Campral®), and disulfiram
(Antabuse®), the most recent of which, acamprosate, was
approved in 2004. This gap between advances in basic re-
search (conducted primarily at academic institutions) and
pharmaceutical development (primarily undertaken by indus-
try, e.g., pharmaceutical companies) has been dubbed the
Bvalley of death^ (Butler 2008).

The explosion of both the quantity and availability of
various types of molecular datasets (e.g., gene sequence/
genotype, gene expression, epigenetic marks, metabolic
measures) and computational strategies to exploit them, of-
fers new solutions to this problem and is moving disease
diagnosis and treatment into the molecular realm. Many
computational (or in silico) strategies exist, and all are con-
cerned with finding the Bsimilarity^ between diseases and
drugs. The computational strategies highlighted in this
Review involve integrating molecular profiles of a disease
state with those of pharmaceuticals to predict effective
treatments. Molecular profiles can be derived from multiple
molecular phenotypes, including gene expression, protein
targets (see the issue in this article for proteome targets in
the accumbens by Clyde Hodge and colleagues), genetic
variants (single nucleotide polymorphisms (SNPs)), and
others, though the focus of this review will be on gene
expression. Another approach to computational repurposing
uses crystal structures of receptors to conduct structure-
based ligand discovery (Heusser et al. 2013). In this review,
we focus on the aforementioned computational approaches
and will not discuss structure-based ligand discovery in
detail, but interested readers are referred to a review
(Howard et al. 2014).

Traditional approach

Drug development

Disease-related drug development begins with mechanistic
studies of target identification followed by validation (see
the review in this issue by Ciccocioppo and colleagues for
an in-depth discussion of target validation), preclinical and
clinical trials, and FDA review. Typically, a single cellular or
molecular target is sourced from the results of much neurobi-
ological research (Fig. 1). Despite clear scientific evidence for
its involvement in disease pathology at multiple levels of anal-
ysis (e.g., molecular, neuropharmacological, neurocircuitry,
behavior), the single target approach has largely been a failure
for brain diseases (Hutson et al. 2017). A striking example of
this is for Huntington’s disease, where the single causative
gene (HTT) has been known since 1993 (MacDonald et al.
1993). Despite this single, well-validated target, no drug nor
therapeutic options have been developed as treatments. One
example of this for AUD is the corticotrophin releasing factor
(CRF) system, which has tremendous research support for its
involvement in AUD pathology, yet CRF inhibitors have pro-
duced disappointing results in double-blind, placebo-
controlled trials (Kwako et al. 2015; Pomrenze et al. 2017;
Schwandt et al. 2016).

Despite the vital insights gained from neurobiological re-
search (both in humans and animal models), these findings
have not translated into therapeutic success. There are a num-
ber of possible reasons for this, including genetically hetero-
geneous human populations and the complexities of alcohol’s
many targets (Most et al. 2014; Pomrenze et al. 2017). The
brain is highly complex, and psychiatric diseases are charac-
terized by numerous symptoms. Reducing this complexity to a
single target is appealing for its simplicity but perhaps mis-
guided, and expecting modulation of a single gene or mole-
cule to ameliorate all symptoms of complex diseases is likely
to produce disappointing results.

Targets (molecules) do not work in isolation, but function
as part of a system (or network) to accomplish biological
functions. The hypothesis that a disease state represents a shift
from normal physiological homeostasis and can be thought of
as a network perturbation has been proposed and described in
detail, and is attractive for several reasons (Barabasi et al.
2011; Chen and Butte 2013; Jacunski and Tatonetti 2013;
Kolodkin et al. 2012; Silbersweig and Loscalzo 2017;
Silverman and Loscalzo 2013). First, there could be many
network perturbations that lead to the same disease classifica-
tion, which fits with the heterogeneous patient populations we
observe in AUD. Secondly, the other side of this argument is
that if a disease represents a perturbed state of a biological
network, there could be multiple pharmacological interven-
tion points to reverse those perturbations and return the system
to homeostasis. Targeting the network at several points might
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be more efficient (or even necessary) to shift the system back
to normal homeostasis. This also provides a basis for
polypharmacology (the use of drug combinations to treat a
disease) and could guide the selection of drug combinations,
which will not be discussed in depth in this review, but inter-
ested readers are referred to Ryall and Tan (2015) for more
information. For these reasons, we and others propose that to
maximize the likelihood of successful treatment for complex
disorders, it is imperative to Bdrug the network^ rather than
focus solely on single targets (see BComputational
approaches^ section).

Drug repurposing

Traditionally, getting a drug to market takes 13–15 years and
costs 2–3 billion dollars on average (Nosengo 2016). Many
drugs that are currently FDA approved could be beneficial for
diseases other their original indication. Additionally, pharma-
ceutical companies have invested considerable resources into
developing drugs that passed initial safety trials but failed in
efficacy trials (sometimes referred to as shelved compounds)
that are waiting for a suitable indication (Nosengo 2016).
Often, successful drug repurposing has been serendipitous
(Fig. 1). There are many examples spanning a variety of con-
ditions, from the classic example of sildenafil (Viagra®), a
PDE5 inhibitor being developed for hypertension, that was
repurposed for erectile dysfunction (Goldstein et al. 1998),
to bimatoprost (Lumigan®/Latisse®), a prostaglandin analog
that was repurposed for a cosmetic application as it was

noticed to lengthen and darken the eyelashes as a side effect
of those using it to treat glaucoma (Tosti et al. 2004).

Drug repurposing has also been successful for brain dis-
eases. For example, buprenorphine, a mixed partial agonist
opioid receptor modulator, was originally used for pain relief
and was repurposed to treat opiate dependence (Jasinski et al.
1978). Ropinirole (Requip), a dopamine agonist used an anti-
Parkinson’s agent, was repurposed for treatment of both rest-
less legs syndrome and SSRI-induced sexual dysfunction
(Cheer et al. 2004; Worthington et al. 2002). Additional ex-
amples include bupropion (depression to smoking cessation)
(Lief 1996), dimethyl fumarate (psoriasis to multiple sclero-
sis) (Bomprezzi 2015), and guanfacine (hypertension to
ADHD) (Strange 2008).

Several FDA approved or shelved compounds have
shown promise in treating AUD and many are currently
undergoing human lab testing or are in clinical trials
(ClinicalTrials.gov_AUD), including gabapentin,
topiramate, varenicline, ABT-436, mifepristone (RU-
486), citicoline, baclofen, nalmefene, and others (Litten
et al . 2016; Lyon 2017) (Table 1). Gabapentin
(Neurontin) was initially used as an anti-epileptic, then
later approved for neuropathic pain and amyotrophic lat-
eral sclerosis. Baclofen (Liorsel) is a GABAB receptor
agonist, originally made as an anti-epileptic with disap-
pointing results, but showed remarkable effectiveness for
treating spasticity in many conditions, especially for spi-
nal cord injury, cerebral palsy, and multiple sclerosis. As
mentioned, it is being considered for treatment of AUD
(with mixed findings) (Farokhnia et al. 2017).

Fig. 1 Traditional approach to drug discovery and drug repurposing:
existing knowledge of a disease state (built upon basic science) is
applied to select a compound designed for a single target (chosen for its
involvement in a disease process), and these are tested in vitro and/or
in vivo. Brain gene expression levels (Brain Omics) are measured for
drugs that ameliorate disease phenotype which helps further elucidate
the mechanisms of action (MOAs) of drugs and suggests other molecules
that can be targeted by candidate drugs. Traditionally, drug repurposing
(finding new indications for existing compounds) has been largely based

on side effect data, adverse events, existing literature, or structural simi-
larity between compounds used to treat different diseases (the idea being
that the compound of one disease might be able to treat another because it
shares structural similarity with compounds used to treat that disease).
Drug repurposing efforts would benefit greatly if there was a system
established to report positive side effects as is the case for Badverse
events.^ Capsule images from http://smart.servier.com/category/general-
items/drugs-and-treatments/. Servier Medical Art by Servier is licensed
under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/)
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Computational approaches

The generation and accumulation of publicly accessible, high-
throughput genomic datasets make it possible to integrate large-
scale drug and disease signatures at the molecular level to pre-
dict compounds with the potential to treat a disease based on
multiple targets (e.g., gene networks). These data-rich resources
include public repositories (primary archives), integrative data-
bases, and value-added databases (these tools are designed to
process, analyze and annotate complex information from pri-
mary data sources to lower the computational barriers to access
primary data). A selection of these resources is summarized in
Table 2.

There are two essential datasets from these resources
that are required to match disease and drug: (1) mea-
surements of a molecular phenotype induced by a dis-
ease state and (2) measurements of the same molecular
phenotype induced by drugs. Obtaining this type of re-
liable drug library is not trivial. Surprisingly, attaining a
list of approved drugs and their indications is not a
straightforward task. These difficulties are the result of
poor data storage and electronic retrieval mechanisms,
complex and rapidly changing nomenclature (drugs can
be called by their common name, chemical name, sim-
plified molecular-input line-entry system (SMILES),
International Chemical Identifier (InChI)), and legal is-
sues surrounding off-label advertisement of pharmaceu-
ticals. Fortunately, many of these challenges have been
overcome largely by the pioneering work by a collabo-
rative effort of the Broad Institute and funding from a
National Institutes of Health Common Fund (https://
commonfund.nih.gov/lincs). They have compiled the
Library of In tegra ted Network-based Cel lu la r
Signatures (LINCS-L1000) database which contains
gene expression responses to genetic and pharmacologic
manipulation across a diverse set of human cell lines
(Subramanian et al. 2017). They also maintain a
repurposing hub that contains over 5000 manually-
curated drugs that are either FDA approved or in clin-
ical trials (Corsello et al. 2017). The availability of
these tremendous resources is a primary reason we fo-
cus on gene expression as the molecular phenotype, as
other molecular responses to drugs are not as well char-
acterized in such a systematic manner or as accessible
for analysis. With the two required datasets described
above, there are three main steps to proceed from gene
networks to candidate compounds (see Fig. 2), which
then can be tested in a preclinical animal model or
human laboratory study:

1. Generate an input signature that captures the genomic
state of interest (gene expression differences between dis-
ease and healthy state, for example).

2. High-throughput identification of compounds using an in
silico screen (similarity metric).

3. Prioritize candidate compounds.

The details of each step are described below.

Generate an input signature that captures the genomic state
of interest

The purpose of the signature is to capture the molecular
changes that are the most relevant to the biological state of
interest at a given point in time. There are many different
options for constructing an input signature. Applying such
approaches to brain diseases is still in its infancy and under-
standing the optimal input parameters is a major challenge
(see the BChallenges and future directions^ section below).
Genetic variation (genotyping or exome/whole genome se-
quencing data) has been the primary approach used for geno-
mic medicine/precision medicine for cancer (Letai 2017). A
functional genomic measure, such as gene expression can also
be used. This is referred to as in silico gene mapping, gene
mapping, or connectivity mapping, the latter named after one
of the first characterizations of the method using the Broad
Institute’s database called the Connectivity Map (CMap)
(Lamb et al. 2006). Importantly, the AUD research field has
generated an incredible library of gene expression data that
spans multiple species (human, mouse, monkey, rat),
conditions/treatments (genetic predisposition, various acute
or chronic ethanol exposures, or paradigms), various brain
regions, and isolated cell types (including microglia and as-
trocytes) (Table 2).

High-throughput identification of compounds using
an in silico screen (similarity metric)

At their core, the various approaches used for in silico gene
mapping aim to compare drug and disease signatures. If an
effect size measure (such as fold change) is available, a corre-
lation coefficient could be calculated, to reflect the correlation
between gene expression changes between drug and vehicle
and those between disease and normal. Positive correlations
would indicate that the drug mimics the disease’s effects on
transcription levels, while negative correlations would indi-
cate that the drug reverses it. An alternative approach is to
use an enrichment score to assess the overlap between two
lists of differentially expressed genes, such as the
hypergeometric statistic or the rank-based gene set enrichment
analysis (GSEA; corresponds to a weighted Kolmogorov-
Smirnov) (Subramanian et al. 2005). For example, list A con-
tains the top differentially expressed genes between disease
and healthy samples, and list B contains the top differentially
expressed genes between drug and vehicle samples. The

Psychopharmacology

https://commonfund.nih.gov/lincs
https://commonfund.nih.gov/lincs


Table 2 Data resources

Name Description URL Ref.

Primary repositories
Gene Expression Omnibus Public functional genomics data

repository for array- and
sequence-based data.

ncbi.nlm.nih.gov/geo/ Barrett et al. (2013)

ArrayExpress Public functional genomics data
repository for array- and
sequence-based data.

ebi.ac.uk/arrayexpress/ Kolesnikov et al. (2015)

ParkDB Repository for gene expression datasets
related to Parkinson’s
disease (PD)

www2.cancer.ucl.ac.uk/Parkinson_Db2/ Taccioli et al. (2011)

Integrative databases
HUGO Gene Nomenclature
Committee (HGNC) database

Repository of HGNC-approved gene
nomenclature, gene families and
associated resources including links
to genomic, proteomic, and phenotypic
information.

genenames.org/ Gray et al. (2015)

Online Mendelian
Inheritance in Man (OMIM)

Publicly available dataset of human genes
and genetic disorders and traits, with
particular focus on the molecular relationship
between genetic variation and phenotypic
expression.

omim.org/ Amberger and Hamosh
(2017)

UK Brain Expression Consortium Publicly available dataset of geneotyping
and gene expression data from 134 brains
from individuals free of neurodegenerative
disorders (up to 12 brain regions).

ukbec.wordpress.com/braineac.org/

Encyclopedia of DNA
Elements (ENCODE)

Integrates multiple technologies and approaches
in a collective effort to discover and define
the functional elements encoded in the human
genome, including genes, transcripts, and
transcriptional regulatory regions, together
with their attendant chromatin states and
DNA methylation patterns.

encodeproject.org/ Consortium (2011)

Genotype–Tissue
Expression (GTEx) project

Collection and analysis of multiple
human tissues from donors
who are also densely genotyped,
to assess genetic variation within
their genomes. By analyzing global
RNA expression within individual
tissues and treating the expression
levels of genes as quantitative traits,
variations in gene expression that are
highly correlated with genetic variation
can be identified as expression quantitative
trait loci, or eQTLs.

gtexportal.org/home/ Consortium (2013)

Depression Genes and
Networks (DGN) cohort

RNA sequencing data and analyses from
922 genotyped individuals, providing
information regarding the regulatory
consequences of genetic variation

dags.stanford.edu/dgn/ Battle et al. (2014)

Psychiatric Genomics
Consortium (PGC)

Psychiatric Genomics Consortium (PGC)
unites investigators around the world
to conduct meta- and mega-analyses of
genome-wide genomic data for psychiatric
disorders.

There are samples from more than 900,000
individuals (and growing) collected by
over 800 investigators from 38 countries.

med.unc.edu/pgc O’Donovan (2015)

Library of Integrated
Network-Based Cellular
Signatures; LINCS-L1000

Publicly available dataset from the Broad
Institute. The 1.3 M L1000 cellular
signatures catalog transcriptional
responses of human cells to chemical
and genetic perturbation. A total of
27,927 perturbagens have been profiled
to produce 476,251 expression signatures.
About half of those signatures make up the
Touchstone (reference) dataset generated
from testing well-annotated genetic and
small-molecular perturbagens in a core
panel of cell lines.

clue.io/ Subramanian et al. (2017)

Connectivity Map (CMap) Publicly available dataset from the Broad
Institute. Connectivity Map Build 02
includes data from 7056 Affymetrix
microarrays, for 1309 small-molecule
compounds, and 6100 treatment instances
in 5 human cell lines.

broadinstitute.org/cmap/ Lamb et al. (2006)

Added-value databases
and tools

Genes
Enrichr Web tool for gene set enrichment analysis amp.pharm.mssm.edu/Enrichr/ Kuleshov et al. (2016)
NetworkAnalyst Web tool for performing various

common and complex meta-analyses
of gene expression data

networkanalyst.ca/ Xia et al. (2015)

Database for Annotation,
Visualization and
Integrated Discovery
(DAVID)

Web tool for gene set enrichment analysis david.ncifcrf.gov/ Huang et al. (2009)

GeneMANIA Web tool for generating hypotheses
about gene function, analyzing
gene lists and prioritizing genes

genemania.org/ Montojo et al. (2014)
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Table 2 (continued)

Name Description URL Ref.

for functional assays. There is also
a GeneMANIA Cytoscape plugin.

WebGestalt (WEB-based
Gene SeTAnaLysis Toolkit)

Web tool for gene set enrichment analysis. webgestalt.org Wang et al. (2013)

PubMatrix Web tool that allows simple text based
mining of the NCBI literature
search service PubMed using
any two lists of keywords terms,
resulting in a frequency matrix
of term co-occurrence.

pubmatrix.irp.nia.nih.gov/ Becker et al. (2003)

Ingenuity Pathway
Analysis (IPA®)

Tool for analyzing and visualizing
data from omics experiments

qiagenbioinformatics.
com/products/ingenuity-pathway-analysis/

Kramer et al. (2014)

Gene-Set Enrichment
Analysis (GSEA)

Web tool for determining whether an a
priori-defined set of genes shows
statistically significant, concordant
differences between two biological
states (phenotypes).

broadinstitute.org/gsea/ Subramanian et al. (2005)

MetaXcan Algorithm that allows imputation of gene
expression z-scores based on GWAS
summary statistics.

github.com/hakyimlab/MetaXcan Barbeira et al. (2016)

Kyoto Encyclopedia of
Genes and Genomes (KEGG)

Database resource for understanding high-level
functions and utilities of the biological
system, such as the cell, the organism
and the ecosystem, from molecular-level
information, especially large-scale molecular
datasets generated by genome sequencing and
other high-throughput experimental technolo-
gies.
(So et al. 2017) used KEGG to download the
Anatomical Therapeutic Classification (ATC)
for drugs.

genome.jp/kegg/ Ogata et al. (1999)

GeneGO’s Metacore Integrated software suite for functional analysis
of experimental data based on a curated
database of human protein-protein,
protein-DNA interactions, transcription
factors, signaling and metabolic pathways,
disease and toxicity, and the effects of bioactive
molecules. Suite contains tools for data
visualization,
mapping and exchange, multiple networking
algorithms,
and filters.

portal.genego.com/ Ekins et al. (2006)

GeneWeaver Curated repository of genomic experimental
results from published genome-wide
association studies, quantitative trait locus,
microarray, RNA-sequencing and mutant
phenotyping studies with an accompanying
tool set for dynamic integration of these
data sets, enabling users to identify
gene-function associations across diverse
experiments, species, conditions, behaviors,
or biological processes.

geneweaver.org/ Baker et al. (2012)

GeneCards Database of human genes that provides
genomic, proteomic, transcriptomic,
genetic, and functional information
on all known and predicted human
genes. Developed and maintained
by the Crown Human Genome Center
at the Weizmann Institute of Science.

genecards.org Stelzer et al. (2016)

TransFind Web tool for predicting transcriptional
regulators for gene sets

transfind.sys-bio.net/ Kielbasa et al. (2010)

JASPAR Web tool for predicting transcriptional
regulators for gene sets

jaspar.genereg.net/ Mathelier et al. (2016)

TRANSFAC (TRANScription
FACtor database)

Web tool for predicting transcriptional
regulators for gene sets

gene-regulation.com/pub/databases.html Matys et al. (2006)

Proteins
STRING Web tool/database that provides a

critical assessment and integration
of protein-protein interactions,
including direct (physical) as well as
indirect (functional) associations.

string-db.org Szklarczyk et al. (2015)

iRefWeb Web tool/database that integrates data
on protein-protein interactions (PPI)
consolidated from major public databases.

wodaklab.org/iRefWeb/ Turinsky et al. (2014)

Hippie Web tool to generate reliable and
meaningful human protein-protein
interaction networks.

cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/ Alanis-Lobato et al.
(2017)

Drugs
sscMap Java application that performs

connectivity mapping tasks
using the CMap build 02 data.
Users can add custom collections
of reference profiles.

purl.oclc.org/NET/sscMap Zhang and Gant (2009)

Searchable Platform
Independent Expression
Database Webtool (SPIEDw)

Web tool used for querying publically
available gene expression data
(including the CMap build 02 drug data).

spied.org.uk/cgi-bin/HGNC-SPIED3.1.cgi Williams (2012)

Drug-Set Enrichment
Analysis (DSEA)

Web tool for identifying shared pathways
whose genes are upregulated
(or downregulated) by the drugs in the set.

dsea.tigem.it/ Napolitano et al. (2016)
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hypergeometric statistic would give the probability of the
overlap between list A and list B (the genes changed by both
drug and disease). GSEA, the approach implemented by the

Connectivity Map (CMap) and LINCS-L1000, avoids using
arbitrary cutoffs (the p value which designates differential
expressions between two conditions or treatments) by

Table 2 (continued)

Name Description URL Ref.

