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Confidence reflects a noisy decision 
reliability estimate

Zoe M. Boundy-Singer1,2, Corey M. Ziemba1,2 & Robbe L. T. Goris1 

Decisions vary in difficulty. Humans know this and typically report more 
confidence in easy than in difficult decisions. However, confidence 
reports do not perfectly track decision accuracy, but also reflect response 
biases and difficulty misjudgements. To isolate the quality of confidence 
reports, we developed a model of the decision-making process underlying 
choice-confidence data. In this model, confidence reflects a subject’s 
estimate of the reliability of their decision. The quality of this estimate is 
limited by the subject’s uncertainty about the uncertainty of the variable 
that informs their decision (‘meta-uncertainty’). This model provides 
an accurate account of choice-confidence data across a broad range of 
perceptual and cognitive tasks, investigated in six previous studies. We find 
meta-uncertainty varies across subjects, is stable over time, generalizes 
across some domains and can be manipulated experimentally. The model 
offers a parsimonious explanation for the computational processes that 
underlie and constrain the sense of confidence.

Humans are aware of the fallibility of perception and cognition. When 
we experience a high degree of confidence in a perceptual or cognitive 
decision, that decision is more likely to be correct than when we feel less 
confident1. This ‘metacognitive’ ability helps us to learn from mistakes2, 
to plan future actions3 and to optimize group decision-making4. There is 
a long-standing interest in the mental operations underlying our sense 
of confidence5–7, and the rapidly expanding field of metacognition 
seeks to understand how metacognitive ability varies across domains8, 
individuals9, clinical states10 and development11.

Quantifying a subject’s ability to introspect about the correctness 
of a decision is a challenging problem12–14. There exists no agreed-upon 
method15. Even in the simplest decision-making tasks, several distinct 
factors influence a subject’s confidence reports. Consider a subject 
jointly reporting a binary decision about a sensory stimulus (belongs 
to ‘category A’ versus ‘category B’) and their confidence in this decision. 
Confidence reports will reflect the subject’s ability to discriminate 
between both stimulus categories—the higher this ability, the higher 
the reported confidence16. They will also reflect the subject’s response 
bias (for example, a large willingness to declare ‘high confidence’ or 
‘category A’)17–19. Yet, neither of these factors characterizes the subject’s 
metacognitive ability13.

Here, we introduce a method to quantify metacognitive ability 
on the basis of choice-confidence data, building on an extensive body 
of previous work13,20–27. We propose that confidence reflects a sub-
ject’s estimate of the reliability of their decision, expressed in units 
of signal-to-noise ratio27. This estimate results from a computation 
involving the uncertainty of the decision variable that informed the 
subject’s choice28. It follows that metacognitive ability is determined by 
the subject’s knowledge about this uncertainty, or lack thereof (that is, 
uncertainty about uncertainty, hereafter termed ‘meta-uncertainty’). 
The more certain a subject is about the uncertainty of the decision 
variable, the lower their meta-uncertainty, and the better they are able 
to assess the reliability of a decision. We leverage modern computa-
tional techniques to formalize this hypothesis in a two-stage process 
model that is rooted in traditional signal detection theory29 and that 
can be fit to choice-confidence data (the ‘CASANDRE’ or ‘confidence 
as a noisy decision reliability estimate’ model). The model predicts a 
systematic dependency of confidence on choice consistency27,30 and 
naturally separates metacognitive ability from discrimination ability 
and response bias.

We found that this model provides an excellent account of choice- 
confidence data reported in a large set of previously published 
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(for example, orientation for the task shown in Fig. 1a). For other tasks, 
it is more appropriate to think of it as representing the accumulated 
evidence that favours one response alternative over the other (for 
example, ‘Have I heard this song before?’). The process model specified 
by these assumptions has proven very useful in the study of perception 
and cognition. It readily explains why repeated presentations of the 
same stimulus often elicit variable choices. In doing so, it clarifies how 
choices reflect a subject’s underlying ability to solve the task as well as 
their primary response bias29.

