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Abstract
Perceptual decision-making is often modeled as the accumulation of sensory evidence over time. Recent studies
using psychophysical reverse correlation have shown that even though the sensory evidence is stationary over
time, subjects may exhibit a time-varying weighting strategy, weighting some stimulus epochs more heavily than
others. While previous work has explained time-varying weighting as a consequence of static decision mecha-
nisms (e.g., decision bound or leak), here we show that time-varying weighting can reflect strategic adaptation to
stimulus statistics, and thus can readily take a number of forms. We characterized the temporal weighting
strategies of humans and macaques performing a motion discrimination task in which the amount of information
carried by the motion stimulus was manipulated over time. Both species could adapt their temporal weighting
strategy to match the time-varying statistics of the sensory stimulus. When early stimulus epochs had higher
mean motion strength than late, subjects adopted a pronounced early weighting strategy, where early information
was weighted more heavily in guiding perceptual decisions. When the mean motion strength was greater in later
stimulus epochs, in contrast, subjects shifted to a marked late weighting strategy. These results demonstrate that
perceptual decisions involve a temporally flexible weighting process in both humans and monkeys, and introduce
a paradigm with which to manipulate sensory weighting in decision-making tasks.
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Significance Statement

During decision-making, the weight assigned by subjects to sensory information over time is not necessarily
constant. Such time-varying weighting is often interpreted as a signature of a particular decision-making
model (e.g., higher weighting of early stimulus information is consistent with a bounded accumulation
process). Temporal weighting may also result, however, from a strategic reweighting of the stimulus
evidence itself that takes place before and/or independent of a decision-making mechanism. Here we use
a psychophysical reverse correlation paradigm to both measure and manipulate temporal weighting
behavior. We demonstrate that both humans and macaques adopt weighting strategies that are flexible,
consistent with dynamic reweighing of the sensory stimulus.
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Introduction
Perceptual decisions are typically thought of as result-

ing from some form of accumulating samples of a stimu-
lus over time. During this process, a decision variable is
updated as evidence is integrated until a choice is made.
In both human and nonhuman primates, perceptual
decision-making has been studied extensively in the con-
text of motion direction discrimination tasks, where the
vast majority of stimuli provide statistically uniform sen-
sory evidence over time (Gold and Shadlen, 2007). De-
spite a stationary level of expected sensory evidence,
subjects often assign more weight to some stimulus ep-
ochs over others. In many instances, subjects have
exhibited “early weighting,” where sensory evidence pre-
sented in early epochs contributes more to choices than
that in late (Huk and Shadlen, 2005; Kiani et al., 2008,
Nienborg and Cumming, 2009; Yates et al., 2017). In other
instances, however, “late weighting” has been observed,
where choices were primarily influenced by sensory evi-
dence presented in late stimulus epochs (Tsetsos et al.,
2012; Cheadle et al., 2014; Bronfman et al., 2016; Carland
et al., 2016). In rodents, a mixture of either early or flat
weighting profiles has been reported (Erlich et al., 2015;
Scott et al., 2015; Pinto et al., 2017; Licata et al., 2017).

The diverse set of temporal weighting profiles observed
across studies and species may be explained in a number
of ways. One approach appeals to mechanistic models of
decision-making. An early weighting strategy, for exam-
ple, could be explained as a consequence of bounded
accumulation (Huk and Shadlen, 2005; Kiani et al., 2008),
which posits that sensory evidence is accumulated until
reaching a bound, whereupon the decision is made. Be-
cause the remainder of the stimulus is ignored once the
bound has been hit, early stimulus epochs contribute
more to decisions than late. Late weighting, in contrast,
may be interpreted as a consequence of leaky accumu-
lation (Usher and McClelland, 2001), which stipulates that
the representation of sensory evidence decays over time.
In this model, early sensory evidence contributes less to
decisions compared to late.

An alternative approach to explaining the variety in
weighing strategies postulates that the temporal weight-
ing strategy is flexible and is linked to the demands or
structure of the task. This notion is supported by experi-
ments in which weighting changes systematically with
variable trial length and signal timings (Ghose 2006; Tset-
sos et al., 2012; Ossmy et al., 2013; Bronfman et al.,
2016), as well as by studies that explore effects of con-
gruency between serially presented samples (Cheadle

et al., 2014). Irrespective of a stipulated model or mech-
anism, these studies point to similar conclusions: subjects
may reweigh stimulus information as dictated by the reli-
ability of the evidence and demands of the task.

Without appeal to a specific decision-making mecha-
nism, we set out to manipulate temporal weighting under
the hypothesis that weights should be flexible and influ-
enced by the dynamic features of the stimulus itself, either
independent of or in addition to constraints imposed by
integration mechanisms such as a bound or a leak.

To test this idea, we adopted a motion stimulus de-
signed explicitly for psychophysical reverse correlation in
the presence of experimenter-controlled manipulation of
temporal stimulus statistics (Katz et al., 2016, Yates et al.,
2017). The stimulus is similar to classic motion stimuli
used in the study of perceptual decisions (Newsome and
Paré, 1988; Britten et al., 1992), but with two crucial
features: (a) the stimulus consists of seven consecutive
motion pulses, each with a predetermined mean motion
strength and direction, and thus can be precisely de-
signed to carry more or less motion evidence at different
epochs (Fig. 1); (b) the stimulus is amenable to psycho-
physical reverse correlation analysis such that subject
temporal weighting strategy may be computed directly.
This motion discrimination task was performed under
three temporal conditions: (1) “flat-stimulus,” in which the
mean motion strength per pulse was constant; (2) “early-
stimulus,” in which early pulses had high mean motion
strength and late pulses had low; and (3) “late-stimulus,”
in which late pulses had high mean motion strength and
early pulses had low (Fig. 2A–C). In all conditions, the task
was to report the net motion of the trial.

We found that in both time-varied conditions (early-
stimulus and late-stimulus), subjects shifted their tempo-
ral weighting strategy, placing highest weight on motion
pulses with the highest mean motion strength. In flat-
stimulus sessions, however, subjects exhibited a large
range of temporal weighting strategies despite equal
mean motion strength over time. Overall, these results
demonstrate that temporal weighting strategies in human
and monkey observers are flexible and can be adjusted to
suit temporal stimulus statistics.