ChemBioServer Web tool for mining and filtering
chemical compounds used in drug discovery

bioserver-3.bioacademy.gr/Bioserver/ChemBioServer/ Athanasiadis et al. (2012)

Mode of Action by NeTwoRk
Analysis (Mantra 2.0)

Web tool for the analysis of the
Mode of Action (MoA) of novel
drugs and the identification
of known and approved candidates
for Bdrug repositioning^ using CMap drug data.

mantra.tigem.it/ Carrella et al. (2014)

Comparative Toxicogenomics
Database (CTD)

Publicly available dataset describing
relationships between chemicals,
genes, and human diseases.

ctdbase.org/ Davis et al. (2017)

MEDication Indication
resource (MEDI)

Compiled from four public medication
resources, including RxNorm, Side
Effect Resource 2 (SIDER2), Wikipedia
and MedlinePlus. A random subset of
the extracted indications was also reviewed
by physicians. The MEDI high-precision
subset (MEDI-HPS), only includes drug
indications found in RxNorm or in at least
two of the other three sources, with an
estimated precision of 92%.

vumc.org/cpm/center-precision-medicine-blog/medi-
ensemble-medication-indication-resource

Wei et al. (2013)

ClinicalTrials.gov Contains information about clinical trials. ClinicalTrials.gov
National Institute for Occupational
Safety and Health List of Antineoplastic
and Other
Hazardous Drugs

Contains drugs known to be toxic, according
to published literature

cdc.gov/niosh/topics/hazdrug/default.html Traynor (2014)

DrugBank Bioinformatics and cheminformatics
resource that combines detailed drug
data with comprehensive drug target
information.

DrugBank.ca/ Wishart et al. (200)

STITCH Database that includes information on
chemical-protein interactions. The
interactions include direct (physical)
and indirect (functional) associations;
they stem from computational prediction,
from knowledge transfer between organisms,
and from interactions aggregated from
other (primary) databases. Currently it
has 9,643,763 proteins from 2031
organisms.

stitch.embl.de/ Szklarczyk et al. (2016)

PharmGKB Repository for pharmacogenetic and
pharmacogenomic data, and curators
provide integrated knowledge in terms
of gene summaries, pathways, and
annotated literature.

pharmgkb.org Owen et al. (2007)

SuperTarget Added-value database that integrates
information about drugs, proteins
and side effects from other databases
to form drug-protein, protein-protein
and drug-side-effect relationships
and includes annotation about the
source, ID’s, physical properties,
references and much more.

insilico.charite.de/supertarget/ Hecker et al. (2012)

KEGG Drug Comprehensive drug information resource
for approved drugs in Japan, USA, and
Europe unified based on the chemical
structures and/or the chemical components,
and associated with target, metabolizing
enzyme, and other molecular interaction
network information.

genome.jp/kegg/drug/ Ogata et al. (1999)

AUD specific
INIATexas Gene Expression
Database (IT-GED)

Contains the top statistical results from
genomic studies focusing on models
of excessive alcohol consumption.

inia.icmb.utexas.edu/

Ethanol-Related Gene
Resource (ERGR)

Contains more than 30 large datasets from
literature and 21 mouse QTLs from public
database (see data summary). These data
are from 5 organisms (human, mouse, rat,
fly, and worm) and produced by multiple
approaches (expression, association, linkage,
QTL, literature search, etc.)

bioinfo.uth.edu/ERGR/ Guo et al. (2009)

Gene Network Contains large collections of genotypes
(e.g., SNPs) and phenotypes that are
obtained from groups of related
individuals, including human families,
experimental crosses of strains of mice
and rats, and organisms as diverse as
Drosophila melanogaster, Arabidopsis
thaliana,
and barley.

genenetwork.org/webqtl/main.py Mulligan et al. (2017)
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considering all of the genes in an experiment. Ranked
methods for the hypergeometric test have also been described
and offer the same benefits as GSEA (Plaisier et al. 2010).

Prioritize candidate compounds

Regardless of which statistical test is chosen, the output of the
previous step will include a list of predicted compounds with a
corresponding similarity score (also called a connectivity score).
Because only a handful of drugs can be tested in vivo, this list
must be filtered to select the most promising candidate com-
pounds. The working hypothesis is that negative scores would
predict reversal of gene expression from disease back to normal
state. However, this hypothesis is rarely tested directly (see
BChallenges and future directions^), though it does have some
support (Chen et al. 2017; Delahaye-Duriez et al. 2016; Wagner
et al. 2015). Regardless, drugs with either the highest absolute
value or the most negative similarity scores should be prioritized,
as these reflect the drugs that affect themost disease-related genes.

Beyond the sign (+/−) and magnitude of the connectivity
score, there are additional practical considerations for priori-
tizing candidate compounds (Oprea and Overington 2015).
For example, any identified high-priority candidate drugs for
AUD treatment would also benefit from having (1) known
oral dosing data available, (2) have little or no safety warnings
(especially regarding liver toxicity), (3) have low abuse liabil-
ity, (4) low drug-drug interaction potential, (5) negligible cy-
totoxic actions, and (6) high brain penetrability, among others.
These considerations alone will assist in narrowing the pool of
potentially Btestable^ compounds considerably, if the infor-
mation is available (which is frequently not the case). Upon
first glance, it might seem that the challenge is selecting only a
few compounds from hundreds of candidates generated by in
silico screens to test clinically or preclinically. However, this is
not the case. Meeting the ideal practical considerations
outlined above could eliminate virtually all candidate com-
pounds (Oprea and Overington 2015). In that case, medicinal
chemistry approaches could be used to modify the chemical
structure to suit the desired product profile.

Fig. 2 Computational approach to drug discovery and drug repurposing:
disease state can be either acquired (disease or substance of abuse changes
gene networks and these changes drive disease) or predisposed (genetic
variants cause disruptions in gene networks). The goal of in silico gene
mapping is to integrate the targets (gene networks) of disease and drugs to
find a drug (or combination of drugs) that affect similar targets as the
disease. Drugs that oppose the disease-state’s molecular disruption (many
targets) are chosen as candidate compounds to ameliorate disease
phenotype. There are three steps to go from gene expression datasets to
candidate compounds: (1) generate an input genomic signature or net-
work. Shown is a gene-gene coexpression network of genes related to a
disease state: nodes = genes, edges = gene-gene expression correlation,
yellow = up-regulated genes, blue = down-regulated genes; (2) compare
the disease signature to those induced by drugs to identify drugs that
would reverse the disease signature. Shown are the effects of three

different drugs in the reference database (e.g., LINCS-L1000) on the
disease-related genes that served as the input and (3) prioritize candidate
compounds for in vivo testing. The blue drug that received a perfect
negative score would be prioritized because it down-regulated the genes
that were up-regulated in the disease state and up-regulated the genes that
were down-regulated in the disease state. The yellow drug would be
predicted to mimic or worsen the disease state. Had the input been a
desirable biological state (e.g., the gene expression profile of patients with
AUD who had prolonged recovery vs. those who relapsed quickly after
ceasing alcohol consumption), then the yellow drug would be prioritized
because it is predicted to mimic the beneficial biological state. Capsule
images from http://smart.servier.com/category/general-items/drugs-and-
treatments/. Servier Medical Art by Servier is licensed under CC BY 3.
0 (https://creativecommons.org/licenses/by/3.0/). AUD, alcohol use
disorder
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Drug prioritization should also depend on the reliability of the
analytical results. That is, the connectivity score should be repro-
ducible for strong candidates. This is especially important to
consider because small changes in the genes that makeup the
input signature can result in the identification of different candi-
date compounds. The above-mentioned CMap database utilizes
a statistical measure of reliability (permutation test) to achieve
this goal. Stricter statistical measures have also been developed
for CMap. For example, the statistically significant connectivity
map (ssCMap) was developed (Zhang and Gant 2009), which
includes a measure of stability by removing single genes from
the input in a systematic manner and assessing reproducibility
(McArt and Zhang 2011). However, for larger datasets, such as
LINCS-L1000, implementation of permutations tests becomes
computationally expensive and less straightforward. Currently,
the web app for querying the LINCS-L1000 data (https://clue.
io/l1000-query) uses the Bsig_gutc^ tool (Subramanian et al.
2017) to summarize the connectivity scores and provide a mea-
sure of reliability. Each compound has been profiled under mul-
tiple experimental conditions (different cell lines, drug doses, and
exposure time points). To attain a compound-level analysis, sig_
gutc reports a summary score of the distribution of scores for a
compound across all experiments. The tool then ranks the con-
nectivity score between the query signature and the compound
signature, based upon the compound’s precomputed distribution
of connectivity scores with the other hundreds of thousands of
signatures in the LINCS-L1000 database. This provides a mea-
sure of the likelihood of a connectivity score for a drug given that
drug’s connectivity with the database as a whole, thus mitigating
false positives from drugs with widespread effects on transcrip-
tion. However, an appropriate statistical framework with which
to interpret LINCS-L1000 results needs to be developed.

Application to brain diseases

While initially used in cancer research (for review, see Chen and
Butte 2016), these computational repurposing strategies have also
been applied to brain diseases, albeit in a more limited capacity.
However, it should be noted that although not used as widely, the
studies using these computational approaches for drug discovery
for brain diseases have provided promising leads for variety of
disease states. Because there are few applications so far for psy-
chiatric disorders, this review includes the use of in silico gene
mapping strategies for any disease in which brain is the primary
affected organ, for which there have been 20 studies so far to the
best of our knowledge (Table 3).

Regarding the construction of the input genomic signature, the
studies fall into two main categories: those that use genotype data
(i.e., SNPs related to a disease phenotype discovered from
genome-wide association studies (GWAS)) and those that use
gene expression data. Gene expression measurement technology
(RNA sequencing or microarray) provides the expression levels
of all genes in the genome simultaneously, supplying a functional

genomic readout of the effects of the combination of the genetic
variants that could be contributing to disease. Gene expression is
by far the primary input used by the studies in Table 3, the idea
being to compare the gene expression levels between disease and
healthy tissue and to use the top differentially expressed genes as
the input signature, as this is thought to best capture themolecular
differences driving disease phenotypes. However, there is no con-
sensus on the optimal threshold or number of differentially
expressed genes to use. Differentially expressed genes can be
subdivided into groups of geneswith highly correlated expression
levels. Indeed, several studies incorporate gene co-expression net-
works or protein-protein interaction networks to refine the geno-
mic input signature (Chandran et al. 2016; Delahaye-Duriez et al.
2016; Gao et al. 2014). One study compared the performance of
using only differentially expressed genes between Parkinson’s
and normal brain to query CMap versus a combined approach
that used both differential expression and gene co-expression net-
work information (Gao et al. 2014). They calculated the number
of known Parkinson’s therapeutics in the top 50 ranked com-
pounds from each approach. Using the top 20 genes from the
combined method outperformed using the top 20 genes from
differential expression alone. They were not able to assess the
performance of using only the gene co-expression network as a
query for lack of up-regulated genes in the co-expressionmodule.
Interestingly, usingmore than the top 20 genes from the combined
approach led to a decrease in performance. Because gene co-
expression network modules are driven by variability in the data,
and cell type is a major contributor to gene expression variability,
it is possible that network based approaches could be more useful
for diseases that primarily affect a specific cell type (like in the
case for Parkinson’s disease). One downside of using gene ex-
pression data is that human brain tissue can only be obtained
postmortem and the transcriptional signature can be confounded
by a lifetime with the disease or pharmaceutical management of
the disease (see BChallenges and future directions^).

Genotype/gene sequence data, on the other hand, is readily
available, easy to attain, and is relatively static throughout the
patient’s lifetime, but it is not without its drawbacks. Many genes
contribute to the genetic risk of most complex psychiatric disor-
ders, each contributing a small effect. A minority of disease-
associated SNPs are mapped to protein-coding regions of the
genome, and there are few drugs that specifically target
particular gene products. Despite these challenges,
Papassotiropoulos et al. (2013) used intragenic SNPs related to
aversive memory performance to select the antihistamine, diphen-
hydramine, as a potential drug thatwould reduce aversivememory
recall (Papassotiropoulos et al. 2013). This was verified in a dou-
ble-blind, placebo-controlled, cross-over study in which a single
administration of diphenhydramine (50 mg) compared with pla-
cebo significantly reduced delayed recall of aversive, but not of
positive or neutral, pictures.

Most disease-associated SNPs, however, occur in non-coding
regions and their impact on disease outcome is difficult to

Psychopharmacology

https://clue.io/l1000-query
https://clue.io/l1000-query


Ta
bl
e
3

St
ud
ie
s
ap
pl
yi
ng

sy
st
em

s
ph
ar
m
ac
ol
og
y
ap
pr
oa
ch
es

to
br
ai
n
di
se
as
es

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

A
lz
he
im

er
’s

di
se
as
e
(A

D
)

H
um

an
H
ip
po
ca
m
pu
s

D
E
G
s—

to
p
50
0

up
-r
eg
ul
at
ed

an
d
to
p

50
0
do
w
n-
re
gu
la
te
d

ge
ne
s
ba
se
d
on

fo
ld

ch
an
ge

(u
na
dj
us
te
d
P

va
lu
e
≤
0.
05
).

C
al
cu
la
te
d
3
di
ff
er
en
t

w
ay
s
(L
im

m
a,

L
im

m
a-
C
hD

ir,
an
d

m
A
P-
K
L
)
fo
r
5
in
de
-

pe
nd
en
ts
tu
di
es

(a
ll

hi
pp
oc
am

pu
s)
.

K
S-
lik
e
st
at
is
tic
.

C
or
re
la
tio
n

co
ef
fi
ci
en
t

P
ro
po
se
d
27

ca
nd
id
at
e
dr
ug
s.

H
ig
hl
ig
ht
ed

po
te
nt
ia
lr
ol
es

of
PK

C
,H

D
A
C
,A

R
G
,a
nd

G
SK

3
in

m
ec
ha
ni
sm

of
A
D
.

N
on
e

N
eg
at
iv
e
sc
or
es
;C

M
ap

(p
er
m
ut
ed

re
su
lts

P
va
lu
e
<
0.
05
);
SP

IE
D
w

(r
es
ul
ts
w
ith

si
gn
if
ic
an
ce

va
lu
e
>
2)
;s
sc
M
ap

tr
ea
tm

en
t

se
ts
co
re
no
rm

al
iz
ed

to
un
ity

w
ith

a
to
le
ra
nc
e
of

on
e
fa
ls
e

co
nn
ec
tio
n
am

on
g
al
l

po
ss
ib
le
dr
ug
s
(P

<
1/
13
09
,

st
ri
ct
es
tp

ar
am

et
er
iz
at
io
n)
;

L
IN

C
S-
L
10
00

(m
ea
n
co
n-

ne
ct
iv
ity

sc
or
e
ac
ro
ss
th
e
fo
ur

ce
ll
lin
es

in
w
hi
ch

th
e

pe
rt
ur
ba
ge
n
co
nn
ec
te
d
m
os
t

st
ro
ng
ly

to
th
e
qu
er
y
(b
es
t

sc
or
e
4)
<
−0

.9
))
.

Sy
st
em

at
ic
al
ly

va
ri
ed

ca
lc
u-

la
tio
n
of

D
E
G
s
fo
r
in
pu
t(
×
5

hi
pp
oc
am

pa
ld

at
as
et
s)
an
d

al
go
ri
th
m
s.
C
om

bi
ne
d
sc
or
e

ac
ro
ss

al
l.

G
E
O
,C

M
ap

(b
ui
ld

2)
,s
sc
M
ap
,

SP
IE
D
w
,

L
IN

C
S-
L
10
00
,

E
nr
ic
hr
,

C
he
m
B
io
Se
rv
er
,

N
et
w
or
kA

na
ly
st
,

an
d
m
od
e
of

ac
tio
n
by

N
eT
w
oR

k
A
na
ly
si
s
(M

an
tr
a

2.
0)
.

Si
av
el
is
et

al
.(
20
16
)

A
D

H
um

an
E
nt
or
hi
na
lc
or
te
x;

hi
pp
oc
am

pu
s;

m
id
dl
e
te
m
po
ra
l

gy
ru
s;
po
st
er
io
r

ci
ng
ul
at
e
co
rt
ex
;

su
pe
ri
or

fr
on
ta
l

gy
ru
s;
vi
su
al

co
rt
ex
.

D
E
G
s—

to
p
40
0

up
-r
eg
ul
at
ed

an
d
to
p

40
0
do
w
n-
re
gu
la
te
d

ge
ne
s
ba
se
d
on

fo
ld

ch
an
ge

(F
D
R
<
1%

).

K
S-
lik
e
st
at
is
tic

G
en
e
si
gn
at
ur
e
in
du
ce
d
by

th
io
ri
da
zi
ne

w
as

si
m
ila
r
w
ith

A
D
ge
ne

si
gn
at
ur
es

in
E
C
,

H
IP
,M

T
G
,a
nd

SF
G
.O

n
th
e

co
nt
ra
ry
,g
en
e
si
gn
at
ur
es

in
du
ce
d
by

2
hi
st
on
e

de
ac
et
yl
as
e
(H

D
A
C
)

in
hi
bi
to
rs
vo
ri
no
st
at
an
d

tr
ic
ho
st
at
in

A
w
er
e

an
tic
or
re
la
te
d
w
ith

A
D
ge
ne

si
gn
at
ur
e
in

H
IP

an
d
PC

,
w
hi
ch

in
di
ca
te
d
th
at
th
es
e

dr
ug
s
co
ul
d
po
ss
ib
ly

re
ve
rs
e

th
e
A
D
ge
ne

si
gn
at
ur
e.

N
on
e

Po
si
tiv
e
sc
or
es

(m
ec
ha
ni
st
ic

in
si
gh
t)
.N

eg
at
iv
e
sc
or
es

(c
an
di
da
te

ph
ar
m
ac
ot
he
ra
pe
ut
ic
s)
.