We expand this framework with an analogous second processing 
stage that informs the subject’s confidence report. Assume that the 
subject is presented with a set of stimuli that elicit the same level of 
cross-trial variability in the decision variable. The smaller the overlap 
of the stimulus-specific decision variable distribution with the deci-
sion criterion, the ‘stronger’ the associated stimulus is, and the more 
consistent choices will be. On any given trial, the distance between 
the decision variable and the decision criterion provides an instanta-
neously available proxy for stimulus strength, and hence for choice 
reliability14,35–39. However, in many tasks, the decision variable’s dis-
persion, σd, will vary across conditions, resulting in different amounts 
of stimulus ‘uncertainty’ (the larger σd, the greater this uncertainty). 
To be a useful proxy for choice reliability, and thus produce a single 
confidence–consistency relation, the stimulus strength estimate must 
therefore be normalized by this factor27. This operation yields a unitless, 
positive-valued variable, Vc, which represents the subject’s confidence 
in the decision:

Vc =
|Vd − Cd|

̂σd
(1)

where Vd is the decision variable, Cd the decision criterion and ̂σd the 
subject’s estimate of σd. We assume that the subject is unsure about 
the exact level of stimulus uncertainty. Repeated trials will thus not 
only elicit different values of the decision variable, but will also elicit 
different estimates of stimulus uncertainty. Specifically, we assume 
that ̂σd is on average correct (that is, its mean value equals σd), but var-
ies from trial to trial with standard deviation σm, resulting in ‘meta- 
uncertainty’ (the larger σm, the greater this meta-uncertainty). As we 
shall see, variability in the decision variable is the critical model com-
ponent that limits stimulus discriminability, while variability in the 
uncertainty estimate similarly limits metacognitive ability. Finally, 
comparing the confidence variable with a fixed criterion, Cc, yields a 
confidence report (Fig. 1e, bottom).

To fit this model to data, the form of the noise distributions must 
be specified. A common choice for the first-stage noise is the normal 
distribution. This choice is principled, as the normal distribution is the 
maximum entropy distribution for real-valued signals with a specified 
mean and variance40. It is also convenient, as it results in fairly simple 
data-analysis recipes29. The second-stage noise describes variability of 
a positive-valued signal (σd cannot be smaller than zero by definition). 
A suitable maximum entropy distribution for such a variable is the 
log-normal distribution25,40. Under these assumptions, the confidence 
variable is a probability distribution constructed as the distribution of 
the ratio of a normally and log-normally distributed variable. There 
exists no closed form description of this ratio distribution, ruling out 
simple data-analysis recipes. However, we can leverage modern compu-
tational tools to quickly compute the confidence variable’s probability 
density function by describing it as a mixture of Gaussian distributions 
(Methods). This mathematical street-fighting manoeuvre41 enables us 
to fit this two-stage process model to choice data (Fig. 1b–d, full lines). 
Before doing so, we first derive a set of basic model predictions.

Deriving model predictions
To gain a deeper understanding of the impact of the different model 
components on confidence reports, we investigated the model’s 

studies22,25,31–34. Our analysis suggests that meta-uncertainty pro-
vides a better metric for metacognitive ability than the non-process- 
model-based alternatives that currently prevail in the literature13,15. 
Specifically, meta-uncertainty has higher test–retest reliability, is less 
affected by discrimination ability and response bias, and has compara-
ble cross-domain generalizability. Meta-uncertainty is higher in tasks 
that involve more levels of stimulus uncertainty, implying that it can 
be manipulated experimentally. Together, these results illuminate the 
mental operations that give rise to our sense of confidence, and they 
provide evidence that metacognitive ability is fundamentally limited 
by subjects’ uncertainty about the reliability of their decisions.