Materials and Methods
Subjects and apparatus

Data were collected from both monkeys and humans.
Monkey data were collected from two adult rhesus ma-
caques (one female and one male, referred to as M1 and
M2 hereafter) aged 10 and 14 years, weighing 7.7 and 10
kg, respectively. All animal procedures were performed in
accordance with The University of Texas at Austin animal
care committee’s regulations. Both M1 and M2 had stan-
dard surgery for implantation of a head-holder. Some
portion of the monkey data were presented previously
(Katz et al., 2016; Yates et al., 2017). Human data were
collected from three subjects (all males, referred to as H1,
H2, and H3), aged 23–41 years, all with normal or
corrected-to-normal vision. Experiments were performed
with the written consent of each observer and all proce-
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dures were approved by The University of Texas at Austin
review board.

For both monkeys and humans, stimuli were presented
using the Psychophysics Toolbox with Matlab (Math-
works) using a Datapixx I/O box (Vpixx) for precise tem-
poral registration (Eastman and Huk, 2012). Sample
stimulus presentation code is available on request. Eye
position was tracked using an Eyelink eye tracker (SR
Research), sampled at 1 kHz. Monkeys sat in a primate
chair (Crist Instruments) and viewed stimuli on a 55-inch
LCD (LG) display (resolution � 1920 � 1080p, refresh rate
� 60 Hz, background luminance � 26.49 cd/m2) that was
corrected to have a linear gamma function. Monkeys
viewed the stimulus from a distance of 118 cm (such that
the screen width subtended 54 degrees of visual angle,
and each pixel subtended 0.0282 degrees of visual angle).

Auditory feedback was played at the end of every trial,
and fluid reward was delivered through a computer-
controlled solenoid. Humans viewed stimuli on a linear-
ized 16.5-inch OLED (LG) display (resolution � 1920 �
1080p, refresh rate � 60 Hz, background luminance �
67.22 cd/m2) at a distance of 65.3 cm (such that screen
width subtended 31 degrees of visual angle, and each
pixel subtended 0.0163 degrees of visual angle).

Task and stimulus design
Stimulus and task design were identical between mon-

keys and humans unless otherwise noted. Subjects were
required to discriminate the net direction of a motion
stimulus and communicate their decision with an eye
movement to one of two targets, placed on either side of
the motion stimulus. The sequence of task events is

Strong left

Weak left

Zero-mean

Weak right

Strong right

Fixation
Motion Delay Go Saccade

(0-1500ms)

Targets
(0-500ms)

(1050ms)
(200-1000ms)

150ms

A

C

B

0

Figure 1. Sequence of trial events. A, Subjects fixated on a central point through the appearance of targets and motion stimulus until
the disappearance of the fixation point (“go”). Choices were made with saccades to the target corresponding to the perceived net
direction of motion. Initial fixation time, target-on duration, and time until fixation point disappearance were randomly varied. B, An
example frame of the Gabor motion pulse stimulus. The stimulus is composed of 19 Gabor patches, where motion strength is denoted
by the proportion of coherently drifting Gabors out of the total number elements in the stimulus. C, Motion pulse values are generated
from Gaussian distributions spanning a large range of possible motion strengths in either direction. A single trial consists of seven
motion pulses, each randomly drawn from one of the Gaussians. Example trials with pulses drawn from each Gaussian (strong
left/right, weak left/right, and zero-mean) are presented in cartoon form where the number of arrows represents the number of
coherently drifting Gabor elements.
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presented in Fig. 1. A trial began with the appearance of
a fixation point. Once the subject acquired fixation and
held for 400–1200 ms (uniform distribution), two targets
appeared and remained visible until the end of the trial.
200–1000 ms after target onset, the motion stimulus was
presented at a range of eccentricities from 4° to 10° for a
duration of 1050 ms. The fixation point was extinguished
200-1000 ms after motion offset, and the subject was
then required to shift their gaze toward one of the two
targets within 600 ms (saccade end points within 3° of the
target location were accepted). The timing of each event
was randomly and independently jittered from trial to trial
(Fig. 1A).

The reverse-correlation motion stimulus contained mo-
tion toward one direction or the opposite, with varying
motion strength. Spatially, the stimulus consisted of a
hexagonal grid of 19 Gabor elements, 5°–7° across,
scaled by eccentricity (Fig. 1B). Individual Gabor elements
were set to approximate the receptive field (RF) size of a
V1 neuron, and the entire motion stimulus approximated
the RF size of an MT neuron (Van Essen et al., 1981).
Motion was presented by varying the phase of the sine-
wave carrier of the Gabors. Each Gabor underwent a
sinusoidal contrast modulation over time with indepen-
dent random phase to prevent perceptual “pop-out” of
individual drifting elements. Gabor spatial frequency (0.8
cycles/°, sigma � 0.1 � eccentricity) and temporal fre-
quency 5–7 Hz, yielding velocities of 5.55–7.77°/s, re-
spectively) were selected to match the approximate
sensitivity of MT neurons (Bair and Movshon, 2004).

Each motion stimulus presentation consisted of seven
consecutive motion pulses lasting 150 ms each (9
frames), producing a motion sequence of 1050 ms in
duration in total. For human subjects S2 and S3, each
motion pulse lasted 100 ms each (6 frames), producing a
700-ms-long stimulus. On any given pulse, a number of
Gabor elements would have their carrier sine waves drift
in unison to produce motion (“signal elements”), and the
remaining would counterphase flicker (“noise elements”).
Signal elements on any given pulse were assigned at
random within the grid and all signal element drifted in the
same direction. Motion strength on pulse i was defined as
the proportion of signal elements out of the total number
of elements, the value of which was drawn from a Gauss-
ian distribution, Xi�N��k, �� and rounded to the nearest
integer, where k is the distribution index for the five trial
types (strong left, weak left, zero-mean, weak right, strong
right) and �k was one of five values: –50%, –10%, 0%,
10%, and 50% (sign indicates motion in the opposite
direction), and � was set to 15%. Thus, while each pulse
within a sequence could take on any value (and either
sign/direction) from distribution N��k, ��, the expectation
of a sequence would be �k (Fig. 1). The subjects were
rewarded for selecting the target consistent with the sign
of the motion pulse sequence sum (i.e., the net direction),
independent of the distribution �k from which the pulses
were drawn.

The distributions N��k, �� were most commonly set to
the values listed above but were occasionally varied to
better maintain individual subject performance around

threshold. Overall, humans performed sessions with �strong

ranging from 35% to 50% and �weak ranging from 10% to
20%, with � ranging from 10% to 24% coherence. Ma-
caques performed sessions with �strong ranging from 50%
to 70% and �weak ranging from 10% to 20%, with �
ranging from 8% to 24% coherence.