G
E
O
,D

A
V
ID

,
T
ra
ns
Fi
nd
,C

M
ap
,

an
d
K
E
G
G

C
he
n
et

al
.(
20
13
)

A
D

H
um

an
H
ip
po
ca
m
pu
s
an
d

ce
re
br
al
co
rt
ex

D
E
G
s—

hi
pp
oc
am

pu
s:
40

D
E
G
s
(4
0
ge
ne
s

re
po
rt
ed

by
H
at
a
et

al
.

20
01
;t
op

20
up

an
d
to
p

20
do
w
n)
.C

er
eb
ra
l

co
rt
ex
:2

5
ge
ne
s
w
ith

FC
>
5
re
po
rt
ed

by
R
ic
ci
ar
el
li
et

al
.2
00
4;

11
up

an
d
14

do
w
n)
.

K
S-
lik
e
st
at
is
tic

N
o
ge
ne
s
in

co
m
m
on

be
tw
ee
n

th
es
e
tw
o
qu
er
y
si
gn
at
ur
es
,

bu
tb

ot
h
yi
el
de
d
ne
ga
tiv
e

co
nn
ec
tiv
ity

sc
or
es

w
ith

th
e

tw
o
in
de
pe
nd
en
ti
ns
ta
nc
es

of
4,
5-
di
an
ili
no
ph
th
al
im

id
e

(D
A
P
H
).
T
hi
s
st
re
ng
th
en
ed

th
e
ca
nd
id
ac
y
of

D
A
PH

as
a

po
te
nt
ia
lA

D
th
er
ap
eu
tic
.

In
si
lic
o
(l
ite
ra
tu
re
:D

A
PH

w
as

fo
un
d
to
re
ve
rs
e
th
e

fo
rm

at
io
n
of

fi
br
ils

(a
va
ri
et
y
of

D
A
PH

an
al
og
s
ha
ve

be
en

sy
nt
he
si
ze
d
as

po
te
nt
ia
l

tr
ea
tm

en
ts
fo
r
A
D
).

N
eg
at
iv
e
sc
or
es

an
d
pe
rm

ut
at
io
n

p
va
lu
e

C
M
ap

L
am

b
et

al
.(
20
06
)

A
D
/c
og
ni
tio
n

en
ha
nc
er
s

H
um

an
H
ip
po
ca
m
pu
s
an
d

ce
re
br
al
co
rt
ex

D
E
G
s—

hi
pp
oc
am

pu
s:
40

D
E
G
s
(4
0
ge
ne
s

re
po
rt
ed

by
H
at
a
et

al
.

20
01
;t
op

20
up

an
d
to
p

20
do
w
n)
.C

er
eb
ra
l

co
rt
ex
:2

5
ge
ne
s
w
ith

FC
>
5
re
po
rt
ed

by
R
ic
ci
ar
el
li
et

al
.2
00
4;

11
up

an
d
14

do
w
n)
.

K
S-
lik
e
st
at
is
tic

N
o
ge
ne
s
in

co
m
m
on

be
tw
ee
n

th
es
e
tw
o
qu
er
y
si
gn
at
ur
es
,

bu
tb

ot
h
qu
er
ie
s
re
su
lte
d
in

a
co
m
m
on

lis
to

f
ne
ga
tiv
e

co
nn
ec
tio
ns

th
at
w
er
e
gi
ve
n

hi
gh
er
co
nf
id
en
ce
.T

he
y
us
ed

an
in
te
gr
at
iv
e

ch
em

oi
nf
or
m
at
ic
s
ap
pr
oa
ch

co
m
bi
ni
ng

C
M
ap

w
ith

Q
SA

R
/V
S
hi
ts
to

em
ph
as
iz
e

co
nn
ec
tio
ns

fr
om

th
e
C
M
ap

th
at
on
e
w
ou
ld

no
tc
ho
os
e

ot
he
rw

is
e.

In
vi
tr
o
(v
al
id
at
ed

bi
nd
in
g

to
5H

T
6R

,a
ls
o
th
at

ra
lo
xi
fe
ne

bi
nd
s
to

5H
T
6R

).
In

si
lic
o

(l
ite
ra
tu
re
:r
al
ox
if
en
e

gi
ve
n
at
a
do
se

of
12
0
m
g/
da
y,
bu
tn

ot
60

m
g/
da
y,
le
d
to

re
du
ce
d
ri
sk

of
co
gn
iti
ve

im
pa
ir
m
en
ti
n

po
st
m
en
op
au
sa
l

w
om

en
).

N
eg
at
iv
e
sc
or
es

(t
he
y
m
en
tio
n

st
at
is
tic
al
ly

si
gn
if
ic
an
t

ne
ga
tiv
e
dr
ug
s
bu
td

o
no
t

pr
ov
id
e
th
e
th
re
sh
ol
d
us
ed
.).

N
ot
e:
no

su
m
m
ar
iz
at
io
n

ac
ro
ss

m
ul
tip
le
ex
pe
ri
m
en
ts

fo
r
sa
m
e
co
m
po
un
d
(d
os
es
,

tim
ep
oi
nt
s,
ce
ll
lin
es
).

C
M
ap

H
aj
jo

et
al
.(
20
12
)

Pa
rk
i n
so
n’
s

di
se
as
e
(P
D
)

H
um

an
S
ub
st
an
tia

ni
gr
a

D
E
G
s—

to
p
20
,5
0,
10
0,

20
0,
or

al
l(
53
5)

D
E

ge
ne
s
fr
om

in
te
gr
at
ed

ap
pr
oa
ch
.2

G
E
O

da
ta
se
ts
:F

C
>
1.
5
an
d

K
S-
lik
e
st
at
is
tic

To
p
20

ge
ne
s
fr
om

th
ei
r

in
te
gr
at
ed

ap
pr
oa
ch

fo
r

pr
io
ri
tiz
in
g
ge
ne
s

ou
tp
er
fo
rm

ed
th
e
to
p
10
0,

20
0,
50
0,
an
d
al
l(
53
6)

D
E
G
s

In
vi
tr
o
(n
eu
ro
bl
as
to
m
a
ce
ll

lin
e)
.I
n
si
lic
o

(e
nr
ic
hm

en
ts
co
re
)

N
eg
at
iv
e
sc
or
es
.I
nt
eg
ra
te
d

ap
pr
oa
ch

(N
O
T
E
:s
im

pl
y

us
in
g
th
e
D
E
G
s
fr
om

th
e

G
E
O
da
ta
se
ts
pe
rf
or
m
ed

as
w
el
la
s
or

be
tte
r
th
an

th
ei
r

C
M
ap
,G

E
O
,

Pa
rk
D
B
,O

M
IM

,
an
d
C
T
D

G
ao

et
al
.(
20
14
)

Psychopharmacology



T
ab

le
3

(c
on
tin

ue
d)

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

FD
R
<
10
%
.P

ar
kD

B
(h
um

an
):
co
ns
is
te
nt

up
-

or
do
w
n-
re
gu
la
tio
n

ac
ro
ss

di
ff
er
en
te
xp
er
i-

m
en
ts
(P

≤
0.
01
).

fo
r
th
e
in
pu
ts
ig
na
tu
re
.

Pe
rf
or
m
an
ce

w
as

m
ea
su
re
d

by
ho
w
m
an
y
(o
ut

of
th
e
to
p

50
)
m
ol
ec
ul
es

re
tu
rn
ed

by
C
M
ap

fr
om

th
ei
r
ap
pr
oa
ch

w
er
e
en
ri
ch
ed

w
ith

th
er
ap
eu
tic

m
ol
ec
ul
es

fo
r

PD
.1

ca
nd
id
at
e,

al
ve
sp
im

yc
in

(1
7-
D
M
A
G
),

w
as

fo
un
d
to

be
ne
ur
op
ro
-

te
ct
iv
e
in
an

in
vi
tr
o
ro
te
no
ne

m
od
el
of

PD
.

in
te
gr
at
ed

ap
pr
oa
ch

fo
r
al
l

bu
tt
he

to
p
20

ge
ne
s
fr
om

th
ei
r
in
te
gr
at
ed

ap
pr
oa
ch
).

H
un
tin
gt
on
’s

di
se
as
e
(H

D
)

H
um

an
C
au
da
te
nu
cl
eu
s

D
E
G
s—

to
p
10
0
(a
bs
ol
ut
e

FC
);
8
up
-r
eg
ul
at
ed

an
d

92
do
w
n-
re
gu
la
te
d

(P
<
0.
05
)

K
S-
lik
e
st
at
is
tic

U
si
ng

a
ge
ne

si
gn
at
ur
e
fo
r
H
D
,

C
M
ap

id
en
tif
ie
d
po
te
nt
ia
l

th
er
ap
eu
tic

ag
en
ts
w
ith

m
ul
tip
le
m
od
es

of
ac
tio
n
an
d

va
lid
at
ed

2
(d
ef
er
ox
am

in
e

an
d
ch
lo
rz
ox
az
on
e)
in

vi
vo

(a
m
el
io
ra
te
d

ne
ur
od
eg
en
er
at
io
n
in

fl
ie
s

ex
pr
es
si
ng

a
m
ut
an
tH

T
T

fr
ag
m
en
t)
.

In
vi
tr
o:

lu
m
in
es
ce
nt

ca
sp
as
e-
ac
tiv
at
io
n
as
sa
y

of
H
T
T-
in
du
ce
d

ap
op
to
si
s
in
a
PC

12
ce
ll

lin
e;
7/
12

dr
ug
s
w
ith

ne
ga
tiv
e
co
nn
ec
tiv
ity

sc
or
es

re
du
ce
d

H
T
T-
in
du
ce
d
ap
op
to
si
s.

C
hl
or
zo
xa
zo
ne
,c
op
pe
r

su
lp
ha
te
,d
ef
er
ox
am

in
e,

fe
lb
in
ac
,o
lig
om

yc
in

an
d
pr
im

id
on
e
di
d
so

in
a
do
se
-d
ep
en
de
nt

m
an
-

ne
r.
C
he
m
ic
al
s
w
ith

po
si
tiv
e
co
nn
ec
tiv
ity

sc
or
es

ha
d
lit
tle

ef
fe
ct

on
ca
sp
as
e
ac
tiv
at
io
n.

In
vi
tr
o:

hi
gh
-t
hr
ou
gh
pu
tr
ec
or
d-

in
g
of

H
T
T
10
3Q

ag
gr
e-

ga
tio
n
in

PC
12

ce
lls

us
in
g
C
el
lo
m
ic
s
im

ag
-

in
g
te
ch
no
lo
gy
.O

f
th
e

7,
de
fe
ro
xa
m
in
e
an
d

ol
ig
om

yc
in
,s
ig
ni
fi
ca
nt
-

ly
al
te
re
d
th
e
fo
rm

at
io
n

of H
T
T
10
3Q

-c
on
ta
in
in
g

in
cl
us
io
n
bo
di
es
.

In
vi
vo
:d

ef
er
ox
am

in
e

an
d
ch
lo
rz
ox
az
on
e

am
el
io
ra
te
d
ne
ur
od
e-

ge
ne
ra
tio
n
in

fl
ie
s
ex
-

pr
es
si
ng

a
m
ut
an
tH

T
T

fr
ag
m
en
t(
a
w
id
el
y

st
ud
ie
d
fr
ui
tf
ly

m
od
el

of
m
ut
an
tH

T
T

to
xi
ci
ty
)
(S
te
ff
an

et
al
.

20
01
)

N
eg
at
iv
e
sc
or
es

C
M
ap

an
d

A
rr
ay
E
xp
re
ss

S
m
al
le
y
et

al
.(
20
16
)

M
em

or
y-
m
o-

du
la
tin
g

co
m
po
un
ds

H
um

an
Sa
liv
a

In
tr
ag
en
ic
SN

Ps
as
so
ci
at
ed

w
ith

av
er
si
ve

m
em

or
y

re
ca
ll

N
ot

sp
ec
if
ie
d

T
he
y
us
ed

ge
no
m
ic
in
fo
rm

at
io
n

re
la
te
d
to

av
er
si
ve

m
em

or
y—

a
tr
ai
tc
en
tr
al
to

po
st
tr
au
m
at
ic
st
re
ss

di
so
rd
er
—
to

id
en
tif
y
se
ve
ra
l

po
te
nt
ia
ld

ru
g
ta
rg
et
s
an
d

co
m
po
un
ds
.I
n
a
su
bs
eq
ue
nt

ph
ar
m
ac
ol
og
ic
al
st
ud
y
w
ith

on
e
of

th
e
id
en
tif
ie
d

In
vi
vo
:a

si
ng
le

ad
m
in
is
tr
at
io
n
of

di
ph
en
hy
dr
am

in
e

(5
0
m
g)

co
m
pa
re
d
w
ith

pl
ac
eb
o
si
gn
if
ic
an
tly

re
du
ce
d
de
la
ye
d
re
ca
ll

of
av
er
si
ve
,b
ut

no
to

f
po
si
tiv
e
or

ne
ut
ra
l,

pi
ct
ur
es

in
a

N
ot

sp
ec
if
ie
d

In
ge
nu
ity

pa
th
w
ay

an
al
ys
is
(I
PA

)
(n
ot
e:
no
tp

ub
lic
)

P
ap
as
so
tir
op
ou
lo
s

et
al
.(
20
13
)

Psychopharmacology



T
ab

le
3

(c
on
tin

ue
d)

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

co
m
po
un
ds
,

di
ph
en
hy
dr
am

in
e,
th
ey

fo
un
d

a
dr
ug
-i
nd
uc
ed

re
du
ct
io
n
of

av
er
si
ve

m
em

or
y.
T
he
se

fi
nd
in
gs

in
di
ca
te
th
at

ge
no
m
ic
in
fo
rm

at
io
n
ca
n
be

us
ed

as
a
st
ar
tin
g
po
in
tf
or
th
e

id
en
tif
ic
at
io
n
of

m
em

or
y-
m
od
ul
at
in
g
co
m
-

po
un
ds

do
ub
le
-b
lin
d,

pl
ac
eb
o-
co
nt
ro
lle
d

st
ud
y
in

he
al
th
y

vo
lu
nt
ee
rs

M
ot
iv
at
io
n
to

ex
er
ci
se

M
ou
se

(4
m
od
el
s
of

m
ot
iv
a-

tio
n
to

ex
er
ci
se

an
d

co
nt
ro
ls
)

St
ri
at
um

D
E
G
s—

to
p
28
7
ge
ne
s

up
-r
eg
ul
at
ed
.T

op
23
5

ge
ne
s
do
w
n-
re
gu
la
te
d

in
se
le
ct
ed

lin
es

vs
.

co
nt
ro
ls
(F
D
R
<
5%

)

K
S-
lik
e
st
at
is
tic

M
ic
e
fr
om

4
lin
es

se
le
ct
ed

fo
r

w
he
el
ru
nn
in
g
(a
nd

4
no
n-
se
le
ct
ed

lin
es
)
w
er
e

al
lo
w
ed

fu
ll
ac
ce
ss

to
a
ru
n-

ni
ng

w
he
el
fo
r
6
da
ys
.O

n
da
y
7,
ha
lf
of

th
e
hi
gh

ru
n-

ne
rs
an
d
ha
lf
of

th
e
lo
w
ru
n-

ne
rs
w
er
e
bl
oc
ke
d
fr
om

w
he
el
ac
ce
ss

an
d
st
ri
at
um

ta
ke
n
at
th
e
tim

e
of

m
ax
i-

m
um

w
he
el
ru
nn
in
g
an
d

su
bm

itt
ed

fo
r
R
N
A
se
qu
en
c-

in
g.
L
IN

C
S
id
en
tif
ie
d
th
e

pr
ot
ei
n
ki
na
se

C
δ
in
hi
bi
to
r,

ro
ttl
er
in
,t
he

ty
ro
si
ne

ki
na
se

in
hi
bi
to
r,
L
in
if
an
ib

an
d
th
e

de
lta
-o
pi
oi
d
re
ce
pt
or

an
ta
go
-

ni
st
7-
be
nz
yl
id
en
en
al
tr
ex
on
e

as
po
te
nt
ia
lc
om

po
un
ds

th
at

m
im

ic
th
e
tr
an
sc
ri
pt
io
na
l

si
gn
at
ur
e
of

th
e
in
cr
ea
se
d

m
ot
iv
at
io
n
to

ru
n.

N
on
e

P
os
iti
ve

sc
or
es

(t
o
m
im

ic
th
e

hi
gh

m
ot
iv
at
io
na
ls
ta
te
fo
r

ex
er
ci
se
).
C
on
si
de
re
d
bo
th

co
m
po
un
ds

te
st
ed

ac
ro
ss

al
l

ce
ll
lin
es

an
d
th
os
e
on
ly

te
st
ed

in
ne
ur
on
al
ce
ll
lin

es
.

N
o
st
at
is
tic
al
p
va
lu
e

m
en
tio
ne
d.

D
A
V
ID

an
d

L
IN

C
S-
L
10
00

Sa
ul

et
al
.(
20
17
)

Sc
hi
zo
ph
re
ni
a,

m
aj
or

de
pr
es
si
ve

di
so
rd
er
,

bi
po
la
r

di
so
rd
er
,

A
lz
he
im

er
’s

di
se
as
e,

an
xi
et
y

di
so
rd
er
s,

au
tis
tic

sp
ec
tr
um

di
so
rd
er
s,
an
d

at
te
nt
io
n

de
fi
ci
t

hy
pe
ra
ct
iv
ity

di
so
rd
er

H
um

an
10

br
ai
n
ar
ea
s

av
ai
la
bl
e
in

G
T
E
x:

an
te
ri
or

ci
ng
ul
at
e
co
rt
ex

(B
A
24
),
ca
ud
at
e

(b
as
al
ga
ng
lia
),

ce
re
be
lla
r

he
m
is
ph
er
e,

ce
re
be
llu
m
,

co
rt
ex
,f
ro
nt
al

co
rt
ex

(B
A
9)
,

hi
pp
oc
am

pu
s,

hy
po
th
al
am

us
,

nu
cl
eu
s

ac
cu
m
be
ns

(b
as
al

ga
ng
lia
),
an
d

pu
ta
m
en

(b
as
al

ga
ng
lia
)

G
W
A
S
su
m
m
ar
y
st
at
is
tic
s

co
nv
er
te
d
to

tr
an
sc
ri
pt
om

ic
pr
of
ile
s.

To
p
K
D
E
G
s
w
he
re
K

w
as

va
ri
ed

fo
r
50
,1
00
,

25
0,
an
d
50
0.
R
es
ul
ts

w
er
e
av
er
ag
ed

ac
ro
ss

ea
ch

K
.

5
m
et
ho
ds
:

K
S-
lik
e

st
at
is
tic
,

Sp
ea
rm

an
co
r-

re
la
tio
n
w
ith

al
l

or
w
ith

K
di
f-

fe
re
nt
ia
lly

ex
pr
es
se
d

ge
ne
s
an
d

Pe
ar
so
n
co
rr
e-

la
tio
n
w
ith

al
l

or
w
ith

K
di
f-

fe
re
nt
ia
lly

ex
pr
es
se
d

ge
ne
s

T
he
y
im

pu
te
d
tr
an
sc
ri
pt
om

e
pr
of
ile
s
fo
r
7
ps
yc
hi
at
ri
c

co
nd
iti
on
s
ba
se
d
on

G
W
A
S

su
m
m
ar
y
st
at
is
tic
s
an
d

co
m
pa
re
d
th
es
e
to

dr
ug
-i
nd
uc
ed

ch
an
ge
s
in

ge
ne

ex
pr
es
si
on

(C
M
ap
)
to

fi
nd

po
ss
ib
le
tr
ea
tm

en
ts
an
d

fo
un
d
th
at
th
e
to
p
15

pr
e-

di
ct
ed

co
m
po
un
ds

w
er
e

en
ri
ch
ed

w
ith

kn
ow

n
dr
ug
-i
nd
ic
at
io
n
pa
ir
s.