Results
In simple decision-making tasks, human confidence reports lawfully 
reflect choice consistency27. Consider two example subjects who per-
formed a two-alternative forced choice (2-AFC) categorization task in 
which they judged on every trial whether a visual stimulus belonged 
to category A or B, and additionally reported their confidence in this 
decision using a four-point rating scale. Categories were character-
ized by distributions of stimulus orientation that were predominantly 
smaller (A) or larger (B) than zero degrees. Stimuli varied in orienta-
tion and contrast (Fig. 1a). Because the category distributions overlap, 
errors are inevitable. The most accurate strategy is to choose category 
A for all stimuli whose orientation is smaller than zero degrees, and  
category B for all stimuli whose orientation exceeds zero degrees (Fig. 1b,  
top, dotted line). The more the stimulus orientation deviates from 
zero, the more closely human subjects’ aggregated choice behaviour 
approximates this ideal (Fig. 1b, top, symbols). This relationship is 
also modulated by stimulus contrast—the lower the stimulus contrast, 
the weaker the association between orientation and choice (Fig. 1b, 
top, green versus yellow symbols). The distinct effects of orientation 
and contrast on choice consistency are evident in the subjects’ confi-
dence reports. Confidence is minimal for conditions associated with 
a choice proportion near 0.5 (that is, the most difficult conditions), 
and monotonically increases as choice proportions deviate more from 
0.5 (Fig. 1b, bottom). The association between choice consistency and 
confidence is so strong that plotting average confidence level against 
the aggregated choice behaviour reveals a single relationship across 
all stimulus conditions (Fig. 1c). This is true of both example subjects, 
although their confidence–consistency relationships differ in shape, 
offset and range. We speculate that a lawful confidence–consistency 
relationship is not a coincidental feature of this experiment, but a wide-
spread phenomenon in confidence studies (Fig. 1d).

A single, increasing relation between confidence reports and 
choice consistency across many levels of uncertainty implies that 
subjects can assess the reliability of their decisions. However, whether 
this ability is excellent or poor cannot be deduced from empirical 
measurements alone. One possibility is that subjects accurately assess 
decision reliability on every single trial, indicating excellent metacog-
nitive ability. Alternatively, there might be a high degree of cross-trial 
variability in confidence reports, implying less accurate decision reli-
ability assessment and thus limited metacognitive ability. Of course, 
given the variability of primary choice behaviour, some variability 
in confidence reports is expected, even for flawless introspection. 
How much exactly? And what might be the origin of excess variance? 
Answering these questions requires a quantitative model that provides 
an analogy for the mental operations that underlie a subject’s primary 
decisions and confidence reports. In the following section, we develop 
such a process model.

A two-stage process model of decision-making
Assume that a subject solves a binary decision-making task by compar-
ing a noisy, one-dimensional decision variable, Vd, to a fixed criterion, 
Cd (Fig. 1e, top). For some tasks, it is convenient to think of this deci-
sion variable as representing a direct estimate of a stimulus feature  
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behaviour in a continuous 2-AFC discrimination task with binary con-
fidence report options (‘confident’ or ‘not confident’). We assumed 
the decision variable’s mean value to be stimulus-dependent (in this 
simulation, it is identical to the true stimulus value). All other model 
components were varied independently of the stimulus (Methods). 
Altering the first-stage decision criterion (Fig. 2a, top left, orange 
versus grey line) affects the confidence variable distribution by shift-
ing its mode and, in the presence of meta-uncertainty, its spread and 
skew (Fig. 2a, bottom left, purple versus grey distribution). At the 
level of observables, this manipulation results in a horizontal shift of 
the ‘psychometric function’ that characterizes how choices depend 
on stimulus value (Fig. 2a, top right). This shift is accompanied by an 
identical shift of the ‘confidence function’ that characterizes how confi-
dence reports depend on stimulus value (Fig. 2a, bottom right). Effects 
of this kind have been documented for human27,42,43 and animal44,45 
subjects. Altering the level of first-stage noise (Fig. 2b, top left, orange 
versus grey distribution) affects the confidence variable distribution 