Temporal manipulation of stimulus
In the standard stimulus design described above, the

mean of the motion strength distribution N��k, �� would
be held constant throughout a stimulus presentation. In
other words, the mean of the distribution from which Xi

was drawn was fixed at �k, for pulses 1–7 (Fig. 2A). We
refer to this as the “flat-stimulus” condition and treat it as
a baseline, because it is similar to most variants of the
classic moving dot stimuli used in the past (Newsome and
Paré, 1988; Britten et al., 1992, 1996; Gold and Shadlen
2007). In the time-varying stimulus conditions (the early-
stimulus or late-stimulus), �k was varied over pulses 1–7.
Fig. 2B depicts a stimulus condition in which motion
strength is reduced substantially in early pulses (relative
to baseline levels), but not late. In this “late-stimulus”
condition, �k is set to 0 for the first pulse (i � 1), and
reaches its expected value (�k) by pulse 7. The transition
from 0 at pulse 1 to �k at pulse 7 is governed by a logistic
function with parameters chosen to result in a smooth
transition between the first 3 and last 3 pulses (midpoint �
4, slope � 0.3). Although �k is near zero for the early
pulses, � is unchanged such that although the expecta-
tion for motion on pulse one is zero, the motion strength
and direction will vary from trial to trial (see example trials
in Fig. 2B). In other words, random draws of Xi from
distribution N��k, �� where �k � 0 still carry motion infor-
mation, albeit less correlated with the net motion outcome
of the trial as a whole. The opposite is done for the
“early-stimulus” condition (Fig. 2C), in which the first
pulses maintain mean motion strength equal to �k, and
later pulses have a mean near zero. This stimulus design
ensures that pulse sequences drawn from the �k � 0
Gaussian (i.e. “zero-mean trials”) maintain a 0 mean
throughout all 7 pulses, regardless of whether the stimu-
lus condition is flat, early, or late. These trials were difficult
because the motion strength and direction of each pulse
is small and independent of the sequence, and the net
motion summed to a small directional outcome. About
one quarter of macaque sessions also contained frozen
seed trials, in which an identical stimulus was displayed
for 5% to 10% of trials. These trials summed to exactly
zero and the subject was rewarded at random.

All subjects began the experiments with the flat-
stimulus condition. After multiple sessions of stable psy-
chophysical performance within a condition, the stimulus
was changed to either the late- or early-stimulus condi-
tions. Finally, after multiple sessions of stable psycho-
physical performance under the second condition, they
began the third and final condition. Subjects were ex-
posed to only one stimulus condition per session and
were not informed of which stimulus condition they were
viewing before or during any given session.
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Figure 2. Temporal weighting profiles and psychometric functions for humans and macaques across flat-, late-, and early-stimulus
conditions. A–C, Top: schematic of the Gaussian distributions that generate the motion pulses. In the flat-stimulus (A), Gaussians
remain stationary over time. In the late-stimulus (B) and early-stimulus (C) conditions, the distribution means for signal trials are varied
over time. Bottom: example sessions for each stimulus condition. Motion pulse values are drawn from their color-matched Gaussians
on each pulse such that the mean of many trials (bold line) reflects the temporal structure of the mean of the Gaussians. Motion pulse
values in individual trials (semitransparent traces) vary considerably, in accordance with the variance of color-matched Gaussians.
D–F, Temporal weighting profiles averaged across all subjects (human and macaque) and sessions within the flat-stimulus (D),
late-stimulus (E), and early-stimulus (F) conditions, showing the mean weight assigned to each of the seven motion pulses. Error bars
represent � 1 SEM. G–I, Psychometric performance averaged over all sessions for flat-stimulus (G), late-stimulus (H), and
early-stimulus (I) conditions, fitted by a logistic function capturing the dependence of choice on stimulus strength. Error bars represent
� 1 SEM (often occluded by points).
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Data analysis
Sessions with a minimum of 250 successfully com-

pleted trials were included in data analysis. Sessions were
excluded from analysis if subject accuracy was lower than
85% for the strongest motion values (17/235 sessions for
macaques, 0/52 for humans). Additionally, 30 macaque
sessions were excluded from analysis for having psycho-
physical thresholds �2 median absolute deviations about
the median. Overall, 188 and 52 sessions were included
for macaques and humans, respectively, with median
session lengths of 632 and 295 successfully completed
trials, netting a total of 129,922 and 15,275 trials overall.

All analyses were performed in Matlab (Mathworks).
Subject choices in the direction-discrimination task were
analyzed with a maximum likelihood fit of a three-
parameter logistic function (Wichmann and Hill 2001) as-
suming a Bernoulli distribution of binary choices, in which
the probability of a rightward choice is p and leftward
choice is 1 – p, where p is given by

p � � � �1 � 2��� 1
1 � e���x�	�� , (1)

where x is the net motion strength value (z-scored over all
sessions for each subject separately), 	 is the bias pa-
rameter (reflecting the midpoint of the function in units of
motion strength), � is the slope (i.e., sensitivity, in units of
log-odds per motion strength), and � captures the lapse
rate as the offset from the 0 and 1 bounds. Error estimates
on the parameters were obtained from the square root of
the diagonal of the inverse Hessian (2nd derivative matrix)
of the negative log-likelihood.

The temporal weighting kernel (which we also refer to
as “temporal weighting strategy” or “temporal weighting
profile”) was computed using ridge regression via maxi-
mum likelihood. The log posterior of the psychophysical
weights is given by