In
si
lic
o

N
eg
at
iv
e
sc
or
es
.P

er
m
ut
at
io
n

te
st
(s
hu
ff
le
d
th
e

di
se
as
e-
ex
pr
es
si
on

z-
sc
or
es

an
d
co
m
pa
re
d
th
em

to
dr
ug

tr
an
sc
ri
pt
om

ic
pr
of
ile
s.

Pe
rf
or
m
ed

10
0
pe
rm

ut
at
io
ns

fo
r
ea
ch

dr
ug
–d
is
ea
se

pa
ir

an
d
co
m
bi
ne
d
th
e
di
st
ri
bu
-

tio
n
of

ra
nk
s
un
de
r
th
e
nu
ll

ac
ro
ss

al
ld

ru
g–
di
se
as
e
pa
ir
s,

su
ch

th
at
th
e
nu
ll
di
st
ri
bu
tio
n

w
as

de
ri
ve
d
fr
om

34
7,
80
0

ra
nk
s
un
de
r
H
0
).

C
M
ap
,G

T
E
x,

M
et
aX

ca
n,

K
E
G
G
,

C
lin
ic
al
T
ri
al
s.
go
v,

M
E
D
ic
at
io
n

In
di
ca
tio
n

re
so
ur
ce

(M
E
D
I)
,

an
d
Ps
yc
hi
at
ri
c

G
en
om

ic
s

C
on
so
rt
iu
m

(P
G
C
)

So
et

al
.(
20
17
)

M
or
ph
in
e

to
le
ra
nc
e

R
at

W
ho
le
br
ai
n

D
E
G
s—

m
or
ph
in
e-
to
le
ra
nt

+
sa
lin
e
ve
rs
us

m
or
ph
in
e-
to
le
ra
nt
+

L
PS

;p
la
ce
bo
-c
on
tr
ol
+

sa
lin
e
ve
rs
us

pl
ac
eb
o-
co
nt
ro
l+

L
PS

;
pl
ac
eb
o-
co
nt
ro
l+

sa
lin
e

ve
rs
us

K
S-
lik
e
st
at
is
tic

H
er
e,
L
IN

C
S-
L
10
00

ge
ne

kn
oc
kd
ow

n
an
d

ov
er
ex
pr
es
si
on

ex
pe
ri
m
en
ts

w
er
e
us
ed

to
in
fo
rm

m
ec
ha
ni
sm

of
ac
tio
n.

R
es
po
ns
e
to

L
PS

w
as

al
te
re
d

du
ri
ng

m
or
ph
in
e
to
le
ra
nc
e

an
d
in
di
ca
te
d
th
at
V
PS

28

N
on
e

G
en
et
ic
pe
rt
ur
ba
tio
n

ex
pe
ri
m
en
ts
on
ly
;p

os
iti
ve

sc
or
es
;n

eg
at
iv
e
sc
or
es

L
IN

C
S
-L
10
00

Q
ue
ry

A
pp

(a
pp
s.
lin
cs
cl
ou
d.

or
g/
qu
er
y)

(n
ow

de
pr
ec
at
ed
.

In
st
ea
d
us
e
cl
ue
.

io
/l1
00
0-
qu
er
y)

C
ha
ng

et
al
.(
20
17
)

Psychopharmacology

http://clinicaltrials.gov
http://lincscloud.org/query
http://lincscloud.org/query


T
ab

le
3

(c
on
tin

ue
d)

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

m
or
ph
in
e-
to
le
ra
nt
+

sa
lin
e
ra
ts
(n
o
p
va
lu
e

th
re
sh
ol
d
re
po
rte
d)

m
ay

be
on
e
of

th
e
ge
ne
s

re
sp
on
si
bl
e
fo
rt
he

al
te
ra
tio
ns

as
so
ci
at
ed

w
ith

m
or
ph
in
e

to
le
ra
nc
e.

B
in
ge
-l
ik
e

dr
in
ki
ng

(i
m
po
rt
an
t

ri
sk

fa
ct
or

fo
r

A
U
D
)

M
ou
se (H
D
ID

-1
an
d

H
S/
N
pt

co
nt
ro
ls
)

Pr
ef
ro
nt
al
co
rt
ex
,

nu
cl
eu
s

ac
cu
m
be
ns

co
re
,

nu
cl
eu
s

ac
cu
m
be
ns

sh
el
l,

be
d
nu
cl
eu
s
of

th
e
st
ri
a

te
rm

in
al
is
,

ba
so
la
te
ra
l

am
yg
da
la
,c
en
tr
al

nu
cl
eu
s
of

th
e

am
yg
da
la
,v
en
tr
al

te
gm

en
ta
la
re
a,

an
d
ve
nt
ra
l

st
ri
at
um

D
E
G
s—

to
p
10
0

up
-r
eg
ul
at
ed

an
d
to
p

10
0
do
w
n-
re
gu
la
te
d

ge
ne
s
fr
om

ea
ch

br
ai
n

ar
ea

(b
as
ed

on
fo
ld

ch
an
ge
,u
na
dj
us
te
d

p
<
0.
05
).
D
if
fe
re
nt
ia
lly

ex
pr
es
se
d
la
nd
m
ar
k

ge
ne
s
fr
om

ea
ch

br
ai
n

ar
ea

(u
na
dj
us
te
d

p
<
0.
05
)
(l
an
dm

ar
k

ge
ne
s
ar
e
th
os
e
w
ho
se

ex
pr
es
si
on

is
di
re
ct
ly

m
ea
su
re
d
in

th
e
L
10
00

as
sa
y)

K
S-
lik
e
st
at
is
tic

M
an
y
an
ti-
in
fl
am

m
at
or
y
co
m
-

po
un
ds

ha
d
hi
gh
ly

ne
ga
tiv
e

co
nn
ec
tiv
ity

sc
or
es

ac
ro
ss

br
ai
n
ar
ea
s,
pr
ov
id
in
g

ad
di
tio
na
le
vi
de
nc
e
fo
r
a

ne
ur
oi
m
m
un
e
co
m
po
ne
nt

in
re
gu
la
tin
g
et
ha
no
li
nt
ak
e.

T
he

to
p
2
ca
nd
id
at
es
,t
er
re
ic

ac
id
,a
nd

pe
rg
ol
id
e
w
er
e

be
ha
vi
or
al
ly

va
lid
at
ed

to
de
cr
ea
se

et
ha
no
li
nt
ak
e
an
d

bl
oo
d
al
co
ho
ll
ev
el
s.

In
vi
vo
:t
he

to
p
2

ca
nd
id
at
es
,t
er
re
ic
ac
id
,

an
d
pe
rg
ol
id
e
w
er
e

be
ha
vi
or
al
ly

va
lid
at
ed

to
de
cr
ea
se

et
ha
no
l

in
ta
ke

an
d
bl
oo
d
al
co
ho
l

le
ve
ls
.

N
eg
at
iv
e
sc
or
es
,i
nt
eg
ra
te
d

ap
pr
oa
ch
,a
nd

Si
g_
gu
tc
to
ol

(s
ee

te
xt
)

L
IN

C
S
-L
10
00

an
d

G
E
O

Fe
rg
us
on

et
al
.

(2
01
7)

T
ra
um

at
ic
br
ai
n

in
ju
ry

(T
B
I)

R
at

Pe
ri
le
si
on
al
co
rt
ex

an
d
th
al
am

us
D
E
G
s—

to
p
49
64

in
pe
ri
le
si
on
al
co
rt
ex

an
d

to
p
19
66

in
th
al
am

us
(F
D
R
<
5%

)

N
ot

re
po
rt
ed

T
he

st
ud
y
hi
gh
lig
ht
ed

tu
bu
lin
s,

N
fe
2l
2,
N
fk
b2
,a
nd

S1
00
a4

as
ta
rg
et
ge
ne
s
m
od
ul
at
ed

by
co
m
po
un
ds

w
ith

a
hi
gh

L
IN

C
S
co
nn
ec
tiv
ity

sc
or
e

re
la
tiv
e
to

th
e
T
B
I-
si
g.
T
he
ir

da
ta
su
gg
es
te
d
th
at

de
sm

et
hy
lc
lo
m
ip
ra
m
in
e,
an

ac
tiv
e
m
et
ab
ol
ite

of
th
e

an
tid
ep
re
ss
an
tc
lo
m
ip
ra
m
in
e,

is
a
pr
om

is
in
g
T
B
I
tr
ea
tm

en
t

ca
nd
id
at
e.

In
si
lic
o:

2/
11

to
p

co
m
po
un
ds

ha
d
pr
ev
i-

ou
sl
y
be
en

in
ve
st
ig
at
ed

in
ep
ile
pt
og
en
es
is

m
od
el
s
in

vi
vo
.

N
eg
at
iv
e
sc
or
es

L
IN

C
S
-L
10
00
,G

E
O
,

IP
A
,G

SE
A
,a
nd

M
si
gD

B

L
ip
po
ne
n
et

al
.

(2
01
6)

Is
ch
em

ic
st
ro
ke

R
at

B
ra
in

(w
ho
le

he
m
is
ph
er
e)

D
E
G
s—

ge
ne
s
w
ith

FC
1
>
1.
5,
FC

2
>
1.
2

an
d
R
R
>
0.
FC

1:
fo
ld

ch
an
ge

be
tw
ee
n
m
id
dl
e

ce
re
br
al
ar
te
ry

oc
cl
us
io
n
(M

C
A
O
)
an
d

Sh
am

(F
C
1)
.F

C
2:

fo
ld

ch
an
ge

be
tw
ee
n

M
C
A
O
an
d
X
ST

R
R
¼

M
i−
X

i
M

i−
C
i,

w
he
re

C
i,
M

i,
an
d

X
i
ar
e
th
e
av
er
ag
e

ex
pr
es
si
on
s
of

ge
ne

ii
n
co
nt
ro
l

gr
ou
p,
M
C
A
O

gr
ou
p,
an
d
X
ST

tr
ea
tm

en
tg

ro
up
,

re
sp
ec
tiv

el
y.

K
S-
lik
e
st
at
is
tic

T
hi
s
st
ud
y
so
ug
ht

to
in
ve
st
ig
at
e

th
e
m
ec
ha
ni
sm

of
ac
tio
n
of

a
C
hi
ne
se

m
ed
ic
in
e
ca
lle
d

X
ue
sa
ito
ng

in
je
ct
io
n
(X

ST
),

a
pr
es
cr
ip
tio
n
dr
ug

m
ad
e
of

Pa
na
x
no
to
gi
ns
en
g)

th
at
is

us
ed

fo
r
tr
ea
tin
g
st
ro
ke

in
C
hi
na
.T

he
y
lo
ok
ed

at
po
si
tiv
e
sc
or
es
.I
nh
ib
iti
on

of
in
fl
am

m
at
or
y
re
sp
on
se

an
d

co
ag
ul
at
io
n
w
er
e
id
en
tif
ie
d

as
th
e
m
aj
or

m
ec
ha
ni
sm

s
in
vo
lv
ed

in
th
e
pr
ot
ec
tiv
e

ef
fe
ct
s
of

X
ST

.

N
on
e

P
os
iti
ve

sc
or
es

an
d
pe
rm

ut
at
io
n

p
va
lu
es
<
0.
05

C
M
ap

W
an
g
et

al
.(
20
15
)

E
pi
le
ps
y

H
um

an
C
er
eb
el
la
r
co
rt
ex
,

te
m
po
ra
lc
or
te
x,

fr
on
ta
lc
or
te
x,

oc
ci
pi
ta
lc
or
te
x,

hi
pp
oc
am

pu
s,

th
al
am

us
,w

hi
te

E
pi
le
ps
y-
as
so
ci
at
ed

co
-e
xp
re
ss
io
n
m
od
ul
e

(M
30
)

Fi
sc
he
r’
s
ex
ac
tt
es
t

T
he
y
us
ed

po
st
-m

or
te
m

hu
m
an

br
ai
n
sa
m
pl
es

fr
om

he
al
th
y

in
di
vi
du
al
s
fr
om

th
e
U
K

B
ra
in

E
xp
re
ss
io
n

C
on
so
rt
iu
m

(U
K
B
E
C
)

da
ta
se
tt
o
bu
ild

ge
ne

co
-e
xp
re
ss
io
n
ne
tw
or
ks

N
on
e.
H
ow

ev
er
,c
on
fi
rm

ed
in

vi
tr
o
th
at
V
PA

up
re
gu
la
te
s
51
%

of
th
e

M
30

ge
ne
s
in

ne
ur
on
s

(F
D
R
<
10
%
),

re
pl
ic
at
in
g
an
d

st
re
ng
th
en
in
g
th
e

Te
st
ed

th
e
ov
er
la
p
of

M
30

ge
ne
s

w
ith

th
e
lis
to

f
ge
ne
s

up
re
gu
la
te
d
by

a
dr
ug

us
in
g

on
e-
ta
il
Fi
sc
he
r’
s
E
xa
ct
Te
st

(F
E
T
)
(i
n
or
de
r
to

pr
io
ri
tiz
e

dr
ug
s
pr
ed
ic
te
d
to
re
ve
rs
e
th
e

do
w
nr
eg
ul
at
io
n
of

M
30

U
K
B
ra
in

E
xp
re
ss
io
n

C
on
so
rt
iu
m
,

G
en
ot
yp
e-
T
is
su
e

E
xp
re
ss
io
n

(G
T
E
x)

pr
oj
ec
t,

ST
R
IN

G
,

W
eb
G
es
ta
lt,

D
el
ah
ay
e-
D
ur
ie
z

et
al
.(
20
16
)

Psychopharmacology



T
ab

le
3

(c
on
tin

ue
d)

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

m
at
te
r,
m
ed
ul
la
,

an
d
pu
ta
m
en

(m
od
ul
es
)
an
d
in
te
gr
at
ed

m
od
ul
es

w
ith

w
ho
le
-e
xo
m
e-
se
qu
en
ci
ng

(W
E
S
)s
tu
di
es

da
ta
of

ra
re
de

no
vo

m
ut
at
io
ns

in
th
os
e
w
ith

ep
ile
pt
ic
en
ce
ph
al
op
at
hy

(E
E
).
A
si
ng
le
m
od
ul
e
w
as

se
le
ct
ed
:M

30
.T

he
M
30

ge
ne
s’
fu
nc
tio
na
le
xp
re
ss
io
n

fo
r
3
ep
ile
ps
ie
s
su
gg
es
te
d

do
w
nr
eg
ul
at
io
n
of

th
e

ne
tw
or
k
as

a
co
m
m
on

m
ec
ha
ni
sm

.T
he
y
us
ed

C
M
ap

to
id
en
tif
y
dr
ug
s
th
at

co
ul
d
up
-r
eg
ul
at
e
th
e
M
30

ge
ne
s.
V
al
pr
oi
c
ac
id
(V

PA
),
a

w
id
el
y
us
ed

an
tie
pi
le
pt
ic

dr
ug
,w

as
th
e
dr
ug

m
os
t

si
gn
if
ic
an
tly

pr
ed
ic
te
d
to

up
-r
eg
ul
at
e
th
e
ge
ne
s
in
M
30

(t
ow

ar
d
he
al
th
).

V
PA

-s
ig
na
tu
re
in

th
e

ca
nc
er
ce
ll
lin
es

fr
om

C
M
ap
.

ge
ne
s
ob
se
rv
ed

in
ep
ile
pt
ic

hi
pp
oc
am

pi
).
B
H
-c
or
re
ct
ed

p
va
lu
es

fo
r
m
ul
tip
le
hy
-

po
th
es
es

te
st
in
g.
In
cl
ud
ed

on
ly

15
2
dr
ug
s
w
ith

≥
10

D
E
G
s
(F
D
R
<
10
%
).
N
o

su
m
m
ar
iz
at
io
n
ac
ro
ss

ce
ll

lin
es
,d
os
es
,a
nd

tim
ep
oi
nt
s

fo
r
ea
ch

dr
ug

G
en
eM

A
N
IA

,
H
ip
pi
e,
iR
ef
W
eb
,

H
U
G
O
G
en
e

N
om

en
cl
at
ur
e

C
om

m
itt
ee

da
ta
ba
se
,a
nd

C
M
ap

E
pi
le
ps
y

M
ou
se (p
ilo
ca
rp
-

in
e-
-

in
du
ce
d

ch
ro
ni
c

ep
ile
ps
y)

H
ip
po
ca
m
pu
s

D
E
G
s—

FD
R
<
0.
05

an
d

fo
ld

ch
an
ge

≥
2
(9
29

up
,1
16
4
do
w
n)

K
S-
lik
e
st
at
is
tic

(u
se
d
qu
er
y

ap
p
on

lin
cs
cl
ou
d.
or
g)

T
he

au
th
or
s
qu
er
ie
d
th
e

L
IN

C
S-
L
10
00

da
ta
ba
se

w
ith

an
ep
ile
ps
y
si
gn
at
ur
e

co
ns
is
tin
g
of

th
e
to
p
D
E
G
s

be
tw
ee
n
th
e
hi
pp
oc
am

pu
s
of

a
m
od
el
of

ep
ile
pt
ic
m
ic
e
an
d

co
nt
ro
lm

ic
e.
T
he
y
id
en
tif
ie
d

12
3
co
m
po
un
ds

w
ith

ne
ga
tiv
e
sc
or
es

be
yo
nd

a
ch
os
en

th
re
sh
ol
d
(m

ea
n
of

be
st
4
≤
−
85
).
T
he
se

12
3

co
m
po
un
ds

w
er
e
en
ri
ch
ed

w
ith

co
m
po
un
ds

kn
ow

n
to

ha
ve

an
tie
pi
le
pt
ic
ef
fe
ct
s.

D
es
pi
te
a
di
ve
rs
e
se
to

f
m
ec
ha
ni
sm

s
of

ac
tio
n,
th
es
e

co
m
po
un
ds

ta
rg
et
ed

si
m
ila
r

bi
ol
og
ic
al
pa
th
w
ay
s
an
d

w
er
e
be
tte
r
at
re
ve
rs
in
g
pa
th
-

w
ay
s
af
fe
ct
ed

by
ep
ile
ps
y

th
an

co
m
m
on

an
tie
pi
le
pt
ic

co
m
po
un
ds
.A

ft
er

fi
lte
ri
ng

fo
r
pr
ac
tic
al
ex
cl
us
io
n

cr
ite
ri
a,
36

co
m
po
un
ds

re
m
ai
ne
d.
O
f
th
es
e,

si
ta
gl
ip
tin

w
as

co
nf
ir
m
ed

to
ha
ve

an
tie
pi
le
pt
ic
ac
tiv
ity

in
vi
vo
.