by changing its mode and, in the presence of meta-uncertainty, its 
spread and skew (Fig. 2b, bottom left, purple versus grey distribution). 
At the level of choice behaviour, this manipulation changes the slope 
of the psychometric function (Fig. 2b, top right) as well as the overall 
fraction of ‘confident’ reports (Fig. 2b, bottom right). These first-stage 
parameters do not affect the shape of the confidence–consistency 
relationship, only where a particular stimulus value falls on this curve. 
In contrast, the parameters that control the model’s second-stage 
operations do not affect primary choice behaviour but only confidence 
reports and thus the shape of the confidence–consistency relation-
ship. Specifically, changing the confidence criterion (Fig. 2c, bottom 
left, purple versus grey lines) mainly impacts the confidence function 
by shifting it vertically (Fig. 2c, bottom right). Changing the level of 
meta-uncertainty alters the confidence variable distribution’s mode, 
variance and skew (Fig. 2d, bottom left, purple versus grey distribu-
tion), resulting in a complex pattern of changes in the confidence 
function (Fig. 2d, bottom right).
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Fig. 1 | CASANDRE, a two-stage process model of decision confidence, 
accounts for the relation between confidence reports and choice 
consistency. a, Experimental design employed by ref. 22. b, Top, proportion of 
‘category B’ choices is plotted against stimulus orientation, split by stimulus 
contrast (green versus yellow), for two example subjects (left, obs 1–6: observer 
6 in experiment 1 from ref. 22; right, obs 1–9: observer 9 in experiment 1 from 
ref. 22). Bottom, same for mean confidence level. Symbols summarize observed 
choice behaviour, the dotted line illustrates the theoretical optimum and the 
full lines show the fit of the CASANDRE model. Symbol size is proportional to the 

number of trials. The model was fit to all data simultaneously using a maximum 
likelihood estimation method. Only two out of six contrasts are shown here. Fits 
to all conditions are shown in Supplementary Fig. 1. c, Observed and predicted 
confidence–consistency relationship for two example subjects. d, Observed 
and predicted choice-confidence data for an example subject performing a 
visuo-haptic two-interval forced choice (2-IFC) categorization task (observer 
36 in experiment 1 from Arbuzova and Filevich in the Confidence Database31). 
e, Schematic of the hierarchical decision-making process underlying choice-
confidence data in the CASANDRE model.
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What does it mean to say that someone has good or bad 
self-knowledge? The CASANDRE model provides a principled answer. 
Everything held equal, increasing meta-uncertainty makes the confi-
dence variable distribution more heavy-tailed (Fig. 2d, bottom left). 
This in turn leads to an increase in the fraction of ‘confident’ reports 
for weak stimuli, but has the opposite effect for strong stimuli (Fig. 2d,  
bottom right). As a consequence, the dynamic range of the confidence–
consistency relation decreases (Fig. 2e). However, these effects are 
not balanced. In particular, when meta-uncertainty is high, there is a 
dramatic increase in ‘confident’ reports for the most difficult conditions 
(Fig. 2e, full black line). This increase does not reflect an actual change in 
task performance (Fig. 2d, top right). Rather, the association between 

confidence and choice consistency has weakened. This can be appreci-
ated by inspecting the psychometric function split by confidence report. 
When meta-uncertainty is low, ‘confident’ decisions tend to be much 
more reliable than ‘not confident’ decisions (Fig. 2f, left, green versus 
red). As meta-uncertainty increases, this distinction weakens and even-
tually disappears (Fig. 2f, middle-right). In sum, under the CASANDRE  
model, a lack of self-knowledge means having a limited capacity to 
distinguish reliable from unreliable decisions (note that this is not the 
same as distinguishing correct from incorrect decisions)27. However, 
the magnitude of the effects shown in Fig. 2e,f depends on the other 
model components as well (for example, Fig. 2g). Determining the level 
of meta-uncertainty therefore requires directly fitting the model to data.
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Fig. 2 | Impact of the different model components on primary choice 
behaviour and confidence reports. a, Top left, illustration of the decision 
criterion (orange line) and the decision variable distribution elicited by 
repeated presentations of the same stimulus (orange distribution). Bottom left, 
the associated confidence variable distribution (purple distribution). Vc is a 
positive-valued variable. As plotting convention, we reserve negative values for 
‘category A’ choices and positive values for ‘category B’ choices. The confidence 
criterion (purple line) therefore shows up twice in this graph. Top right, the 
resulting psychometric function over a range of stimulus values (orange line). 
The filled symbol corresponds to the condition depicted on the left-hand side. 
Bottom right, same for the resulting confidence function. For all panels, the 
grey dotted line illustrates how the model predictions change when a specific 