L�w� � �i�1

N
�Y�i�wTX�i� � log�1 � exp�wTX�i���� � 
�w�2 ,

(2)

where Y��0, 1	 is a vector of choice on every trial and X is
a matrix of the seven pulses on each trial, augmented by
a column of ones (to capture bias). 
 was estimated using
evidence optimization (Sahani and Linden, 2003). Psycho-
physical weights are normalized by the Euclidean norm of
the vector of weights. The seven temporal weights as-
signed to the seven motion pulses, w, were computed by
using all trials within a session. These include trials where
�k was set to zero (i.e. “zero-mean trials”, where motion
on a given pulse is temporally independent of all other
pulses in the sequence) and trials where �k was set to a
non-zero value (“signal trials”, where motion is correlated
over pulses). Psychophysical reverse correlation is tradi-
tionally performed on noise trials exclusively, but logistic
regression effectively whitens the stimulus covariance,
such that we could include all trials and increase our
statistical power, regardless of whether they have corre-
lated temporal structure. We verified the whitening step
by comparing the psychophysical kernel computed on all

trials to the kernel computed on only zero-mean trials and
calculating the Pearson correlation between the pair of
kernels (i.e., between the 7 weights of the all-trials-kernel
and the 7 weights of the zero-mean-kernel) for each com-
bination of subject and stimulus condition. This yielded 14
Pearson correlation values with a median of 0.886 ([0.819
to 0.952], 1 SEM) demonstrating a strong agreement be-
tween results of the two methods of reverse correlation
for the subject-averaged data per condition. We also
verified the whitening step at the level of individual ses-
sions, using the same approach. This yielded 240 Pearson
correlation values (one for each session) with a median of
0.846 ([0.829 to 0.864], 1 SEM), indicating a strong agree-
ment between reverse correlation methods, even on sin-
gle sessions.

The vector of weights, w, describes the temporal
weighting adopted by the subject for a given set of trials.
If the individual weights have a similar value, then that
implies that the subject had weighted all pulses equally on
average. If some weights are larger than others, that
implies uneven weighting over time. We summarized tem-
poral weighting by performing linear regression on the 7
weights and using the slope of the fit as a metric of
temporal structure, where negative slopes indicate early
psychophysical weighting and positive slopes indicate
late. Comparisons of temporal weighting profiles across
experimental conditions and species were assessed us-
ing the slope of the linear fit � 95% confidence intervals.
Wilcoxon sign tests were used to evaluate whether slopes
differed significantly from zero. ANOVA was used to as-
sess differences in mean slopes across experimental con-
ditions. Bartlett’s test was used to evaluate differences in
variance between distributions of slopes across experi-
mental conditions. Table 1 details the statistical tests.

Results
Overall, subjects performed more than 145,000 trials of

a one-interval motion direction discrimination task. After
viewing a sequence of motion pulses, they indicated the
net perceived direction by moving their eyes to one of two
targets (Fig. 1). In addition to the usual practice of varying
the net strength and direction of motion across trials, the
temporal statistics of the motion stimulus were manipu-
lated within trials (in different series of sessions). Thus,
sessions varied in whether the motion stimulus offered an
equal amount of motion information over time (flat-
stimulus condition) or whether some epochs contained
more motion information than others (early-stimulus and
late-stimulus conditions; Fig. 2A–C). This design is ame-
nable to psychophysical reverse correlation such that in
addition to computing standard subject performance as a
function of stimulus strength, we calculated the psycho-
physical weights assigned by the subject to the motion
stimulus over each epoch. We refer to the resulting
weights as the temporal weighting strategy or temporal
weighting profile. We found that both human and monkey
observers shifted their temporal weighting profile in re-
sponse to the differential temporal structure of motion
statistics across the three stimulus conditions. We first
present our subject-averaged results, followed by an ex-
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amination of the differences between species and individ-
ual subjects.

Temporal weighting strategies shift in response to
stimulus statistics

Changes in temporal stimulus statistics led to clear
shifts in the psychophysical weighting strategy in all
subjects. We consider the flat-stimulus condition as a
baseline, both because of the stationary statistics of the
stimulus over time, and because the vast majority of
stimuli used in the study of perceptual decision-making
have temporally stationary statistics. In the flat-sti-
mulus condition, subjects exhibited an inclination to-
ward early weighting, with the highest weight on the
first three pulses and then a steady decrease as time
went on (Fig. 2D). The temporal weighting measure-
ments were complimented by a standard analysis of
subject psychometric performance. These indicate that
observers were well engaged in the task and based
their choices on the net strength and direction of the
motion stimulus (Fig. 2G).

During late-stimulus sessions, subjects shifted their
strategy to place higher weight on the later pulses, which
more often carried high motion information and were
therefore more reliably correlated with the final trial out-
come. Temporal weights in the late-stimulus condition

started low, increasing to a peak at the fifth or sixth
motion pulse, followed by a decreased weight on the
seventh (final) pulse (Fig. 2E). Although the late-stimulus
condition had less motion information in early pulses, and
consequently, less motion information overall compared
to the flat-stimulus condition, subjects still exhibited stan-
dard psychometric performance, basing their choices on
the net motion strength and direction (Fig. 2H).

In sharp contrast to the late-stimulus sessions, during
early-stimulus sessions, subjects showed steep early
weighting, where the first three pulses were weighted the
highest followed by a large decrease (Fig. 2F). As with the
late-stimulus condition, although the temporal weighting
profile shifted markedly, both species exhibited standard
psychometric performance (Fig. 2I).

The differences in temporal weighting strategies as a
function of stimulus condition were robust and consistent
across species (Fig. 3). Temporal weighting in the late-
stimulus condition was significantly different from the
weighting in the baseline flat-stimulus condition in ma-
caques (Fig. 3A, flat: –0.050 [–0.069 to –0.031]; late:
0.051 [0.004 to 0.098]; slope of linear fit [95% confidence
intervals]) and in humans (Fig. 3B, flat: –0.013 [–0.032 to
0.006]; late: 0.053 [0.006 to 0.100]). Temporal weighting in
the early-stimulus condition was also significantly differ-
ent from the weighting in the flat-stimulus condition for

Table 1. Statistical tests.

Test use Test Data structure Power

Psychophysical weighting calculated on
all trials vs. only zero-mean trials

Pearson correlation Linear Subjects: median r � 0.886 [0.819 to
0.952], 1 SEM; single session: median r �
0.846, [0.829 to 0.864], 1 SEM

Differences in slope of linear fit to
temporal weights between flat-, late-,
and early-stimulus conditions in
humans and macaques (Fig. 3)

Confidence
intervals

Linear Slope of linear fit, [95% confidence interval];
Macaques: flat: –0.050, [–0.069 to 0.031];
late: 0.051, [0.004 to 0.098]; early: –0.094,
[–0.111 to –0.077]; Humans: flat: –0.013,
[–0.032 to 0.006]; late: 0.053, [0.006 to
0.100]; early: –0.083, [–0.119 to –0.048]

Comparison of slope of linear fit to
temporal weights during early-
stimulus condition between humans
and macaque subjects (Fig. 3)

Confidence
intervals

Linear Slope of linear fit, [95% confidence interval];
Humans: –0.013, [–0.032 to 0.006];
Macaques: –0.050, [–0.069 to –0.031]