In
si
lic
o
(t
he

12
3

co
m
po
un
ds

w
ith

L
IN

C
S
m
ea
n

co
nn
ec
tiv
ity

sc
or
e

th
re
sh
ol
d
of

−
85

or
le
ss

w
er
e
6-
fo
ld

m
or
e

en
ri
ch
ed

w
ith

an
tie
pi
-

le
pt
ic
dr
ug
s
(7
/1
23
)t
ha
n

th
e
dr
ug
s
in

th
e
L
IN

C
S

da
ta
ba
se

as
a
w
ho
le

(2
03
/1
9,
76
7)
).
In

vi
vo

(S
ita
gl
ip
tin

pr
od
uc
ed

a
do
se
-d
ep
en
de
nt

re
du
c-

tio
n
in
se
iz
ur
e
sc
or
es
)
in

th
e
6
H
z
ps
yc
ho
m
ot
or

se
iz
ur
e
m
ou
se

m
od
el
of

ph
ar
m
ac
or
es
is
ta
nt

ep
i-

le
ps
y)

N
eg
at
iv
e
sc
or
es
.I
nc
lu
si
on

cr
ite
ri
on
:L

IN
C
S
m
ea
n

co
nn
ec
tiv
ity

sc
or
e
th
re
sh
ol
d

of
−
85

(1
23

co
m
po
un
ds
).

E
xc
lu
si
on

cr
ite
ri
a:
to
xi
ci
ty
,

pa
re
nt
er
al
ro
ut
e
of

ad
m
in
is
tr
at
io
n,
la
ck

of
an
im

al
or

hu
m
an

do
sa
ge

da
ta
,o
r
B
B
B
-i
m
pe
rm

ea
bi
lit
y

(3
6
co
m
po
un
ds

re
m
ai
ne
d)
.

T
hi
s
w
as

th
e
on
ly

st
ud
y
on

th
e
ta
bl
e
th
at
us
ed

an
y
pr
ac
-

tic
al
co
ns
id
er
at
io
ns

to
fi
lte
r

co
m
po
un
ds
.N

o
pu
bl
is
he
d

ev
id
en
ce

of
B
B
B
-i
m
pe
rm

ea
bi
lit
y
fo
r
an
y

of
th
e
dr
ug
s.

L
IN

C
S-
L
10
00
,

dr
ug
-s
et
en
ri
ch
-

m
en
ta
na
ly
si
s

(D
SE

A
),
an
d

ge
ne
-s
et
en
ri
ch
-

m
en
ta
na
ly
si
s

(G
SE

A
)

M
ir
za

et
al
.(
20
17
)

N
er
ve re
ge
ne
ra
tio
n

R
at

D
or
sa
lr
oo
tg

an
gl
io
n

ne
ur
on
s.
13

se
pa
ra
te
st
ud
ie
s:
a

to
ta
lo

f
38
2
ge
ne

ex
pr
es
si
on

da
ta
se
ts

(m
ic
ro
ar
ra
y)

re
la
te
d
to

ne
rv
e

in
ju
ry

(1
)
PP

I
ne
tw
or
k
co
ns
is
tin
g

of
28
0
ge
ne
s.
(2
)

R
eg
en
er
at
io
n-
as
so
ci
at
e-

d
co
-e
xp
re
ss
io
n

m
od
ul
es

K
S-
lik
e
st
at
is
tic

T
he

au
th
or
s
id
en
tif
ie
d
a

tr
an
sc
ri
pt
io
na
lp

ro
gr
am

ob
se
rv
ed

af
te
r
pe
ri
ph
er
al
,b
ut

no
tc
en
tr
al
,n
er
ve

in
ju
ry
.

T
he
y
us
ed

th
e

re
ge
ne
ra
tio
n-
as
so
ci
at
ed

m
od
ul
es

to
qu
er
y
C
M
ap

(2
di
ff
er
en
ti
np
ut
s)
an
d
te
st
ed

th
e
to
p
3
ca
nd
id
at
es

th
at

em
er
ge
d
fr
om

th
e

in
te
rs
ec
tio
n
of

th
e
2
qu
er
ie
s

(a
m
br
ox
ol
,l
as
al
oc
id
,a
nd

di
su
lf
ir
am

).
O
nl
y
am

br
ox
ol

In
vi
tr
o:

am
br
ox
ol
,

la
sa
lo
ci
d,
an
d
di
su
lf
ir
am

w
er
e
te
st
ed
,b
ut

on
ly

am
br
ox
ol

en
ha
nc
ed

ax
on
al
ou
tg
ro
w
th

of
D
R
G
ne
ur
on
s.
In

vi
vo
:

am
br
ox
ol

in
cr
ea
se
d

op
tic

ne
rv
e
(O

N
)
re
ge
n-

er
at
io
n
in

m
ic
e
af
te
r
a

cr
us
h
in
ju
ry
,a
lb
ei
ta

m
od
es
ti
m
pr
ov
em

en
t.

Po
si
tiv
e
sc
or
es

an
d
pe
rm

ut
at
io
n

p
va
lu
e

C
M
ap
,G

E
O
,

Pu
bM

at
ri
x,

D
A
V
ID

,
JA

SP
A
R
,

T
R
A
N
SF
A
C
,

ST
R
IN

G
,a
nd

E
N
C
O
D
E

C
ha
nd
ra
n
et

al
.

(2
01
6)

Psychopharmacology

http://lincscloud.org


T
ab

le
3

(c
on
tin

ue
d)

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

en
ha
nc
ed

ax
on
al
ou
tg
ro
w
th

of
D
R
G
ne
ur
on
s
in

vi
tr
o
an
d

it
al
so

in
cr
ea
se
d
op
tic

ne
rv
e

(O
N
)
re
ge
ne
ra
tio
n
in

m
ic
e

af
te
r
a
cr
us
h
in
ju
ry
,a
lb
ei
ta

m
od
es
ti
m
pr
ov
em

en
t.

C
N
S
in
ju
ry

H
um

an
M
C
F7

br
ea
st

ad
en
oc
ar
-

ci
no
m
a

ce
lls

N
A

D
E
G
s—

ab
so
lu
te
fo
ld

ch
an
ge

≥
1.
5,
p
<
0.
05

(1
0
up

an
d
12

do
w
n)
;

6
h
tr
ea
tm

en
to

f
F0

5
(5

μ
M
;a

co
m
po
un
d
th
e

gr
ou
p
pr
ev
io
us
ly

id
en
tif
ie
d
to

pr
om

ot
e

ne
ur
ite

gr
ow

th
in

vi
tr
o

an
d
in

vi
vo
)
vs
.v
eh
ic
le

(D
M
SO

,0
.0
5%

)

K
S-
lik
e
st
at
is
tic

T
he

au
th
or
s
us
ed

th
e

tr
an
sc
ri
pt
io
na
ls
ig
na
tu
re
of

a
co
m
po
un
d
kn
ow

n
to

in
du
ce

ne
ur
ite

gr
ow

th
(F
05
)
as

a
Bs
ee
d^

to
id
en
tif
y
ot
he
r

co
m
po
un
ds

w
ith

th
is
sa
m
e

pr
op
er
ty
.R

em
ar
ka
bl
y,

de
sp
ite

no
ch
em

ic
al

si
m
ila
ri
ty

to
F0

5,
a
gr
ou
p
of

pi
pe
ra
zi
ne

ph
en
ot
hi
az
in
e

an
tip
sy
ch
ot
ic
s
ha
d
si
m
ila
r

ef
fe
ct
s
on

ge
ne

ex
pr
es
si
on

an
d
w
er
e
fo
un
d
to

pr
om

ot
e

ne
ur
ite

gr
ow

th
in

vi
tr
o
at

le
as
tp

ar
tia
lly

th
ro
ug
h

an
ta
go
ni
sm

of
ca
lm

od
ul
in

si
gn
al
in
g,
in
de
pe
nd
en
to

f
do
pa
m
in
e
re
ce
pt
or

an
ta
go
ni
sm

.

In
vi
tr
o:

¾
pi
pe
ra
zi
ne

ph
en
ot
hi
az
in
e

an
tip
sy
ch
ot
ic
s
(b
ut
no
ne

of
th
e
ot
he
r
cl
as
se
s
of

an
tip
sy
ch
ot
ic
s)

si
gn
if
ic
an
tly

en
ha
nc
ed

ne
ur
ite

gr
ow

th
of

di
ss
oc
ia
te
d

hi
pp
oc
am

pa
ln

eu
ro
ns

an
d
ra
tr
et
in
al
ga
ng
lio
n

ce
lls

on
a
su
bs
tr
at
e
of

a
m
ix
tu
re
of

ch
on
dr
oi
tin

su
lf
at
e
pr
ot
eo
gl
yc
an
s

(C
SP

G
s)
(g
lia
ls
ca
r

pr
ot
ei
ns
)

P
os
iti
ve

sc
or
es

C
M
ap

Jo
hn
st
on
e
et

al
.

(2
01
2)

C
N
S in
ju
ry
/-

ne
ur
od
eg
en
-

er
at
io
n

M
ou
se (A
sc
l1
-E
-

G
FP

B
ac

tr
an
sg
en
ic

re
po
rt
er

m
ou
se

lin
e)

Su
bv
en
tr
ic
ul
ar
zo
ne

(S
V
Z
)
of

th
e

de
nt
at
e
gy
ru
s

m
ic
ro
do
m
ai
ns

R
eg
io
n-
sp
ec
if
ic

ne
ur
al
st
em

ce
lls

(N
S
C
s)
an
d
th
ei
r

im
m
ed
ia
te

pr
og
en
y.

T
ra
ns
ie
nt

am
pl
if
yi
ng

ce
lls

(T
A
Ps
)

D
E
G
s—

1.
8-
fo
ld

ch
an
ge

an
d
FD

R
<
5%

Pe
ar
so
n

co
rr
el
at
io
n
(v
ia

SP
IE
D

w
eb
-b
as
ed

to
ol
)

T
hi
s
st
ud
y
ai
m
ed

to
id
en
tif
y

co
m
po
un
ds

th
at
co
ul
d
di
re
ct

ge
rm

in
al
ac
tiv
ity

in
th
e

su
bv
en
tr
ic
ul
ar

zo
ne

(S
V
Z
),

w
hi
ch

w
ou
ld

ha
ve

th
er
ap
eu
tic

po
te
nt
ia
li
n
ne
rv
e

in
ju
ry
/n
eu
ro
de
ge
ne
ra
tiv
e
or

de
m
ye
lin
at
io
n
di
se
as
es
.T

he
y

ex
am

in
ed

N
SC

lin
ea
ge
s
in

th
e
SV

Z
m
ic
ro
do
m
ai
ns

(d
or
sa
lv

er
su
s
ve
nt
ra
l/l
at
er
al
)

an
d
id
en
tif
ie
d
sm

al
l

m
ol
ec
ul
es

th
at
di
re
ct
th
e
fa
te

of
th
es
e
ce
lls

to
w
ar
d

ne
ur
og
en
ic
as

op
po
se
d
to

ol
ig
od
en
dr
og
en
ic
lin
ea
ge
s.

LY
-2
94
00
2,
an

in
hi
bi
to
r
of

PI
3K

/A
kt
,i
nd
uc
es

tr
an
sc
ri
pt
io
na
lc
ha
ng
es

th
at

pr
om

ot
e
ol
ig
od
en
dr
og
en
es
is
.

A
R
-A

01
44
18
,a
n
in
hi
bi
to
r
of

G
SK

3β
in
du
ce
s

tr
an
sc
ri
pt
io
na
lc
ha
ng
es

th
at

pr
om

ot
e
re
ju
ve
na
tio
n
of

th
e

ad
ul
tS

V
Z
.

In
vi
vo
:i
nf
us
io
n
of

A
R
-A

01
44
18

or
C
H
IR
99
02
1
in
th
e
ad
ul
t

(P
90
)
dS

V
Z
la
te
ra
l

ve
nt
ri
cl
e
dr
am

at
ic
al
ly

st
im

ul
at
ed

th
e
ge
rm

in
al

ac
tiv
ity

of
th
e
ad
ul
t

dS
V
Z
.C

H
IR
99
02
1,
a

G
SK

3β
in
hi
bi
to
r,

sh
ow

ed
re
ge
ne
ra
tiv
e

po
te
nt
ia
li
n
a
ne
ur
o-

pa
th
ol
og
ic
al
co
nt
ex
ti
n
a

m
od
el
of

pr
em

at
ur
e

in
ju
ry

th
at
le
ad
s
to

di
ff
us
e
ol
ig
od
en
dr
og
lia
l

an
d
ne
ur
on
al
lo
ss

th
ro
ug
ho
ut

th
e
co
rt
ex

P
os
iti
ve

sc
or
es

C
M
ap
,G

en
eG

O
M
et
ac
or
e
fo
r

Pr
oc
es
s

N
et
w
or
ks
,a
nd

SP
IE
D
w

A
zi
m

et
al
.(
20
17
)

D
ow

n
Sy

nd
ro
m
e

(D
S)

H
um

an
an
d

m
ou
se

(3
m
od
el
s
of

D
S:

D
p1
6,

Ts
65
D
n

an
d

Ts
1C

je
an
d

co
nt
ro
ls
)

H
um

an
:s
ec
on
d

tr
im

es
te
r

am
ni
oc
yt
es
;

in
du
ce
d

pl
ur
ip
ot
en
ts
te
m

ce
lls

(i
P
SC

s)
;

ne
ur
on
s
de
ri
ve
d

fr
om

iP
SC

s;
po
st
-m

or
te
m

hu
m
an

fe
ta
l

ce
re
be
llu
m

an
d

D
E
G
s—

B
H
-F
D
R
<
5%

an
d
20
%
.B

ec
au
se

of
th
e
lim

ite
d
nu
m
be
r
of

di
ff
er
en
tia
lly

re
gu
la
te
d

ge
ne
s
at
FD

R
20
%
,t
he
y

us
ed

th
e
to
p
1%

up
-a
nd

do
w
n-
re
gu
la
te
d
ge
ne
s

K
S-
lik
e
st
at
is
tic

T
he

au
th
or
s
us
ed

a
hu
m
an
/m

ou
se

in
te
gr
at
ed

ap
pr
oa
ch

to
id
en
tif
y
17

hi
gh

pr
io
ri
ty

m
ol
ec
ul
es

pr
ed
ic
te
d

to
re
ve
rs
e
pa
th
w
ay

ch
an
ge
s

in
bo
th

hu
m
an

ce
lls

an
d

m
ou
se

m
od
el
s.
T
he
y
te
st
ed

th
e
ef
fe
ct
s
of

ap
ig
en
in
,o
ne

of
th
e
m
ol
ec
ul
es

pr
ed
ic
te
d
by

th
e
C
M
ap

to
tr
ea
t

dy
sr
eg
ul
at
ed

pa
th
w
ay
s
in

N
on
e—

cu
rr
en
tly

un
de
rg
oi
ng

in
vi
tr
o
an
d

in
vi
vo

te
st
in
g
(n
ot

ye
t

pu
bl
is
he
d)

N
eg
at
iv
e
sc
or
es
.T

hr
es
ho
ld
:

−
0.
7
or

le
ss
.I
nt
eg
ra
te
d

ap
pr
oa
ch

(m
ul
tip
le
in
pu
ts
)

G
SE

A
,D

A
V
ID

,I
PA

,
G
E
O
,a
nd

C
M
ap

G
ue
dj

et
al
.(
20
16
)

Psychopharmacology



T
ab

le
3

(c
on
tin

ue
d)

D
is
ea
se
/

co
nd
iti
on

O
rg
an
is
m
/

m
od
el

T
is
su
e

In
pu
t

Si
m
ila
ri
ty

m
et
ri
c

K
ey

fi
nd
in
gs

V
al
id
at
io
n

M
ea
su
re

of
re
lia
bi
lit
y/

ot
he
r
pr
io
ri
tiz
at
io
n

m
et
ho
ds

Pu
bl
ic
re
so
ur
ce
s

us
ed

R
ef

ce
re
br
um

.
M
ou
se
:

de
ve
lo
pi
ng

fo
re
br
ai
n
(E
15
.5
)

D
S,

on
hu
m
an

am
ni
oc
yt
es

de
ri
ve
d
fr
om

fe
tu
se
s
w
ith

D
S

an
d
on

th
e
Ts
1C

je
m
ou
se

m
od
el
of

D
S.

A
pi
ge
ni
n

tr
ea
tm

en
tr
ed
uc
ed

ox
id
at
iv
e

st
re
ss

in
D
S
am

ni
oc
yt
es

an
d

im
pr
ov
ed

so
m
e
as
pe
ct
s
of

br
ai
n
m
or
ph
og
en
es
is
,g
en
e

ex
pr
es
si
on

an
d
po
st
na
ta
l

be
ha
vi
or

in
th
e
Ts
1C

je
m
ou
se

m
od
el
(m

an
us
cr
ip
ti
n

pr
ep
ar
at
io
n)
.

D
ow

n
sy
nd
ro
m
e

H
um

an
Se
co
nd

tr
im

es
te
r

am
ni
ot
ic
fl
ui
d

D
E
G
s—

F
D
R
<
5%

(4
14

pr
ob
es

in
di
vi
du
al
ly

di
ff
er
en
tia
lly

ex
pr
es
se
d

be
tw
ee
n
tr
is
om

y
21

an
d

co
nt
ro
ls

K
S-
lik
e
st
at
is
tic

T
hi
s
is
on
e
of

th
e
fi
rs
ts
tu
di
es

to
de
m
on
st
ra
te
th
at

tr
an
sc
ri
pt
io
na
lp

ro
fi
lin
g
of

R
N
A
in

un
cu
ltu

re
d
am

ni
ot
ic

fl
ui
d
pr
ov
id
es

m
ol
ec
ul
ar

in
si
gh
ts
in
to

de
ve
lo
pm

en
ta
l

di
so
rd
er
s
in
th
e
liv
in
g
hu
m
an

fe
tu
s.
T
he
y
fo
un
d
4

co
m
po
un
ds

w
ith

av
er
ag
e

co
nn
ec
tiv
ity

sc
or
es

>
0.
7

(i
nd
ic
at
in
g
a
hi
gh

co
rr
el
at
io
n

w
ith

th
e
D
S
m
ol
ec
ul
ar

si
gn
at
ur
e)
,a
nd

9
co
m
po
un
ds

w
ith

av
er
ag
e
co
nn
ec
tiv
ity

sc
or
es

le
ss

th
an

−
0.
7

(i
nd
ic
at
in
g
a
hi
gh

ne
ga
tiv
e

co
rr
el
at
io
n)

(N
SC

-5
25
52
29
,

ce
la
st
ro
l,
ca
lm

id
az
ol
iu
m
,

N
SC

-5
10
98
70
,

di
m
et
hy
lo
xa
ly
lg
ly
ci
ne
,

N
SC

-5
21
30
08
,v
er
ap
am

il,
H
C
to
xi
n,
an
d
fe
lo
di
pi
ne
).

T
he

4
co
m
po
un
ds

th
at
m
os
t

m
im

ic
th
e
D
S
ph
en
ot
yp
e

w
er
e
re
la
te
d
to
po
ta
ss
iu
m
an
d

ca
lc
iu
m

si
gn
al
in
g
or

ox
id
at
io
n
w
hi
ch

fu
rt
he
r

su
pp
or
ts
th
e
im

po
rt
an
ce

of
ox
id
at
iv
e
st
re
ss

an
d
io
n

tr
an
sp
or
ta
s
fu
nc
tio
na
lc
la
ss
es

in
vo
lv
ed

in
D
S.