model component (here, the decision criterion) is altered. The open symbol 
corresponds to the condition depicted on the left-hand side. b, Increasing the 
level of stimulus uncertainty affects both primary decisions and confidence 
reports. c, Lowering the confidence criterion yields more ‘confident’ reports 
at all stimulus values. d, Increasing meta-uncertainty increases the fraction of 
‘confident’ reports for weak stimuli, but has the opposite effect for strong stimuli. 
e, The confidence–consistency relation for two levels of meta-uncertainty. 
All other model parameters held equal. f, The psychometric function, split by 
confidence report (‘confident’ in green versus ‘not confident’ in red), for three 
levels of meta-uncertainty. g, The confidence–consistency relation under  
a liberal versus a conservative confidence criterion. All other model parameters 
held equal, σm = 0.25.
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Evaluating the model architecture
We have motivated our framework on the basis of a qualitative obser-
vation (the lawful confidence–consistency relationship) and first 
principles (the inherent noisiness of perceptual and cognitive pro-
cesses). To further test the central tenets of the CASANDRE model, 
we quantitatively examined the choice-confidence data collected by 
Adler and Ma22. We conducted several model comparisons designed to 
interrogate the framework’s second-stage operations. For this reason, 
we began by fitting the first-stage parameters to each subject’s choice 
data and then kept these parameters constant across all model variants 
(see example in Fig. 3a). We first asked whether a simpler computation 
can account for confidence reports. We compared a model variant in 
which confidence reflects a subject’s estimate of stimulus strength14,35–39 
with one in which it reflects an estimate of decision reliability (that is, 
stimulus strength normalized by stimulus uncertainty; Fig. 3b, left). 
To quantify model quality, we computed each model’s Akaike Infor-
mation Criterion (AIC) value (Methods). For all 19 subjects, the more 
complex model outperformed the simpler variant (median difference 
in AIC = 1,179.5; Fig. 3c, top). We then asked whether meta-uncertainty 
is a necessary model component, and found this to be the case (Fig. 3b,  
middle). Including meta-uncertainty improved model quality for all 
19 subjects (median difference in AIC = 285.2; Fig. 3c, middle). Both 
these simpler variants of the CASANDRE model correspond to com-
monly used models for confidence1,14,22,25,27. These model comparisons 
thus support the hypothesis that confidence reflects a subject’s noisy 
estimate of the reliability of their decision.

Further attempts to improve the model architecture yielded 
comparatively weak and inconsistent results. In particular, we won-
dered whether model performance would benefit from allowing 
criterion-asymmetry (meaning that the confidence criteria depend 
on the primary decision) and adopting a different second-stage noise 
distribution (the Gamma distribution). Allowing criterion-asymmetry 

improved model performance for 16 out of 19 subjects (median dif-
ference in AIC = 27.9; Fig. 3b, right; Fig. 3c, bottom; different example  
subject shown in Supplementary Fig. 2), while the log-normal distri
bution was preferred over the Gamma distribution for 16 out of  
19 subjects (median difference in AIC = 17.7). For simplicity, we chose 
to use symmetric confidence criteria for all further analyses. Finally, 
we compared the CASANDRE model with a model recently proposed 
by Shekhar and Rahnev25 (the ‘log-normal meta-noise model’). In this 
model, confidence reflects a subject’s estimate of evidence strength 
and metacognitive ability is limited by simulating instability in the 
placement of confidence criteria25. As this model is tailored to experi-
ments that employ only two levels of stimulus strength, we examined 
the choice-confidence data collected by Shekhar and Rahnev and 
found that the CASANDRE model explained these data equally well. 
(Supplementary Fig. 8a; see Supplementary information for further 
discussion).