Comparison of psychometric functions
across conditions (Fig. 3)

Confidence
intervals

Linear Slope of psychometric function, [95%
confidence interval]; Macaques: early:
3.39 [3.22 to 3.56], flat: 2.16 [2.13 to
2.18], late: 2.9339 [2.83 to 3.03]; Humans:
early: 2.77 [2.56 to 2.99], flat: 2.14 [2.00
to 2.28], late: 2.60 [2.43 to 2.77]

Average slope of temporal weights for
flat-, early-, and late-stimulus
conditions compared to 0 (Fig. 5)

Wilcoxon sign test Non-Gaussian p � 0.0001, all conditions

Comparing group means for slopes of
temporal weights for flat-, early-, and
late-stimulus conditions (Fig. 5)

ANOVA Gaussian p � 0.0001

Comparing variance of slopes during
flat stimulus condition vs. late- and
early-stimuli (Fig. 5)

Bartlett’s test Non-Gaussian Flat-to-early, p � 0.0001; flat-to-late, p �
0.0001

Evaluating linear relationship between
psychophysical threshold and slope
of temporal weights (Fig. 5)

Pearson correlation Linear Flat: r � –0.29, p � 0.001; early: r � 0.46 p
� 0.038; late: r � 0.05, p � 0.75

Evaluating linear relationship between
psychophysical threshold and energy
of temporal weights (Fig. 5)

Pearson correlation Linear Flat: r � 0.40, p � 0.0001; early: r �
–0.004, p � 0.99; late: r � 0.31, p �
0.048
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Figure 3. Comparison of temporal weighting and psychometric functions within species across stimulus conditions. A, B, Temporal
weighting profiles for macaques (A) and humans (B) averaged over all sessions in the early-, flat-, and late-stimulus conditions, fitted
by a linear model (semitransparent lines) to capture the overall trend of the weights. Error bars represent � 1 SEM. C, D, Psychometric
behavior of macaques (C) and humans (D) averaged over all sessions in the early-, flat-, and late-stimulus conditions, fitted by a
logistic function to capture the dependence of choice on stimulus strength. Error bars represent � 1 SEM. E, Each subject’s
proportion correct for inconsistent trials (where the strongest pulse is in the opposite direction of the full-trial, net direction) and
difficulty-matched consistent trials (where the strongest pulse is in the same direction as the full-trial, net direction). Error bars
represent 95% binomial confidence intervals.
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humans (Fig. 3B, flat: –0.013 [–0.032 to 0.006]; early:
–0.083 [–0.119 to –0.048]), and in the monkey who per-
formed the early-stimulus condition, M1 (Fig. 3A, flat
–0.050 [–0.069 to –0.031]; early: –0.094 [–0.111 to
–0.077]), although M1’s weighting strategy for the flat-
stimulus condition was very early to begin with. Such early
weighting for a flat-stimulus condition has been observed
in various forms in previous reports (Huk and Shadlen,
2005; Kiani et al., 2008; Nienborg and Cumming, 2009;
Katz et al., 2016; Yates et al., 2017; Odoemene et al.,
2017). The difference in temporal weighting between the
early-and late-stimulus conditions was highly significant
in both species (humans, early: –0.083 [–0.119 to –0.048].
late: 0.053 [0.006 to 0.100]; macaques, early: –0.094
[–0.111 to –0.077]; late: 0.051 [0.004 to 0.098]).

In addition, no differences in temporal weighting
strategy were observed between species within either
the early- or late-stimulus conditions. In the flat-
stimulus condition, in contrast, macaques exhibited an
early weighting that was substantially steeper than that
exhibited by the human observers (Fig. 3A, B, blue
curve; humans: – 0.013 [– 0.032 to 0.006]; macaques
– 0.050 [– 0.069 to – 0.031]).

Lastly, the species-averaged psychometric functions
exhibit a standard sigmoidal relationship between motion
strength and choices in all stimulus conditions, demon-
strating that subjects were properly engaged in the task.
In the flat-stimulus condition, however, psychophysical
performance was slightly decreased relative to perfor-
mance in the early- and late-stimulus conditions, in both
macaques (Fig. 3C; early: 3.39 [3.22 to 3.56], flat: 2.16
[2.13 to 2.18], late: 2.93 [2.83 to 3.03]) and humans (Fig.
3D; early: 2.77 [2.56 to 2.99], flat: 2.14 [2.00 to 2.28], late:
2.60 [2.43 to 2.77]).

In summary, observers performing perceptual deci-
sions shifted their temporal weighting strategy dynami-
cally and placed the most value on pulses with the highest
motion expectation, whenever they were located in time.

Ruling out extrema detection as a behavioral
strategy

In all experiments, every trial was rewarded based on
the true net direction of motion presented across the
seven pulses, regardless of the underlying, generating
distribution. Thus, integration of the motion information
over all pulses would be ideal to maximize accuracy and
reward. However, the possibility exists that subjects were
not performing conventional temporal integration. For
example, subjects could base their decisions on the
strongest motion pulse within a trial as opposed to incor-
porating information from all pulses. Our stimulus design
enabled us to perform a post hoc analysis to test whether
subjects were performing this strategy of extrema detec-
tion (Fig. 3E).

We selected trials in which the direction of the strongest
motion pulse (i.e., the pulse with the largest number of
signal-carrying Gabor elements) was in conflict with the
net direction of motion of the full trial (termed “inconsis-
tent trials”). Most choices in these trials were in favor of
the net direction of motion, as opposed to the direction of

the extreme single pulse, in both human and macaque
subjects (Fig. 3E). We then compared these inconsistent
trials to trials that were matched for difficulty but in which
the direction of the strongest pulse was in the same
direction as the trial’s net direction (termed “consistent
trials”). If subjects were performing extrema detection,
then performance should be worse on inconsistent trials
(where the strongest pulse was in the opposite direction
of the net) compared to consistent trials. In contrast to this
idea, no subject performed significantly worse on incon-
sistent trials, demonstrating that extreme pulse strengths
did not influence subject choices nonlinearly in their favor,
ruling the extrema detection strategy as unlikely in this
task.

Variability in temporal weighting strategy depends
on stimulus condition

When averaged across sessions and subjects, tempo-
ral weighting profiles tell a fairly straightforward story:
subjects adopt a late weighting strategy for the late-
stimulus, an early weighting strategy for the early-
stimulus, and a flat-to-early weighting strategy for the
flat-stimulus. Here we sought to quantify the weighing
strategy at a higher resolution by looking at performance
for individual subjects and sessions.