N
on
e

P
os
iti
ve

sc
or
es

(m
ec
ha
ni
st
ic

in
si
gh
t)
.N

eg
at
iv
e
sc
or
es

(c
an
di
da
te

ph
ar
m
ac
ot
he
ra
pe
ut
ic
s)

G
SE

A
,D

A
V
ID

,a
nd

C
M
ap

(b
ui
ld

1.
0)

Sl
on
im

et
al
.(
20
09
)

Psychopharmacology



causally link to gene expression, although this is an active area of
research and databases exist trying to relate SNPs with gene
expression in a variety of tissues including brain (e.g.,
Genotype-Tissue Expression Project; https://www.gtexportal.
org/home/). One study approached this problem in an
innovative way for psychiatric illnesses and could be
considered a hybrid approach because the authors inferred gene
expression data from genotype data (So et al. 2017). The ap-
proach relied on an algorithm called MetaXcan (Barbeira et al.
2016), which incorporated GTEx data to build statistical models
for predicting expression levels from SNPs in a reference tran-
scriptome dataset, and these prediction models were used to im-
pute the expression z-scores (i.e., z-statistics derived from asso-
ciation tests of expression changes with disease status) based on
GWAS summary statistics. Transcriptome profiles were imputed
for seven psychiatric conditions based on GWAS summary sta-
tistics and compared with drug-induced changes in gene expres-
sion using CMap to identify potential treatment candidates.
Novel compounds were not tested; however, it was promising
that the top 15 predicted compounds for some of the psychiatric
disorders were enriched with known and predicted psychiatric
medications according to several drug-disease indication mea-
sures (Anatomical Therapeutic Chemical (ATC) codes,
ClinicalTrials.gov, MEDication Indication (MEDI) resource).

Once the input genomic signature is defined, it can be com-
pared to a database of drug signatures. Most of the studies in
Table 3 (13/20) use the original CMap database. The benefit of
CMap is that it is smaller and simpler to perform statistics to
assess a connectivity score’s reliability. However, the trade-off
is fewer drugs and cell lines, the latter of which is especially
important for brain diseases because CMap contains no brain
cell lines, whereas LINCS-L1000 contains two brain cell lines
with considerable data, NEU and NPC. Unfortunately, at this
time, these cell lines are not included in the implementation on
their query app at clue.io; however, the LINCS-L1000
datasets can also be downloaded from Gene Expression
Omnibus (GEO) (accession numbers GSE70138 and
GSE92742). Efforts are underway to include more brain cell
lines in the LINCS-L1000 database to facilitate its relevance
to brain diseases (RDM, personal communication).

To compare the disease and drug signatures, the KS-like
statistic (as described by (Lamb et al. 2006; Subramanian et al.
2017) is the most frequently used similarity metric, although
several studies also use Spearman or Pearson correlation co-
efficients (Azim et al. 2017; Siavelis et al. 2016; So et al.
2017) or Fischer’s exact test (Delahaye-Duriez et al. 2016).
Most studies operate under the transcriptional Breversal
hypothesis,^ which assumes that drugs with negative connec-
tivity scores (i.e., with gene expression signatures that revert
the disease’s effects on gene expression to the control state)
would ameliorate disease phenotype. Five of the 20 studies
outlined in Table 3 have functionally validated this hypothe-
sis, in that the candidate compounds ameliorated some disease

phenotype when tested behaviorally (though none have con-
firmed that the beneficial effects of the compound were due to
the restoration of gene expression to the Bnormal^ state)
(Chandran et al. 2016; Ferguson et al. 2017; Mirza et al.
2017; Papassotiropoulos et al. 2013; Smalley et al. 2016).

These studies provide a functional rationale for prioritizing
negatively-scoring compounds, i.e., those that have opposing
effects on gene expression associated with the disease state.
However, in addition to reflecting gene expression changes
that drive the disease or represent deleterious aspects of a
disease state, the differentially expressed genes between dis-
ease and healthy samples could also reflect protective homeo-
static compensations within the system. Because some of the
differentially expressed genes might be beneficial, it is reason-
able to also consider drugs with high positive connectivity
scores.

The rationale for the reversal hypothesis was tested directly
utilizing a gene expression signature comprised of the top 100
differentially expressed genes identified inHuntington’s disease
(HD). Data were obtained from the caudate nucleus from dis-
ease vs. sex- and age-matched human controls followed by
CMap query (Smalley et al. 2016). The top 12 positive and
negative scoring compounds were tested in in vitro caspase-
activation assays to assess the degree to which they modulated
mutant huntingtin (HTT)-induced apoptosis in a PC12 cells.
None of the positive scoring compounds affected caspase ac-
tivity, while 7/12 negative scoring compounds decreased cas-
pase activity, two of which had neuroprotective effects in vivo
in a drosophila model of HD. This outcome supports the
Breversal hypothesis.^ However, because the caspase activity
was approaching 100% (i.e., a ceiling effect), the ability to
observe increased caspase activity precluded experimental out-
comes predicted from positive scores that might mimic/worsen
disease phenotypes (the converse of the reversal hypothesis).

One study does provide in vivo validation of the converse
of the reversal hypothesis: that drugs with positive scores (i.e.,
with gene expression signatures that are similar the disease’s
effects on gene expression) would mimic the state of interest.
Azim et al. (2017) sought to identify small molecules to mo-
bilize endogenous stem cells and direct their fate as a therapy
for neurodegenerative and demyelinating disorders (Azim
et al. 2017). These studies used the transcriptional signatures
of neural stem cells (NSCs) in the ventral/lateral
subventricular zone (SVZ) of the dentate gyrus which give
rise to interneurons of the olfactory bulb and cortical areas,
and of NSCs in the dorsal SVZ which give rise to glutamater-
gic neurons and oligodendrocytes. The authors prioritized
positively-scoring compounds with the hopes that that would
reproduce the lineage-specific transcriptional signatures.
Indeed, the most promising candidates, LY-294002, an inhib-
itor of PI3K/Akt, promoted development of oligodendrocytes,
and AR-A014418, an inhibitor of GSK3β, rejuvenated the
NSC lineage. Furthermore, another GSK3β inhibitor
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promoted regeneration in a mouse model of hypoxic brain
injury, by recruiting new oligodendrocytes and glutamatergic
neurons into the cortex.

In addition to gene expression signatures of drug perturba-
tion, the LINCS-L1000 database also catalogs gene expres-
sion response to genetic perturbation. One study utilized this
resource and compared the input genomic signature to those
of gene knockdown or overexpression in LINCS-L1000 to
gain mechanistic insight into how morphine tolerance alters
response to lipopolysaccharide (LPS) and found that VPS28
may be one of the genes responsible for the alterations asso-
ciated with morphine tolerance (Chang et al. 2017). In addi-
tion to looking at the negatively correlated drugs for treatment
candidates, several studies also analyzed the positively corre-
lated drugs for mechanistic insight into the disease, as these
would be predicted to produce similar effects on gene expres-
sion and mimic or worsen disease phenotype (Chen et al.
2013; Slonim et al. 2009).

Challenges and future directions

The CMap and LINCS-L1000 databases contain multiple exper-
iments for the same compound. It is clear that the compound’s
effects on gene expression are greatly affected by variables such
as cell line, dose, and time point at which gene expression is
assayed (Chen et al. 2017). Some researchers make no attempt
to summarize across cell lines, doses, and time points to attain a
composite compound-level view, which could lead to spurious
results, particularly if the cell line is vastly different from the
cellular makeup of the tissue used to generate the genomic sig-
nature used as the input query. For these reasons, we propose that
using multiple expression datasets, algorithm parameter settings,
and methods for prioritizing compounds (as taken by Ferguson
et al. 2017; Gao et al. 2014; Guedj et al. 2016; Siavelis et al.
2016) are critical to identify an effective drug candidate, at least
until proper gold standard datasets exist with which to bench-
mark the optimal settings (see below).

An important limitation of in silico gene mapping ap-
proaches is that they rely on comparisons of brain gene ex-
pression data to gene expression data from cell culture and are
therefore constrained by the same limitations of any in vitro
system. Brain gene expression is a complex combination of
direct and indirect expression changes occurring in multiple
cell types and brain regions. Even if brain-relevant cell lines
were included in the expression profiles of LINCS-L1000 or
other databases of drug-related transcriptomes, it is unclear
how relevant in vitro results are to the biology of an intact
organism, which is why in vivo experimental validation is
critical. Only 6 of the 20 studies for brain disease listed in
Table 3 performed in vivo validation of the proposed pharma-
ceutical candidates (Azim et al. 2017; Chandran et al. 2016;
Ferguson et al. 2017; Mirza et al. 2017; Papassotiropoulos
et al. 2013; Smalley et al. 2016), and none directly tested the

underlying assumption of in silico connectivity mapping.
Specifically, it is important to address the following question:
if a candidate compound is effective in treating a given disease
phenotype, was it the result of a reversal in expression of
disease-related genes by the compound? This is difficult to
assess given the complexity of the regulation of gene expres-
sion. Parameters such as drug dose and treatment times are
critical for determining meaningful gene expression changes.
Therefore, a range of doses and time points would need to be
measured, and although the cost of whole genome sequencing
is decreasing, to do this with the required samples sizes would
be cost prohibitive. In addition to L1000 technology, the de-
velopment of less expensive sequencing techniques, such
TagSeq, improve feasibility to test this hypothesis which will
provide important mechanistic insight into in silico gene map-
ping approaches (Lohman et al. 2016; Meyer et al. 2011).

Each of the six studies discussed in the previous paragraph
used a different approach to identify a candidate compound that
ameliorated disease phenotype when tested (Azim et al. 2017;
Chandran et al. 2016; Ferguson et al. 2017; Mirza et al. 2017;
Papassotiropoulos et al. 2013; Smalley et al. 2016), and it is
critical to identify the approach(s) with the greatest predictive
accuracy. In other words, which choices at each of themain steps
outlined above are the most likely to identify compounds that
actually ameliorate the disease state? It is currently difficult to
address this question because of the low-throughput nature of
behavioral testing and the non-existence of gold standard data
with which to benchmark various approaches.

A benchmark approach requires a gold standard dataset
comprised of two components from the same population: (1)
gene expression and/or genotyping data. Ideally, gene expres-
sion data would be obtained from multiple brain areas, cell
types (single cell or cell-type transcriptomes), and tissue types
(peripheral blood mononuclear cells (PBMCs), liver, gut
microbiome, etc.) and (2) drug response. This should be the
same measurement for each drug and there would ideally be a
large range of drug effects. This continuous variable would
lend itself to correlation analysis (rather than a binary measure
of 0: drug was ineffective and 1: drug was effective). Drugs
that are known to affect the phenotype (true positives) and
drugs that are known to not effect phenotype (true negatives)
should be present to assess how well the approach can dis-
criminate (assign high scores to the true positives and poor
scores to the true negatives). A benchmarking test-case sce-
nario using this ideal gold standard dataset would systemati-
cally vary the input, algorithm, and prioritization scoring
choice and assess the outputs for their predictability (Table 4).

One caveat to this benchmarking strategy outlined here, is
that it is unreasonable to assume that all compounds with
therapeutic potential would be identified by in silico gene
mapping. The best way to evaluate these approaches would
be to take a heuristic testing strategy and select a few com-
pounds nominated from various combinations at each of the
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three steps to test behaviorally, but as mentioned previously,
behavioral testing is low throughput and this would be re-
source intensive.

As discussed before, the affected tissue (brain) is not avail-
able for testing until post-mortem, which certainly poses a
problem if computational approaches that rely on gene expres-
sion measures are to be incorporated into drug repurposing/
personalized medicine endeavors for brain diseases.
Moreover, analysis of postmortem brain expression is plagued
with the Bchicken and the egg^ conundrum. Meaning that it is
impossible to know if the observed gene expression changes
are the cause or the effect (due to years of alcohol use, for
example) of the disease. This is one reason why animal
models are key in studying brain diseases, and using animal
models with high predictive validity for selecting therapeutic
compounds is one way around this problem. Another option
would be to identify a surrogate for brain gene expression, and
this is an active area of research. Great hope has arrived with
the discovery of inducible pluripotent stem cells (iPSCs) that
can be differentiated into various neuronal types (Takahashi
and Yamanaka 2006). There are also methods that skip the
induced pluripotent steps allowing direct conversion into
functional neurons, called induced neurons (or iNs; for review,
see Drouin-Ouellet et al. 2017). Although these cell models
hold promise for improving treatment of psychiatric diseases
(Oni et al. 2016; Stern et al. 2017), the protocols are long and
tedious to produce adult-like neurons and the relevance to in
silico gene mapping remains unexplored. Another surrogate
for brain gene expression could be in peripherally accessible
cell types, like PBMCs, especially considering the impressive
evidence for immune involvement in AUD (for reviews, see
Crews et al. 2017; de Timary et al. 2017; Mayfield and Harris
2017). Another option that does not require access to brain
tissue is imputing gene expression fromGWAS summary data
as discussed above (So et al. 2017). However, the latter ap-
proach has yet to be validated in vivo and will likely improve
as the databases used to make the imputations improve, for
example, by increasing samples in GTEx to better detect
eQTLs. The GTEx Consortium plans to include up to 1000
donors in the final data release and collect complementary
molecular data on subsets of samples, including epigenetic
and protein data (GTEx Consortium et al. 2017). Using
GTEx data to impute transcriptomes for diverse groups of

people should be approached with caution, as the donors are
currently 83.7% European American and 15.1% African
American (with the v7 Release) (GTEx Consortium et al.
2017).

Conclusion

The benefits of using computational strategies to transition to
a moremolecularly informed healthcare system are numerous.
For example, diagnoses could be more precise and treatments
more successful. Patients diagnosed with the same disease
often represent a heterogeneous mixture of different underly-
ing disorders, because there are numerous molecular disrup-
tions that could lead to similar clinical presentations. This is
especially true for AUD and other brain diseases, where a
molecular readout of the affected organ is limited. It is no
surprise, then, that the standard treatments fail for many be-
cause of incomplete knowledge regarding the underlying
cause of a patient’s disruptive symptoms. As we becomemore
advanced in our ability to construct and interpret a molecular
signature underlying disease symptoms, healthcare will ad-
vance toward personalized medicine, where each patient is
treated to his or her individual profile.

The systems pharmacology approaches discussed in this
Review have two main beneficial outcomes that should be
considered independently. The first is an effective treatment
and the other is mechanistic insight. It might be that the effec-
tiveness of a compound is understood before its mechanism of
action. However, progressing promising pharmaceutical treat-
ment should not wait for the full understanding of the mech-
anism, as the mechanism underlying some of the most long-
standing and successful treatments in medicine are still poorly
understood (Letai 2017). In fact, as suggested by (Hajjo et al.
2012), one of the main benefits of this approach is to identify
potentially therapeutic compounds without necessarily under-
standing the underlying target-specific mechanism.

Much hope has been placed on information contained with-
in large genomic datasets and network approaches to drive
clinical treatment toward personalized medicine and revolu-
tionize healthcare. And, indeed, bioinformatics approaches
have shown some success for identifying novel treatments
for brain diseases. However, this research is still in its infancy,

Table 4 Benchmarking test case

1. Input 2. Similarity metric 3. Prioritization

Tissue: whole brain, brain regions,
cell type-specific transcriptome,
and single cell transcriptome

Correlation, enrichment
(hypergeometric, Fischer’s,
modified KS statistic), and
pattern matching

Statistical methods; negative
score vs. absolute value of score;
threshold (for example, − 90 cutoff);
median; combination of aboveGenes: SNPs, differentially expressed

(top 50, 100 ➔ 500); co-expression
modules
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and many questions remain to be answered if these high ex-
pectations are to be met. Here, we have proposed the steps
required for in silico gene mapping for the purpose of drug
discovery and repurposing, reviewed state-of-the-art applica-
tions of these approaches to brain diseases, and highlighted
some of the critical challenges facing the field. Success relies
on the integration of enormous amounts of sequence and phe-
notype data from public and private sector sources.
Ultimately, it will take a collaborative effort from academia,
industry and government to advance drug development and
repurposing for AUD (Litten et al. 2014).

Funding Information This review is supported by funding from the
National Institute on Alcohol Abuse and Alcoholism (NIAAA) of the
National Institutes of Health (NIH): AA024332 to LF and AA020926
to RDM and to the Integrative Neuroscience Initiative on Alcoholism
(INIA)-Neuroimmue Consortium AA012404 to RAH.

References

Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017)
HIPPIE v2.0: enhancing meaningfulness and reliability of
protein-protein interaction networks. Nucleic Acids Res 45:
D408–D414

Amberger JS, Hamosh A (2017) Searching OnlineMendelian Inheritance
in Man (OMIM): a knowledgebase of human genes and genetic
phenotypes. Curr Protoc Bioinformatics 58:1.2.1–1.2.12

Anton RF, Kranzler H, Breder C, Marcus RN, Carson WH, Han J (2008)
A randomized, multicenter, double-blind, placebo-controlled study
of the efficacy and safety of aripiprazole for the treatment of alcohol
dependence. J Clin Psychopharmacol 28:5–12

Athanasiadis E, Cournia Z, Spyrou G (2012) ChemBioServer: a web-
based pipeline for filtering, clustering and visualization of chemical
compounds used in drug discovery. Bioinformatics 28:3002–3003

AzimK,AngoninD,Marcy G, Pieropan F, Rivera A, Donega V, Cantu C,
Williams G, Berninger B, Butt AM, Raineteau O (2017)
Pharmacogenomic identification of small molecules for lineage spe-
cific manipulation of subventricular zone germinal activity. PLoS
Biol 15:e2000698

Baker EJ, Jay JJ, Bubier JA, Langston MA, Chesler EJ (2012)
GeneWeaver: a web-based system for integrative functional geno-
mics. Nucleic Acids Res 40:D1067–D1076

Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a
network-based approach to human disease. Nat Rev Genet 12:56–68

Barbeira A, Shah KP, Torres JM, Wheeler HE, Torstenson ES, Edwards
T, Garcia T, Bell GI, Nicolae D, Cox NJ, Im HK (2016) MetaXcan:
summary statistics based gene-level association method infers accu-
rate PrediXcan results. bioRxiv

Barrett T,Wilhite SE, Ledoux P, Evangelista C, Kim IF, TomashevskyM,
Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A,
Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A
(2013) NCBI GEO: archive for functional genomics data sets–up-
date. Nucleic Acids Res 41:D991–D995

Battle A, Mostafavi S, Zhu X, Potash JB,WeissmanMM,McCormick C,
Haudenschild CD, Beckman KB, Shi J, Mei R, Urban AE,
Montgomery SB, Levinson DF, Koller D (2014) Characterizing
the genetic basis of transcriptome diversity through RNA-
sequencing of 922 individuals. Genome Res 24:14–24

Becker KG, Hosack DA, Dennis G Jr, Lempicki RA, Bright TJ, Cheadle
C, Engel J (2003) PubMatrix: a tool for multiplex literature mining.
BMC Bioinformatics 4:61

Bell RL, Lopez MF, Cui C, Egli M, Johnson KW, Franklin KM, Becker
HC (2015) Ibudilast reduces alcohol drinking in multiple animal
models of alcohol dependence. Addict Biol 20:38–42

Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA
(2017) Rat animal models for screening medications to treat alcohol
use disorders. Neuropharmacology 122:201–243

Blednov YA, Benavidez JM, Black M, Ferguson LB, Schoenhard GL,
Goate AM, Edenberg HJ, Wetherill L, Hesselbrock V, Foroud T,
Harris RA (2015) Peroxisome proliferator-activated receptors alpha
and gamma are linked with alcohol consumption in mice and with-
drawal and dependence in humans. Alcohol Clin Exp Res 39:136–
145