Estimating meta-uncertainty from sparse data
We seek to quantify a subject’s ability to introspect about the  
reliability of a decision. Our method consists of interpreting human 
choice-confidence data through the lens of a principled two-stage pro-
cess model. What kind of measurements are required to obtain robust 
and reliable estimates of meta-uncertainty, the model’s parameter that 
governs metacognitive ability? We verified that Adler and Ma’s experi-
mental design affords solid parameter recovery (see Supplementary 
Fig. 3). However, their design is exceptional for its large number of 
stimulus conditions22. Many studies use as little as two conditions31. 
To test whether our approach generalizes to such experiments, we 
performed a recovery analysis. We used the CASANDRE model to gen-
erate synthetic datasets for five model subjects performing a 2-AFC 
discrimination task with binary confidence report options (Methods). 
The model subjects only differed in their level of meta-uncertainty, 
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which ranged from negligible to considerable (Fig. 4a, coloured lines). 
We simulated data for each model subject using experimental designs 
that varied in the number of trials (100 versus 1,000) and in the num-
ber of conditions (2 versus 20; Fig. 4a, top). Figure 4b summarizes an 
example synthetic experiment. The model parameters (σd, Cd, σm, Cc) 
specify the relation between stimulus value and the probability of each 
response option (Fig. 4b, left). We used these probabilities to simulate 
a synthetic dataset of 1,000 trials distributed across 20 conditions  
(Fig. 4b, middle). We then identified the set of parameter values that 
best describes these data (Fig. 4b, right). We repeated this procedure 
100 times for each simulated experiment. Our method yields robust 
estimates of meta-uncertainty: for all model subjects and all experi-
mental designs, the median estimate closely approximates the ground 
truth value (Fig. 4c, symbols). The reliability of these estimates is higher  
for more trials and somewhat higher for denser stimulus sampling  
(Fig. 4c, error bars). Estimation error in σm covaried with estimation 
error in Cc (Supplementary Fig. 7). We conclude that the CASANDRE 
model typically can be identified in sparse experimental designs.

Construct reliability and validity of meta-uncertainty
So far, we have presented evidence that confidence is well described 
as reflecting a subject’s decision reliability estimate. In the CASANDRE 
model, the quality of this estimate is limited by meta-uncertainty. This 
naturally raises the question of whether meta-uncertainty is a ‘real’ 
thing. In other words, do meta-uncertainty estimates isolate a stable 
property of human subjects that captures their metacognitive ability?

The most straightforward form of stability is repeatability. If we 
were to measure a subject’s meta-uncertainty on two different occa-
sions using the same experimental paradigm, we should obtain similar 
estimates. Navajas et al. conducted a perceptual confidence experi-
ment in which 14 subjects performed the same task twice with approxi-
mately 1 month in between sessions32. We used the CASANDRE model 
to analyse their data (see Methods and Supplementary Fig. 4). Meas-
ured and predicted choice-confidence data were strongly correlated, 
indicating that the model describes the data well (condition-specific 
proportion correct choices: Spearman’s rank correlation coefficient 
r(170) = 0.96, P < 0.001; condition-specific mean confidence level: 
r(170) = 0.99, P < 0.001). Critically, we found meta-uncertainty esti-
mates to be strongly correlated across both sessions as well (r(12) = 0.78, 
P = 0.002; Fig. 5a). This suggests that meta-uncertainty measures a sta-
ble characteristic of human confidence reporting behaviour.

Under the CASANDRE model, meta-uncertainty provides a meas-
ure of metacognitive ability, not of confidence reporting strategy. To 
investigate whether this holds true in human choice-confidence data, 

we analysed data from 43 sessions where subjects either performed a 
perceptual or a cognitive confidence task. They reported their confi-
dence in a binary decision using a six-point rating scale32. We artificially 
biased these confidence reports by mapping them onto a liberal and 
a conservative four-point rating scale (Methods)46. This manipulation 
resulted in a mean confidence level of 2.89 and 2.43—a substantial dif-
ference in light of the standard deviation (the effect size, expressed as 
Cohen’s d, is 3.16). We then used the model to analyse both perturbed 
datasets (Methods). Meta-uncertainty estimates were strongly cor-
related (r(41) = 0.84, P < 0.001; Fig. 5b), though note that they were on 
average higher for the conservatively biased version of the data (mean 
increase: 47%, median increase: 0%, z = 3.10, P = 0.002, effect size = 0.47, 
Wilcoxon signed rank test). This suggests that meta-uncertainty esti-
mates are largely, but not fully, independent of subjects’ confidence 
reporting strategy.