When each subject is considered individually, results
were largely consistent with the average weighting pro-
files reported above. In the late-stimulus condition, human
and macaque subjects’ weighting was extremely similar
(Fig. 4A). All observers exhibited a single-humped psy-
chophysical weighting profile in which peak weight was at
pulse five or six, before a dropoff on pulse seven. Even the
unexpected drop in weighting of the last pulse was
shared. In the early-stimulus condition (Fig. 4B), subject
M1 and subject H2 exhibited fairly linear early weighting
patterns, and the remaining two human subjects showed
slightly higher weights on the second pulses rather than
the first, though still globally consistent with early weight-
ing. Individual performance in the flat-stimulus condition
(Fig. 4C), however, was more variable than in the late and
early conditions. In monkey subjects, M1 showed very
strong early weighting, while M2 exhibited U-shaped
weights. Human subjects deployed generally flat weights
on average but did so in idiosyncratic ways compared to
the very stereotyped strategies of the early and late con-
ditions. On average, each subject changed their temporal
weighting as dictated by early- and late-stimulus condi-
tions compared to the flat-stimulus condition (Fig. 4D).
Overall, temporal weighing strategies adopted in the flat-
stimulus condition were more variable than those adopted
in the early- or late-stimulus conditions at the level of
individual subjects.

When each session is considered individually, variability
in temporal weighting strategy is evident both between
and within each of three stimulus conditions. To quantify
the degree of early versus late single-session weighting,
we fitted a line to the seven temporal weights of the
observer for each session and used the slope of this fit to
summarize the temporal weighting profile: a positive slope
indicates late weighting, a negative slope indicates early
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weighting, and a slope around zero indicates flat (or equal)
weighting over time. The distribution of weighting slopes
for all experimental sessions in the early-stimulus condi-
tion had an average of –0.079 (significantly less than zero,
Wilcoxon sign test, p � 0.0001), with no single individual
sessions having a slope greater than zero (Fig. 5A). The
average slope for all late-stimulus sessions was 0.051
(significantly greater than zero, Wilcoxon sign test, p �
0.0001), with only 2 of 42 sessions having a slope less
than zero. These distributions of weighting slopes reveal
distinct populations across conditions (ANOVA, p �
0.0001), indicating that even at the resolution of single
sessions, distinct strategies were adopted during the
early- and late-stimulus conditions. The distribution of
weighting slopes from the flat-stimulus condition had a
mean of –0.0356, denoting slight early weighting (signifi-
cantly less than zero, Wilcoxon sign test, p � 0.0001), but
also differed in that it had a considerably larger range of
results. The standard deviation of flat-stimulus weighting
slopes was more than double that of the early- or late-
stimulus weighting slope distributions (Bartlett’s test, flat-
to-early, p � 0.0001; flat-to-late, p � 0.0001), indicating
that subjects adopted a larger variety of temporal weight-
ing strategies in this condition. It is worth noting that some
of the variance in all three of the distributions comes from
noise inherent to fitting a two-parameter linear model to
the seven weights that constitute the temporal weighting
strategy; nevertheless, the difference in distribution widths is
substantial and therefore likely meaningful.

Relationship between temporal weighting and
psychometric performance

We next sought to examine the relationship between
temporal weighting strategies and psychometric perfor-
mance in the direction discrimination task. We compared
the slope of the temporal weights to psychophysical
threshold (i.e., the motion strength at which subject per-
formed at 75% correct) for each stimulus condition (Fig.
5B). During the flat-stimulus condition, a negative corre-
lation was present (r � –0.29, p � 0.001), indicating that
adopting an early weighting strategy is detrimental to
psychophysical performance. The early-stimulus sessions
exhibited a positive correlation between temporal weight-
ing slope and psychophysical threshold (r � 0.46, p �
0.038), indicating that in the early-stimulus condition, an
early weighting strategy is preferable. Little to no correla-
tion was observed in the late-stimulus sessions (r � 0.05,
p � 0.75).

Perhaps more compelling was the relationship between
psychophysical threshold and the energy of the temporal
weights, where energy was measured as the sum of the
squared residuals of each weight from the mean of the
seven weights (Fig. 5C). This measurement gives us an
estimation of variation or deviation from a consistent, flat
weighting scheme. Here, flat-stimulus sessions showed
a strong positive relationship between threshold and
weighting energy (r � 0.40, p � 0.0001), demonstrating
that during flat-stimulus sessions, employing weights that
are highly variable from temporal uniformity (i.e., have
high energy) is detrimental to psychophysical perfor-
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Figure 4. Temporal weighting strategies for individual subjects across stimulus conditions. A–C, Average temporal weighting
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mance. Late-stimulus sessions showed a moderate pos-
itive correlation (r � 0.31, p � 0.048), and early-stimulus
sessions showed no obvious linear relationship (r �
–0.004, p � 0.99).

Taken together, larger variability in weighting and higher
energy appear to be detrimental toward psychometric
performance. These were most pronounced in the flat-
stimulus condition, offering a potential explanation for the
slight and unexpected decrease in psychophysical be-
havior during the flat-stimulus relative to early- and late-
stimulus conditions (Fig. 3C, D).

Discussion
We used psychophysical reverse correlation in the con-

text of manipulations of temporal stimulus statistics to
examine observers’ ability to update their temporal
weighting strategy to match the time course of available
evidence in a dynamic motion discrimination task. First,
we found that when motion strength was systematically
varied over time within a stimulus presentation, subjects
changed their temporal weighting strategy to weight the
periods of strong motion more heavily than those with
weak motion. Second, weighting strategies were rather
consistent across species and subjects, with the excep-
tion of the flat-stimulus condition. Third, session-to-
session variability in strategy was greater in the flat-
stimulus condition than in the late- and early-stimulus
conditions. Each of these findings is discussed in more
detail below.