BlednovYA, BlackM, Benavidez JM, Stamatakis EE, Harris RA (2016a)
PPAR agonists: I. Role of receptor subunits in alcohol consumption
in male and female mice. Alcohol Clin Exp Res 40:553–562

Blednov YA, Black M, Benavidez JM, Stamatakis EE, Harris RA
(2016b) PPAR agonists: II. Fenofibrate and tesaglitazar alter behav-
iors related to voluntary alcohol consumption. Alcohol Clin ExpRes
40:563–571

Bomprezzi R (2015) Dimethyl fumarate in the treatment of relapsing-
remitting multiple sclerosis: an overview. Ther Adv Neurol Disord
8:20–30

Borro P, Leone S, Testino G (2016) Liver disease and hepatocellular
carcinoma in alcoholics: the role of Anticraving therapy. Curr
Drug Targets 17:239–251

Brower KJ (2015) Assessment and treatment of insomnia in adult patients
with alcohol use disorders. Alcohol 49:417–427

Butler D (2008) Translational research: crossing the valley of death.
Nature 453:840–842

Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, Shaw JL, Thompson
L, Nelson DL, Hemrick-Luecke SK, Wong DT (2001) Comparative
affinity of duloxetine and venlafaxine for serotonin and norepineph-
rine transporters in vitro and in vivo, human serotonin receptor sub-
types, and other neuronal receptors. Neuropsychopharmacology 25:
871–880

Carrella D, Napolitano F, Rispoli R, Miglietta M, Carissimo A, Cutillo L,
Sirci F, Gregoretti F, Di Bernardo D (2014) Mantra 2.0: an online
collaborative resource for drug mode of action and repurposing by
network analysis. Bioinformatics 30:1787–1788

Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA,
Zhang A, Costigan M, Yekkirala A, Barrett L, Blesch A,
Michaelevski I, Davis-Turak J, Gao F, Langfelder P, Horvath S,
He Z, Benowitz L, Fainzilber M, Tuszynski M, Woolf CJ,
Geschwind DH (2016) A systems-level analysis of the peripheral
nerve intrinsic axonal growth program. Neuron 89:956–970

Chang SL, Huang W, Mao X, Sarkar S (2017) NLRP12 Inflammasome
expression in the rat brain in response to LPS during morphine
tolerance. Brain Sci 7

Cheer SM, BangLM,KeatingGM (2004) Ropinirole: for the treatment of
restless legs syndrome. CNS Drugs 18:747–754 discussion 755-6

Chen B, Butte AJ (2013) Network medicine in disease analysis and ther-
apeutics. Clin Pharmacol Ther 94:627–629

Chen B, Butte AJ (2016) Leveraging big data to transform target selection
and drug discovery. Clin Pharmacol Ther 99:285–297

Chen B,MaL, Paik H, SirotaM,WeiW, ChuaMS, So S, Butte AJ (2017)
Reversal of cancer gene expression correlates with drug efficacy and
reveals therapeutic targets. Nat Commun 8:16022

Chen F, Guan Q, Nie ZY, Jin LJ (2013) Gene expression profile and
functional analysis of Alzheimer’s disease. Am J Alzheimers Dis
Other Demen 28:693–701

Ciraulo DA, Barlow DH, Gulliver SB, Farchione T, Morissette SB,
Kamholz BW, Eisenmenger K, Brown B, Devine E, Brown TA,
Knapp CM (2013) The effects of venlafaxine and cognitive behav-
ioral therapy alone and combined in the treatment of co-morbid
alcohol use-anxiety disorders. Behav Res Ther 51:729–735

Psychopharmacology



Colombo G, Addolorato G, Agabio R, Carai MA, Pibiri F, Serra S, Vacca
G, Gessa GL (2004) Role of GABA(B) receptor in alcohol depen-
dence: reducing effect of baclofen on alcohol intake and alcohol
motivational properties in rats and amelioration of alcohol with-
drawal syndrome and alcohol craving in human alcoholics.
Neurotox Res 6:403–414

Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE,
Johnston SE, Vrcic A, Wong B, Khan M, Asiedu J, Narayan R,
Mader CC, Subramanian A, Golub TR (2017) The drug repurposing
hub: a next-generation drug library and information resource. Nat
Med 23:405–408

Crews FT, Lawrimore CJ, Walter TJ, Coleman LG Jr (2017) The role of
neuroimmune signaling in alcoholism. Neuropharmacology 122:
56–73

Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R,
Wiegers J, Wiegers TC, Mattingly CJ (2017) The comparative
toxicogenomics database: update 2017. Nucleic Acids Res 45:
D972–D978

de Timary P, Starkel P, Delzenne NM, Leclercq S (2017) A role for the
peripheral immune system in the development of alcohol use disor-
ders? Neuropharmacology 122:148–160

Delahaye-Duriez A, Srivastava P, Shkura K, Langley SR, Laaniste L,
Moreno-Moral A, Danis B, Mazzuferi M, Foerch P, Gazina EV,
Richards K, Petrou S, Kaminski RM, Petretto E, Johnson MR
(2016) Rare and common epilepsies converge on a shared gene
regulatory network providing opportunities for novel antiepileptic
drug discovery. Genome Biol 17:245

Dominguez G, Dagnas M, Decorte L, Vandesquille M, Belzung C,
Beracochea D, Mons N (2016) Rescuing prefrontal cAMP-
CREB pathway reverses working memory deficits during
withdrawal from prolonged alcohol exposure. Brain Struct
Funct 221:865–877

Donoghue K, Rose A, Coulton S, Milward J, Reed K, Drummond C,
Little H (2016) Double-blind, 12 month follow-up, placebo-
controlled trial of mifepristone on cognition in alcoholics: the
MIFCOG trial protocol. BMC Psychiatry 16:40

Drouin-Ouellet J, Pircs K, Barker RA, Jakobsson J, Parmar M (2017)
Direct neuronal reprogramming for disease modeling studies using
patient-derived neurons: what have we learned? Front Neurosci 11:
530

Ekins S, Bugrim A, Brovold L, Kirillov E, Nikolsky Y, Rakhmatulin E,
Sorokina S, Ryabov A, Serebryiskaya T, Melnikov A, Metz J,
Nikolskaya T (2006) Algorithms for network analysis in systems-
ADME/Tox using the MetaCore and MetaDrug platforms.
Xenobiotica 36:877–901

ENCODE Project Consortium (2011) A user’s guide to the encyclopedia
of DNA elements (ENCODE). PLoS Biol 9:e1001046

Falk DE, Castle IJ, Ryan M, Fertig J, Litten RZ (2015) Moderators of
varenicline treatment effects in a double-blind, placebo-controlled
trial for alcohol dependence: an exploratory analysis. J Addict Med
9:296–303

Farokhnia M, Schwandt ML, Lee MR, Bollinger JW, Farinelli LA,
Amodio JP, Sewell L, Lionetti TA, Spero DE, Leggio L (2017)
Biobehavioral effects of baclofen in anxious alcohol-dependent in-
dividuals: a randomized, double-blind, placebo-controlled, labora-
tory study. Transl Psychiatry 7:e1108

Ferguson LB, Most D, Blednov YA, Harris RA (2014) PPAR agonists
regulate brain gene expression: relationship to their effects on etha-
nol consumption. Neuropharmacology 86:397–407

Ferguson LB, Ozburn AR, Ponomarev I, Metten P, Reilly M, Crabbe JC,
Harris RA, Mayfield RD (2017) Genome-wide expression profiles
drive discovery of novel compounds that reduce binge drinking in
mice. Neuropsychopharmacology

FleischhackerWW,Hinterhuber H, Bauer H, Pflug B, Berner P, Simhandl
C, Wolf R, Gerlach W, Jaklitsch H, Sastre-y-Hernandez M et al
(1992) A multicenter double-blind study of three different doses of

the new cAMP-phosphodiesterase inhibitor rolipram in patients with
major depressive disorder. Neuropsychobiology 26:59–64

Gao L, Zhao G, Fang JS, Yuan TY, Liu AL, Du GH (2014) Discovery of
the neuroprotective effects of alvespimycin by computational prior-
itization of potential anti-Parkinson agents. FEBS J 281:1110–1122

Geisel O, Hellweg R, Muller CA (2016) Serum levels of brain-derived
neurotrophic factor in alcohol-dependent patients receiving high-
dose baclofen. Psychiatry Res 240:177–180

Geisler BP, Ghosh A (2014) Gabapentin treatment for alcohol depen-
dence. JAMA Intern Med 174:1201

Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, SteersWD,Wicker PA
(1998) Oral sildenafil in the treatment of erectile dysfunction.
Sildenafil Study Group. N Engl J Med 338:1397–1404

Gong MF, Wen RT, Xu Y, Pan JC, Fei N, Zhou YM, Xu JP, Liang JH,
Zhang HT (2017) Attenuation of ethanol abstinence-induced anxi-
ety- and depressive-like behavior by the phosphodiesterase-4 inhib-
itor rolipram in rodents. Psychopharmacology (Berl)

Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015)
Genenames.org: the HGNC resources in 2015. Nucleic Acids Res
43:D1079–D1085

GTEx Consortium (2013) The genotype-tissue expression (GTEx) pro-
ject. Nat Genet 45:580–585

GTEx Consortium, Laboratory, Data Analysis & Coordinating Center
(LDACC)—Analysis Working Group, Statistical Methods
Groups—Analysis Working Group, Enhancing GTEx (eGTEx)
Groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/
NIMH, NIH/NIDA, Biospecimen Collection Source Site—NDRI,
Biospecimen Collection Source Site—RPCI, Biospecimen Core
Resource—VARI, Brain Bank Repository—University of Miami
Brain Endowment Bank, Leidos Biomedical—Project
Management, ELSI Study, Genome Browser Data Integration
&Visualization—EBI, Genome Browser Data Integration &
Visualization—UCSC Genomics Institute, University of California
Santa Cruz, Lead Analysts, Laboratory, Data Analysis &
Coordinating Center (LDACC), NIH Program Management,
Biospecimen Collection, Pathology, eQTL Manuscript Working
Group, Battle A, Brown CD, Engelhardt BE, Montgomery SB
(2017) Genetic effects on gene expression across human tissues.
Nature 550:204–213

Guedj F, Pennings JL, Massingham LJ, Wick HC, Siegel AE, Tantravahi
U, Bianchi DW (2016) An integrated human/murine transcriptome
and pathway approach to identify prenatal treatments for down syn-
drome. Sci Rep 6:32353

Guglielmo R, Martinotti G, Clerici M, Janiri L (2012) Pregabalin for
alcohol dependence: a critical review of the literature. Adv Ther
29:947–957

Guglielmo R, Martinotti G, Quatrale M, Ioime L, Kadilli I, Di Nicola M,
Janiri L (2015) Topiramate in alcohol use disorders: review and
update. CNS Drugs 29:383–395

Guo AY, Webb BT, Miles MF, Zimmerman MP, Kendler KS, Zhao Z
(2009) ERGR: an ethanol-related gene resource. Nucleic Acids Res
37:D840–D845

Haile CN, Kosten TA (2017) The peroxisome proliferator-activated re-
ceptor alpha agonist fenofibrate attenuates alcohol self-
administration in rats. Neuropharmacology 116:364–370

Hajjo R, Setola V, Roth BL, Tropsha A (2012) Chemocentric informatics
approach to drug discovery: identification and experimental valida-
tion of selective estrogen receptor modulators as ligands of 5-
hydroxytryptamine-6 receptors and as potential cognition en-
hancers. J Med Chem 55:5704–5719

Hata R, Masumura M, Akatsu H, Li F, Fujita H, Nagai Y, Yamamoto T,
Okada H, Kosaka K, Sakanaka M, Sawada T (2001) Up-regulation
of calcineurin Abeta mRNA in the Alzheimer's disease brain: as-
sessment by cDNA microarray. Biochem Biophys Res Commun
284:310–6

Psychopharmacology



Hecker N, Ahmed J, von Eichborn J, Dunkel M, Macha K, Eckert A,
Gilson MK, Bourne PE, Preissner R (2012) SuperTarget goes quan-
titative: update on drug-target interactions. Nucleic Acids Res 40:
D1113–D1117

Heusser SA, Howard RJ, Borghese CM, Cullins MA, Broemstrup T, Lee
US, Lindahl E, Carlsson J, Harris RA (2013) Functional validation
of virtual screening for novel agents with general anesthetic action at
ligand-gated ion channels. Mol Pharmacol 84:670–678

Howard RJ, Trudell JR, Harris RA (2014) Seeking structural specificity:
direct modulation of pentameric ligand-gated ion channels by alco-
hols and general anesthetics. Pharmacol Rev 66:396–412

Howland RH (2013) Mifepristone as a therapeutic agent in psychiatry. J
Psychosoc Nurs Ment Health Serv 51:11–14

HuW, Lu T, Chen A, HuangY, Hansen R, Chandler LJ, ZhangHT (2011)
Inhibition of phosphodiesterase-4 decreases ethanol intake in mice.
Psychopharmacology 218:331–339

Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integra-
tive analysis of large gene lists using DAVID bioinformatics re-
sources. Nat Protoc 4:44–57

Hutson PH, Clark JA, Cross AJ (2017) CNS target identification and
validation: avoiding the valley of death or naive optimism? Annu
Rev Pharmacol Toxicol 57:171–187

Imbert B, Alvarez JC, Simon N (2015) Anticraving effect of baclofen in
alcohol-dependent patients. Alcohol Clin Exp Res 39:1602–1608

Jacunski A, Tatonetti NP (2013) Connecting the dots: applications of
network medicine in pharmacology and disease. Clin Pharmacol
Ther 94:659–669

Jasinski DR, Pevnick JS, Griffith JD (1978) Human pharmacology and
abuse potential of the analgesic buprenorphine: a potential agent for
treating narcotic addiction. Arch Gen Psychiatry 35:501–516

Jensen NH, Rodriguiz RM, Caron MG, Wetsel WC, Rothman RB, Roth
BL (2008) N-Desalkylquetiapine, a potent norepinephrine reuptake
inhibitor and partial 5-HT1A agonist, as a putative mediator of
quetiapine's antidepressant activity. Neuropsychopharmacology
33:2303–2312

Johnstone AL, Reierson GW, Smith RP, Goldberg JL, Lemmon VP,
Bixby JL (2012) A chemical genetic approach identifies piperazine
antipsychotics as promoters of CNS neurite growth on inhibitory
substrates. Mol Cell Neurosci 50:125–135

Karahanian E, Quintanilla ME, Fernandez K, Israel Y (2014)
Fenofibrate—a lipid-lowering drug—reduces voluntary alcohol
drinking in rats. Alcohol 48:665–670

Kenna GA, Leggio L, Swift RM (2009) A safety and tolerability labora-
tory study of the combination of aripiprazole and topiramate in vol-
unteers who drink alcohol. Hum Psychopharmacol 24:465–472

Kielbasa SM, Klein H, Roider HG, Vingron M, Bluthgen N (2010)
TransFind—predicting transcriptional regulators for gene sets.
Nucleic Acids Res 38:W275–W280

Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams
E, Dylag M, Kurbatova N, Brandizi M, Burdett T, Megy K,
Pilicheva E, Rustici G, Tikhonov A, Parkinson H, Petryszak R,
Sarkans U, Brazma A (2015) ArrayExpress update—simplifying
data submissions. Nucleic Acids Res 43:D1113–D1116

Kolodkin A, Boogerd FC, Plant N, Bruggeman FJ, Goncharuk V,
Lunshof J, Moreno-Sanchez R, Yilmaz N, Bakker BM, Snoep JL,
Balling R, Westerhoff HV (2012) Emergence of the silicon human
and network targeting drugs. Eur J Pharm Sci 46:190–197

Koob GF, Kenneth Lloyd G, Mason BJ (2009) Development of pharma-
cotherapies for drug addiction: a Rosetta stone approach. Nat Rev
Drug Discov 8:500–515

Kramer A, Green J, Pollard J, Jr., Tugendreich S (2014) Causal analysis
approaches in ingenuity pathway analysis. Bioinformatics 30: 523–
530

Kreek MJ, LaForge KS, Butelman E (2002) Pharmacotherapy of addic-
tions. Nat Rev Drug Discov 1:710–726

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang
Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott
MG, Monteiro CD, Gundersen GW, Ma'ayan A (2016) Enrichr: a
comprehensive gene set enrichment analysis web server 2016 up-
date. Nucleic Acids Res 44:W90–W97

Kwako LE, Spagnolo PA, Schwandt ML, Thorsell A, George DT,
Momenan R, Rio DE, Huestis M, Anizan S, Concheiro M, Sinha
R, Heilig M (2015) The corticotropin releasing hormone-1 (CRH1)
receptor antagonist pexacerfont in alcohol dependence: a random-
i z e d c o n t r o l l e d e x p e r i m e n t a l m e d i c i n e s t u d y .
Neuropsychopharmacology 40:1053–1063

Lamb J, Crawford ED, Peck D,Modell JW, Blat IC,Wrobel MJ, Lerner J,
Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H,Wei
G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA,
Lander ES, Golub TR (2006) The connectivity map: using gene-
expression signatures to connect small molecules, genes, and dis-
ease. Science 313:1929–1935

Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens MH
(2015) Drug repositioning and repurposing: terminology and defi-
nitions in literature. Drug Discov Today 20:1027–1034

Letai A (2017) Functional precision cancer medicine-moving beyond
pure genomics. Nat Med 23:1028–1035

Li Z, Taylor CP, WeberM, Piechan J, Prior F, Bian F, Cui M, Hoffman D,
Donevan S (2011) Pregabalin is a potent and selective ligand for
alpha(2)delta-1 and alpha(2)delta-2 calcium channel subunits. Eur J
Pharmacol 667:80–90

Lief HI (1996) Bupropion treatment of depression to assist smoking ces-
sation. Am J Psychiatry 153:442

Lipponen A, Paananen J, Puhakka N, Pitkanen A (2016) Analysis of
post-traumatic brain injury gene expression signature reveals tubu-
lins, Nfe2l2, Nfkb, Cd44, and S100a4 as treatment targets. Sci Rep
6:31570

Litten RZ, Fertig JB, Falk DE, Ryan ML, Mattson ME, Collins JF,
Murtaugh C, Ciraulo D, Green AI, Johnson B, Pettinati H, Swift
R, Afshar M, Brunette MF, Tiouririne NA, Kampman K, Stout R,
Group NS (2012) A double-blind, placebo-controlled trial to assess
the efficacy of quetiapine fumarate XR in very heavy-drinking al-
cohol-dependent patients. Alcohol Clin Exp Res 36:406–416

Litten RZ, Ryan ML, Fertig JB, Falk DE, Johnson B, Dunn KE, Green
AI, Pettinati HM, Ciraulo DA, Sarid-Segal O, Kampman K,
Brunette MF, Strain EC, Tiouririne NA, Ransom J, Scott C, Stout
R, Group NS (2013) A double-blind, placebo-controlled trial
assessing the efficacy of varenicline tartrate for alcohol dependence.
J Addict Med 7:277–286

Litten RZ, Ryan M, Falk D, Fertig J (2014) Alcohol medications devel-
opment: advantages and caveats of government/academia collabo-
rating with the pharmaceutical industry. Alcohol Clin Exp Res 38:
1196–1199

Litten RZ, Wilford BB, Falk DE, Ryan ML, Fertig JB (2016) Potential
medications for the treatment of alcohol use disorder: an evaluation
of clinical efficacy and safety. Subst Abus 37:286–298

Liu J, Wang LN (2017) Baclofen for alcohol withdrawal. Cochrane
Database Syst Rev 8:CD008502

Liu X, Hao PD, Yang MF, Sun JY, Mao LL, Fan CD, Zhang ZY, Li DW,
Yang XY, Sun BL, Zhang HT (2017) The phosphodiesterase-4 in-
hibitor roflumilast decreases ethanol consumption in C57BL/6J
mice. Psychopharmacology 234:2409–2419

Lohman BK, Weber JN, Bolnick DI (2016) Evaluation of TagSeq, a
reliable low-cost alternative for RNAseq. Mol Ecol Resour 16:
1315–1321

Lyon J (2017) More treatments on deck for alcohol use disorder. JAMA
317:2267–2269

MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Srinidhi CLL,
Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B,
Anderson MA, Wexler NS, Gusella JF (1993) A novel gene con-
taining a trinucleotide repeat that is expanded and unstable on

Psychopharmacology



Huntington's disease chromosomes. The Huntington's disease col-
laborative research group. Cell 72:971–983

Martinotti G, Di Nicola M, Janiri L (2007) Efficacy and safety of
aripiprazole in alcohol dependence. Am J Drug Alcohol Abuse 33:
393–401

Martinotti G, Di Nicola M, Di Giannantonio M, Janiri L (2009)
Aripiprazole in the treatment of patients with alcohol dependence:
a double-blind, comparison trial vs. naltrexone. J Psychopharmacol
23:123–129

Mason BJ, Goodell V, Shadan F (2014a) Gabapentin treatment for alco-
hol dependence–reply. JAMA Intern Med 174:1201–1202

Mason BJ, Quello S, Goodell V, Shadan F, Kyle M, Begovic A (2014b)
Gabapentin treatment for alcohol dependence: a randomized clinical
trial. JAMA Intern Med 174:70–77

Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, Shi W,
Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B,
Sandelin A, WassermanWW (2016) JASPAR 2016: a major expan-
sion and update of the open-access database of transcription factor
binding profiles. Nucleic Acids Res 44:D110–D115

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A,
Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier
P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006)
TRANSFAC and its module TRANSCompel: transcriptional gene
regulation in eukaryotes. Nucleic Acids Res 34:D108–D110

Mayfield J, Harris RA (2017) The neuroimmune basis of excessive alco-
hol consumption. Neuropsychopharmacology 42:376

McArt DG, Zhang SD (2011) Identification of candidate small-molecule
therapeutics to cancer by gene-signature perturbation in connectivity
mapping. PLoS One 6:e16382

Meyer E, Aglyamova GV, Matz MV (2011) Profiling gene expression
responses of coral larvae (Acropora millepora) to elevated tempera-
ture and settlement inducers using a novel RNA-Seq procedure.Mol
Ecol 20:3599–3616

Miller MB, DiBello AM, Carey KB, Borsari B, Pedersen ER (2017)
Insomnia severity as a mediator of the association between mental
health symptoms and alcohol use in young adult veterans. Drug
Alcohol Depend 177:221–227

Mirijello A, D’Angelo C, Ferrulli A, Vassallo G, Antonelli M, Caputo F,
Leggio L, Gasbarrini A, Addolorato G (2015) Identification and
management of alcohol withdrawal syndrome. Drugs 75:353–365

Mirza N, Sills GJ, Pirmohamed M, Marson AG (2017) Identifying new
antiepileptic drugs through genomics-based drug repurposing. Hum
Mol Genet 26:527–537

Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q (2014)
GeneMANIA: fast gene network construction and function predic-
tion for Cytoscape. F1000Res 3:153

Morley KC, Baillie A, Leung S, Addolorato G, Leggio L, Haber PS
(2014) Baclofen for the treatment of alcohol dependence and possi-
ble role of comorbid anxiety. Alcohol Alcohol 49:654–660

Most D, Ferguson LB, Harris RA (2014) Molecular basis of alcoholism.
Handb Clin Neurol 125:89–111

Muller CA, Geisel O, Pelz P, Higl V, Kruger J, Stickel A, Beck A,
Wernecke KD, Hellweg R, Heinz A (2015) High-dose baclofen
for the treatment of alcohol dependence (BACLAD study): a ran-
domized, placebo-controlled trial. Eur Neuropsychopharmacol 25:
1167–1177

Mulligan MK, Mozhui K, Prins P, Williams RW (2017) GeneNetwork: a
toolbox for systems genetics. Methods Mol Biol 1488:75–120

Napolitano F, Sirci F, Carrella D, di Bernardo D (2016) Drug-set enrich-
ment analysis: a novel tool to investigate drug mode of action.
Bioinformatics 32:235–241

Naudet F (2016) Comparing nalmefene and naltrexone in alcohol depen-
dence: is there a spin? Pharmacopsychiatry 49:260–261

Naudet F, Palpacuer C, Boussageon R, Laviolle B (2016) Evaluation in
alcohol use disorders - insights from the nalmefene experience.
BMC Med 14:119

Nosengo N (2016) Can you teach old drugs new tricks? Nature 534:314–
316

Nunes EV (2014) Gabapentin: a new addition to the armamentarium for
alcohol dependence? JAMA Intern Med 174:78–79

O'Donovan MC (2015) What have we learned from the psychiatric ge-
nomics consortium. World Psychiatry 14(3):291–293

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999)
KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
Res 27:29–34

Oni EN, Halikere A, Li G, Toro-Ramos AJ, Swerdel MR, Verpeut JL,
Moore JC, Bello NT, Bierut LJ, Goate A, Tischfield JA, Pang ZP,
Hart RP (2016) Increased nicotine response in iPSC-derived human
neurons carrying the CHRNA5 N398 allele. Sci Rep 6:34341

Oprea TI, Overington JP (2015) Computational and practical aspects of
drug repositioning. Assay Drug Dev Technol 13:299–306

Owen RP, Klein TE, Altman RB (2007) The education potential of the
pharmacogenetics and pharmacogenomics knowledge base
(PharmGKB). Clin Pharmacol Ther 82:472–475

Papassotiropoulos A, Gerhards C, Heck A, Ackermann S, Aerni A,
Schicktanz N, Auschra B, Demougin P, Mumme E, Elbert T, Ertl
V, Gschwind L, Hanser E, Huynh KD, Jessen F, Kolassa IT, Milnik
A, Paganetti P, Spalek K, Vogler C, Muhs A, Pfeifer A, de Quervain
DJ (2013) Human genome-guided identification of memory-
modulating drugs. Proc Natl Acad Sci U S A 110:E4369–E4374

Plaisier SB, Taschereau R, Wong JA, Graeber TG (2010) Rank-rank
hypergeometric overlap: identification of statistically significant
overlap between gene-expression signatures. Nucleic Acids Res
38:e169

Pomrenze MB, Fetterly TL, Winder DG, Messing RO (2017) The corti-
cotropin releasing factor receptor 1 in alcohol use disorder: still a
valid drug target? Alcohol Clin Exp Res 41:1986–1999

Ponizovsky AM, Rosca P, Aronovich E, Weizman A, Grinshpoon A
(2015) Baclofen as add-on to standard psychosocial treatment for
alcohol dependence: a randomized, double-blind, placebo-
controlled trial with 1 year follow-up. J Subst Abus Treat 52:24–30

Ray LA, Bujarski S (2016) Mechanisms of topiramate effects: refining
medications development for alcoholism. Addict Biol 21:183–184

Ray LA, Roche DJ, Heinzerling K, Shoptaw S (2014) Opportunities for
the development of neuroimmune therapies in addiction. Int Rev
Neurobiol 118:381–401

Ray LA, Bujarski S, Shoptaw S, Roche DJ, Heinzerling K, Miotto K
(2017) Development of the Neuroimmune modulator Ibudilast for
the treatment of alcoholism: a randomized, placebo-controlled, hu-
man laboratory trial. Neuropsychopharmacology 42:1776–1788

Ricciarelli R, d'Abramo C, Massone S, Marinari U, Pronzato M, Tabaton
M (2004) Microarray analysis in Alzheimer's disease and normal
aging. IUBMB Life 56:349–54

Rigal L, Legay Hoang L, Alexandre-Dubroeucq C, Pinot J, Le Jeunne C,
Jaury P (2015) Tolerability of high-dose baclofen in the treatment of
patients with alcohol disorders: a retrospective study. Alcohol
Alcohol 50:551–557

Rivera-Meza M, Munoz D, Jerez E, Quintanilla ME, Salinas-Luypaert C,
Fernandez K, Karahanian E (2017) Fenofibrate administration re-
duces alcohol and saccharin intake in rats: possible effects at periph-
eral and central levels. Front Behav Neurosci 11:133

Rolland B, Labreuche J, Duhamel A, Deheul S, Gautier S, Auffret M,
Pignon B, Valin T, Bordet R, Cottencin O (2015a) Baclofen for
alcohol dependence: relationships between baclofen and alcohol
dos ing and the occur r ence of ma jo r seda t i on . Eu r
Neuropsychopharmacol 25:1631–1636

Rolland B, Valin T, Langlois C, Auffret M, Gautier S, Deheul S, Danel T,
Bordet R, Cottencin O (2015b) Safety and drinking outcomes
among patients with comorbid alcohol dependence and borderline
personality disorder treated with high-dose baclofen: a comparative
cohort study. Int Clin Psychopharmacol 30:49–53

Psychopharmacology



Ryall KA, Tan AC (2015) Systems biology approaches for advancing the
discovery of effective drug combinations. J Cheminform 7:7

Ryan ML, Falk DE, Fertig JB, Rendenbach-Mueller B, Katz DA, Tracy
KA, Strain EC, Dunn KE, Kampman K, Mahoney E, Ciraulo DA,
Sickles-Colaneri L, Ait-Daoud N, Johnson BA, Ransom J, Scott C,
Koob GF, Litten RZ (2017) A phase 2, double-blind, placebo-
controlled randomized trial assessing the efficacy of ABT-436, a
novel V1b receptor antagonist, for alcohol dependence.
Neuropsychopharmacology 42:1012–1023

Saul MC, Majdak P, Perez S, Reilly M, Garland T, Jr., Rhodes JS (2017)
High motivation for exercise is associated with altered chromatin
regulators of monoamine receptor gene expression in the striatum of
selectively bred mice. Genes Brain Behav 16: 328–341

Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P,
Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared
with new and reference antipsychotic drugs: in vitro and in vivo
receptor binding. Psychopharmacology 124:57–73

Schwandt ML, Cortes CR, Kwako LE, George DT, Momenan R, Sinha
R, Grigoriadis DE, Pich EM, Leggio L, Heilig M (2016) The CRF1
antagonist verucerfont in anxious alcohol-dependent women: trans-
lation of neuroendocrine, but not of anti-craving effects.
Neuropsychopharmacology 41:2818–2829

Secades JJ, Lorenzo JL (2006) Citicoline: pharmacological and clinical
review, 2006 update. Methods Find Exp Clin Pharmacol 28(Suppl
B):1–56

Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE (2000) An overview
of the preclinical aspects of topiramate: pharmacology, pharmacoki-
netics, and mechanism of action. Epilepsia 41(Suppl 1):S3–S9

Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR,
Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsy-
chotic drug with a unique and robust pharmacology.
Neuropsychopharmacology 28:1400–1411

Siavelis JC, Bourdakou MM, Athanasiadis EI, Spyrou GM, Nikita KS
(2016) Bioinformatics methods in drug repurposing for Alzheimer’s
disease. Brief Bioinform 17:322–335

Silbersweig D, Loscalzo J (2017) Precision psychiatry meets network
medicine: network psychiatry. JAMA Psychiatry 74:665–666

Silverman EK, Loscalzo J (2013) Developing new drug treatments in the
era of network medicine. Clin Pharmacol Ther 93:26–28

Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z,
Bianchi DW (2009) Functional genomic analysis of amniotic fluid
cell-free mRNA suggests that oxidative stress is significant in Down
syndrome fetuses. Proc Natl Acad Sci U S A 106:9425–9429

Smalley JL, Breda C, Mason RP, Kooner G, Luthi-Carter R, Gant TW,
Giorgini F (2016) Connectivity mapping uncovers small molecules
that modulate neurodegeneration in Huntington's disease models. J
Mol Med (Berl) 94:235–245

So HC, Chau CK, Chiu WT, Ho KS, Lo CP, Yim SH, Sham PC (2017)
Analysis of genome-wide association data highlights candidates for
drug repositioning in psychiatry. Nat Neurosci 20:1342–1349

Soyka M (2016) Nalmefene for the treatment of alcohol use disorders:
recent data and clinical potential. Expert Opin Pharmacother 17:
619–626

Soyka M, Friede M, Schnitker J (2016) Comparing nalmefene and nal-
trexone in alcohol dependence: are there any differences? Results
from an indirect meta-analysis—comment to Naudet.
Pharmacopsychiatry 49:261–262

Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL,
Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R,
Housman DE, Jackson GR, Marsh JL, Thompson LM (2001)
Histone deacetylase inhibitors arrest polyglutamine-dependent neu-
rodegeneration in Drosophila. Nature 413:739-43

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S,
Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D,
Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M,
Lancet D (2016) The GeneCards suite: from gene data mining to

disease genome sequence analyses. Curr Protoc Bioinformatics 54:
1.30.1–1.30.33

Stern S, Santos R,MarchettoMC,Mendes AP, Rouleau GA, Biesmans S,
Wang QW, Yao J, Charnay P, Bang AG, Alda M, Gage FH (2017)
Neurons derived from patients with bipolar disorder divide into
intrinsically different sub-populations of neurons, predicting the pa-
tients' responsiveness to lithium. Mol Psychiatry

Strange BC (2008) Once-daily treatment of ADHD with guanfacine:
patient implications. Neuropsychiatr Dis Treat 4:499–506

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP
(2005) Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc Natl Acad
Sci U S A 102:15545–15550

Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X,
Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE,
Liu Z, DonahueM, Julian B, KhanM,Wadden D, Smith IC, LamD,
Liberzon A, Toder C, Bagul M, Orzechowski M, Enache OM,
Piccioni F, Johnson SA, Lyons NJ, Berger AH, Shamji AF,
Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R,
Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray
NS, Clemons PA, Silver S, Wu X, Zhao WN, Read-Button W, Wu
X, Haggarty SJ, Ronco LV, Boehm JS, Schreiber SL, Doench JG,
Bittker JA, Root DE, Wong B, Golub TR (2017) A next generation
connectivity map: L1000 platform and the first 1,000,000 profiles.
Cell 171(1437–1452):e17

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-
Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M,
Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-
protein interaction networks, integrated over the tree of life.
Nucleic Acids Res 43:D447–D452

Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M
(2016) STITCH 5: augmenting protein-chemical interaction net-
works with tissue and affinity data. Nucleic Acids Res 44:D380–
D384

Taccioli C, Tegner J, Maselli V, Gomez-Cabrero D, Altobelli G, Emmett
W, Lescai F, Gustincich S, Stupka E (2011) ParkDB: a Parkinson’s
disease gene expression database. Database (Oxford) 2011:bar007

Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors.
Cell 126:663–676

Tosti A, Pazzaglia M, Voudouris S, Tosti G (2004) Hypertrichosis of the
eyelashes caused by bimatoprost. J AmAcad Dermatol 51:S149–S150

Traynor K (2014) NIOSH revamps hazardous drugs update. Am J Health
Syst Pharm 71:2099–2100

Turinsky AL, Razick S, Turner B, Donaldson IM, Wodak SJ (2014)
Navigating the global protein-protein interaction landscape using
iRefWeb. Methods Mol Biol 1091:315–331

Upadhyaya HP, Brady KT, Sethuraman G, Sonne SC, Malcolm R (2001)
Venlafaxine treatment of patients with comorbid alcohol/cocaine
abuse and attention-deficit/hyperactivity disorder: a pilot study. J
Clin Psychopharmacol 21:116–118

Vendruscolo LF, Barbier E, Schlosburg JE, Misra KK, Whitfield TW Jr,
Logrip ML, Rivier C, Repunte-Canonigo V, Zorrilla EP, Sanna PP,
Heilig M, Koob GF (2012) Corticosteroid-dependent plasticity me-
diates compulsive alcohol drinking in rats. J Neurosci 32:7563–
7571

Vendruscolo LF, Estey D, Goodell V, Macshane LG, Logrip ML,
Schlosburg JE, McGinn MA, Zamora-Martinez ER, Belanoff JK,
Hunt HJ, Sanna PP, George O, Koob GF, Edwards S, Mason BJ
(2015) Glucocorticoid receptor antagonism decreases alcohol seek-
ing in alcohol-dependent individuals. J Clin Invest 125:3193–3197

Voronin K, Randall P, Myrick H, Anton R (2008) Aripiprazole effects on
alcohol consumption and subjective reports in a clinical laboratory
paradigm—possible influence of self-control. Alcohol Clin Exp Res
32:1954–1961

Psychopharmacology



Wagner A, Cohen N, Kelder T, Amit U, Liebman E, Steinberg DM,
Radonjic M, Ruppin E (2015) Drugs that reverse disease
transcriptomic signatures are more effective in a mouse model of
dyslipidemia. Mol Syst Biol 11:791

Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT
AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res
41:W77–W83

Wang L, Yu Y, Yang J, Zhao X, Li Z (2015) Dissecting Xuesaitong’s
mechanisms on preventing stroke based on the microarray and con-
nectivity map. Mol BioSyst 11:3033–3039

Wei WQ, Cronin RM, Xu H, Lasko TA, Bastarache L, Denny JC (2013)
Development and evaluation of an ensemble resource linking med-
ications to their indications. J Am Med Inform Assoc 20:954–961

Weibel S, Lalanne L, Riegert M, Bertschy G (2015) Efficacy of high-dose
baclofen for alcohol use disorder and comorbid bulimia: a case
report. J Dual Diagn 11:203–204

Wen RT, Zhang M, Qin WJ, Liu Q, Wang WP, Lawrence AJ, Zhang HT,
Liang JH (2012) The phosphodiesterase-4 (PDE4) inhibitor
rolipram decreases ethanol seeking and consumption in alcohol-
preferring fawn-hooded rats. Alcohol Clin Exp Res 36:2157–2167

Wignall ND, Brown ES (2014) Citicoline in addictive disorders: a review
of the literature. Am J Drug Alcohol Abuse 40:262–268

Williams G (2012) A searchable cross-platform gene expression database
reveals connections between drug treatments and disease. BMC
Genomics 13:12

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P,
Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource
for in silico drug discovery and exploration. Nucleic Acids Res 34:
D668–D672

Worthington JJ 3rd, Simon NM, Korbly NB, Perlis RH, Pollack MH,
Anxiety Disorders Research Program (2002) Ropinirole for
ant idepressant - induced sexual dysfunct ion. In t Cl in
Psychopharmacol 17:307–310

Xia J, Gill EE, Hancock RE (2015) NetworkAnalyst for statistical, visual
and network-based meta-analysis of gene expression data. Nat
Protoc 10:823–844

Zhang SD, Gant TW (2009) sscMap: an extensible java application for
connecting small-molecule drugs using gene-expression signatures.
BMC Bioinformatics 10:236

Psychopharmacology


	From gene networks to drugs: systems pharmacology approaches for AUD
	Abstract
	Introduction
	Traditional approach
	Drug development
	Drug repurposing
	Computational approaches
	Generate an input signature that captures the genomic state of interest
	High-throughput identification of compounds using an in silico screen (similarity metric)
	Prioritize candidate compounds

	Application to brain diseases
	Challenges and future directions

	Conclusion
	References