Temporal weighting likely reflects a combination of
dynamic sensory reweighting and decision-making
mechanisms

The observation of early sensory evidence exerting a
larger effect on decisions than late evidence (i.e., early
weighting) has been identified in prior work and has been

interpreted within the context of a drift diffusion decision-
making model. Early weighting is often interpreted as a
straightforward consequence of accumulation to a deci-
sion bound—sensory data arriving after the bound has
been hit does not impact the accumulator (Huk and
Shadlen, 2005; Kiani et al., 2008; Okazawa et al., 2018;
Kawaguchi et al., 2018). Just as past work has taken such
early weighting as a signature of bounded accumulation,
late weighting has been posited to reflect leaky integra-
tion. However, such models have been increasingly up-
dated to accommodate either sort of behavioral signature
(Usher and McClelland, 2001; Tsetsos et al., 2012; Bron-
fman et al., 2016). Thus, while time varying weighting has
been identified before, it is almost always discussed as
diagnostic about the structure of a decision-making
mechanism, i.e., perfect or leaky integration to a bound
(fixed or collapsing).

The shifts we identified in temporal weighting strategies
show that time-varying weighting of a stimulus is a flexible
strategy that adapts to the statistical structure of the
stimulus. This flexibility highlights the possibility of a more
direct reweighting of the sensory signal itself, regardless
of downstream impacts, such as a bound or a leak in the
sensory integration system. Temporal weighting strate-
gies need not be solely the result of static decision-
making mechanisms, but rather could reflect a dynamic
strategy for directly weighting incoming stimulus. Another
group made a similar observation (Cheadle et al., 2014),
but in contrast to our findings, their results highlighted
sequential dependencies within single trials and were
interpreted via an appeal to normalization. Such normal-
ization of evidence could be a part of many decision
mechanisms, while the strategic shifts we identified here
point to the possibility of a more general and flexible
mechanism of dynamic reweighting of sensory evidence.
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By demonstrating an adaptive weighting strategy that
easily shifts toward the most reliable motion information,
we suggest that temporal weighting strategies could be
interpreted as a gain on the incoming stimulus, rather then
byproducts of mechanisms beyond the sensory stage of
processing. Indeed, even when presenting a temporally
uniform (flat) stimulus, the neural representation of that
stimulus will impose its own time-varying signal-to-noise
properties on whatever downstream circuits may receive
that information for integration or other such computa-
tions (Osborne et al., 2004; Churchland et al., 2010; Yates
et al., 2017). It is therefore possible that changes in tem-
poral weighting strategy in the presence of temporally
dynamic stimuli are due to direct reweighting of the time-
varied responses in sensory circuits.

It remains to be seen whether the observed time-
varying weighting in sensory brain areas can be changed
in response to temporal manipulations of the stimulus of
the sort we employed, but the well documented effects of
temporal attention in multiple visual cortical areas (Ghose
and Maunsell, 2002) lend credence to this hypothesis.
Likewise, changes in spike-count correlation structure
with task instruction have been shown to reflect feedback
in early sensory areas (Bondy et al., 2018), suggesting a
possible source for context-dependent reweighting in the
current experiments as well. Notably, our data do not rule
out the impacts of decision mechanisms. The existence of
a bound at later stages of decision formation could still
interact with stimulus reweighting. This could be further
sculpted by urgency signals or time-varying bounds (Dit-
terich, 2006; Bogacz et al., 2006; Churchland et al., 2008;
Cisek et al., 2009; Hanks et al., 2014; Okazawa et al.,
2018). In fact, a potential example of such an interaction
between stimulus reweighting and a bounded decision
mechanism might be present in the late weighting behav-
ior we observed, which often manifested with a seemingly
idiosyncratic, low weight on the final pulse. Although sub-
jects clearly down-weighted the first few pulses, and up-
weighted pulses 5 and 6, the low weight on the final pulse
could be explained as a byproduct of achieving the bound
before the end of the stimulus, even in the late-stimulus
condition.

Increased variability during the flat-stimulus
condition provides insights into previous variability
in the literature

Variability in temporal weighting strategy during the
flat-stimulus condition was far larger than in either the
early- or late-stimulus conditions. This substantial vari-
ability is of general relevance to the study of evidence
accumulation, because it is typically performed using
stimuli that are similar to our flat-stimulus condition, in
that their expectation is stationary over time. Although the
average weighting strategies for both humans and ma-
caques in the flat-stimulus condition trend toward early
weighting, session-by-session analysis of weighting
slopes revealed robust variability (Fig. 5). Few if any prior
studies have characterized individual session strategies,
likely owing to low statistical power of alternate designs
that rely on post hoc characterization or infrequent probe

trials. Our results suggest that even individual subject
averages may gloss over strategic variability within the
observer that occurs over sessions. Likewise, even the
relatively high-resolution session averages we present
here may mask variability over single trials, variability that
current trial-based psychophysical methods lack the res-
olution to resolve. Consequently, all temporal weighting
strategies presented here (and elsewhere, as far as we
know) are computed as an average over multiple trials,
each with a potentially unique temporal weighting strat-
egy.

The large session-by-session variability in weighing
strategies observed here may serve to reconcile those
presented elsewhere. In the flat-stimulus condition, all
time points (i.e., pulses) are equally informative of the trial
outcome, and thus the flat-stimulus condition is more
forgiving of different temporally biased weighting strate-
gies compared to the early and late conditions, for which
only approximately half of the stimulus contained infor-
mative evidence on average. Thus, increased variability in
weighting strategies during the flat-stimulus condition
compared to early- and late-stimulus conditions is likely a
consequence of temporally uniform stimulus statistics—a
feature of most evidence accumulation studies.

The consistency of temporal weighting across species
displayed in the late and early stimulus conditions also
suggests that, at least for humans and macaques, inter-
species differences need not be a major player in variabil-
ity of weighting. This is of possible broader interest, for
example, in linking to rodent work (Erlich et al., 2015,
Scott et al., 2015, Morcos and Harvey 2016, Pinto et al.,
2017, Odoemene et al., 2017, Licata et al., 2017).

One discrepancy across species was present in the
flat-stimulus condition, in which macaque subjects (on
average, but most pronounced in M1) displayed an early-
weighting strategy (despite flat stimulus expectation)
compared to the flat-weighting strategy displayed by hu-
mans. This could be for a number of reasons. Macaques
performed many more trials and sessions than human
subjects, raising the possibility that extensive training may
result in faster decisions, based on early epochs of the
stimulus. This may be further accentuated by a desire to
perform more trials and obtain more liquid reward (a
factor not included in experiments with human subjects).
While such a strategy does not in fact change the trial
duration or, in turn, the speed-accuracy trade-off, it might
factor into macaques’ behavior. It is noteworthy that the
species difference is present only in the flat-stimulus con-
dition, and not the time-variant conditions. We believe this
is because the flat-expectation and fixed-duration design
is lenient with respect to temporal weighting, granting
subjects the liberty to adopt any number of temporal
weighting strategies (Fig. 5). This is very different from the
time-varying conditions, which place clear constraints on
the temporal weighting strategies that would benefit the
subject. These considerations may serve to reconcile past
conflicting results in different task designs and species
and inform new work going forward.
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Difficulties in interpreting temporal weighting
strategies in light of stimulus and task design

Stimulus and task design must be considered to prop-
erly interpret the shape of a temporal weighting strategy.
Given that single trials are always rewarded based on the
true net motion presented, regardless of their underlying
distribution, all motion pulses are always informative.
Therefore, it is intuitive that highest overall accuracy
would be realized via a strategy that assigns equal
weighting across all pulses. However, this was not uni-
formly present in our dataset, indicating that subjects did
not perform the task optimally. Importantly, the assumption
of equal weighting is only one part of an optimality argument,
as equal but low weighting of incoming sensory data would
of course be suboptimal too. Complete optimality of the
decision mechanism is a difficult standard to assess without
a detailed characterization of signal and noise in both the
stimulus and the sensory neural representation (Geisler,
1989). Given that most relevant experimental paradigms do
not avail themselves straightforwardly to a formal and com-
plete ideal observer model, the shape of the temporal
weighting provides only partial insight into decision forma-
tion, without a gold standard for the overall level of accuracy.

A similar difficulty is present in evaluating the optimality
of temporal integration in fixed-duration tasks. Classically,
tests of optimal temporal integration appeal to the relation
between viewing duration and accuracy (Kiani et al., 2008,
Katz et al., 2015). However, two issues we have discussed
with respect to temporal weighting also speak to limita-
tions in evaluating optimality in temporal integration via
the relation between viewing duration and accuracy. First,
underweighting the sensory evidence before accumulat-
ing is suboptimal but is not captured by such an analysis,
which would lump such an effect in with sensory noise.
Second, although a sensory stimulus may have certain
temporal properties, the neural representation of the sen-
sory stimulus is likely to have time-varying signal-to-noise
properties (Osborne et al., 2004; Churchland et al., 2010;
Yates et al., 2017). Standard viewing-duration analyses
do not distinguish between the stimulus and the neural
signals that are actually used. These two issues likely
interact, with the potential for dynamic strategic weighting
to either mirror or compensate for the dynamics of the
incoming sensory stream—making canonical functional
forms of the relations between accuracy and duration
rather imperfect tests of a unique posited mechanism
(Huk et al., 2017).

Other aspects of experimental design may increase the
complexity of inferences drawn from the assessment of
temporal weighting as well. For example, although early
weighting may be a general default state (potentially
driven by extensive training and/or the default structure of
decision mechanisms), variable duration paradigms may
fortify an early weighting strategy. Variable duration par-
adigms can be thought of as loosely analogous to our
early-stimulus condition, in that as time progresses, the
expected stimulus strength falls off (owing to the end of
the variable-duration stimulus). Reaction time tasks can
also facilitate an early weighting strategy, as the subject is
typically incentivized to respond as fast as possible, plac-

ing more weight on early samples within a stream (Oka-
zawa et al., 2018). Lastly, time-varying confidence may
play a role in shaping temporal weighting strategies too
(Kiani and Shadlen, 2009; Kawaguchi et al., 2018). Taken
together, the patterns of selective temporal weighting we
have discussed imply that it will be fruitful to characterize
evidence accumulation at a fine grain and to allow for the
potential interplay of both flexible and fixed mechanisms
in sculpting the resulting dynamics.

Our characterizations of temporal weighting are of
course inherently limited by the assumptions of logistic
regression. While it is clear that subjects weigh temporal
sections of the stimulus in proportion to their expected
motion signal, it seems unlikely that the way the brain
performs this task is completely described by logistic
regression. There are likely a cascade of nonlinearities
between stimulus and response that cannot be fully de-
scribed by a set of linear weights passed through a
sigmoid, which implies that the exact pattern and magni-
tudes of an individual temporal kernel are an incomplete
description of the decision process. However, given the
close correspondence between kernels computed using
only flat-expectation, zero-mean (noise) trials and kernels
computed using all trials (where there is often temporal
correlation in the stimulus), any nonlinearity in mapping
from stimulus to sensory evidence appears to have a
minimal impact on our core result: differences between
temporal stimulus statistics can exert systematic and in-
terpretable effects on temporal weighting strategies.

More generally, our results provide an opportunity to
reconnect perceptual decision-making models with other
frameworks for information integration. For example, the
dynamic temporal weighting we observed has a direct
connection to classical Bayesian integration (Hillis et al.,
2004; Körding and Wolpert, 2006; Knill 2007; Angelaki
et al., 2009; Fetsch et al., 2009). Over repeated exposure
to a given stimulus condition, subjects learn to weigh
stimulus cues according to reliability. In our experiment,
time epochs (motion pulses) can be thought of as akin to
cues: each motion pulse is a cue toward the trial’s net
direction, but during early- and late-stimulus conditions
subjects must learn to down-weight noisy epochs and
up-weight reliable ones. Cue combination with reliability-
based weighting has been commonly observed both
within and across sensory domains (Hillis et al., 2004;
Morgan et al., 2008; Angelaki et al., 2009; Fetsch et al.,
2009, 2011). While Bayesian integration has been dis-
cussed specifically with respect to bounded accumulation
(Beck et al., 2008), it also lends itself to a reliability-based
readout of a temporally dynamic sensory representation.
Time points in the sensory response with a higher signal-
to-noise ratio may be more strongly weighted toward
choice. For example, as discussed above, a tendency
toward early weighting in the flat stimulus condition could
be reflective of temporal variation during sensory encod-
ing rather than an effect of downstream mechanisms such
as a bound. We are encouraged by this mapping to a
Bayesian framework and the implication that further ma-
nipulations of reliability of evidence in time can continue
to build tighter links (or reveal contrasts) between cue
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integration and temporal integration (Katz et al., 2015;
Hanks et al., 2011).

In summary, past work has used reverse correlation
and time-varied stimuli to probe temporal integration. In
the present study, we used a reverse correlation task in
the context of tractable manipulations of stimulus statis-
tics, allowing for direct control over a subject’s temporal
weighting strategy. Although the neural correlates of such
changes remain uncertain, the ability to both manipulate
and characterize temporal weighting strategies should
provide a powerful tool for neurophysiological experi-
ments to come.
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