We wondered whether meta-uncertainty depends on the absolute 
level of stimulus uncertainty23. We analysed data from 43 sessions 
where subjects either performed a perceptual or cognitive confi-
dence task. In both tasks, stimulus uncertainty was manipulated by 
varying the variance of the category distributions over four levels32. 
We used the CASANDRE model to analyse these data and estimated 
meta-uncertainty separately for the two lowest and the two highest 
levels of stimulus variance (Methods). The former conditions resulted 
in much higher task performance than the latter (average proportion 
correct decisions: 87% versus 70%). The corresponding underlying 
levels of stimulus uncertainty, σd, averaged 2.61 and 8.71. While increas-
ing stimulus variance tripled stimulus uncertainty, meta-uncertainty 
estimates did not change much (median change: –14.76%, z = –2.87, 
P = 0.004, effect size = –0.44, Wilcoxon signed rank test). Moreover, 
meta-uncertainty estimates were strongly correlated across both 
sets of conditions (r(41) = 0.70, P < 0.001; Fig. 5c). This suggests 
meta-uncertainty is largely, but not fully, independent of the absolute 
level of stimulus uncertainty.

Whether metacognitive ability is domain-specific or domain- 
general is debated8,47–49. We analysed data from 20 subjects who per-
formed a perceptual and cognitive confidence task with the same 
experimental design. Stimulus categories were either defined by the 
average orientation of a series of rapidly presented gratings, or by the 
average value of a series of rapidly presented numbers32. Subjects’ 
performance level was correlated across both tasks (condition-specific 
proportion correct choices: r(18) = 0.69, P < 0.001), and so were their 
reported confidence levels, albeit to a lesser degree (r(18) = 0.53, 
P < 0.001). We used the CASANDRE model to analyse both datasets 
(Methods). Meta-uncertainty estimates were strongly correlated 
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(r(18) = 0.64, P = 0.003; Fig. 5d). Thus, meta-uncertainty appears to 
capture an aspect of confidence reporting behaviour that generalizes 
across at least some domains.

We found that other commonly used metrics for metacognitive 
ability do not isolate the factors determining meta-uncertainty, and 
that meta-uncertainty compared favourably on this set of four bench-
mark tests (Supplementary Fig. 9; see Supplementary information for 
further discussion).

Manipulating meta-uncertainty
Can metacognitive ability be manipulated experimentally? Key to our 
framework is that confidence judgements require a subject to estimate 
uncertainty on a trial-by-trial basis. This becomes more difficult when 
experiments involve more confusable levels of stimulus uncertainty. We 
therefore expect that meta-uncertainty will grow with the number of 
stimulus uncertainty levels. To appreciate our logic, consider the ideal 
Bayesian uncertainty estimation strategy which consists of combining 
information obtained from ambiguous sensory measurements with 
prior task-specific knowledge. Specifically, the sensory measurement 
informs the uncertainty likelihood function, while knowledge of task 
statistics (that is, the distribution of stimulus uncertainty levels) is sum-
marized in a prior uncertainty belief function (Fig. 6a). The combination 
of both yields a posterior uncertainty belief function, the maximum 
of which is the ‘best possible’ uncertainty estimate (Fig. 6a). Due to 
noise, repeated presentations of the same condition will yield different 
likelihood functions (Fig. 6a and Methods). If the task involves only one 
level of stimulus uncertainty, the prior is a fixed delta function, and 
so is the posterior. Consequently, the maximum posterior estimate 
will not vary across trials and the ideal estimation strategy results in 
zero meta-uncertainty. However, when a task involves multiple levels 
of stimulus uncertainty, the prior will be more dispersed, causing the 
resulting maximum posterior estimate to be more variable across tri-
als. Under an ideal Bayesian estimation strategy, meta-uncertainty 
thus initially grows with the number of uncertainty levels (Fig. 6b). 
We wondered whether this normative prediction affords insight into 
human metacognition. To test this hypothesis, we used the CASANDRE 
model to analyse six confidence experiments that varied in the number 
of randomly interleaved uncertainty levels (Methods). These experi-
ments utilized different stimuli and employed different experimental 
designs22,25,32–34. Yet, as expected, meta-uncertainty appears to grow 
lawfully with the number of uncertainty levels (Fig. 6c).

Discussion
It has long been known that humans and other animals can meaning-
fully introspect about the quality of their decisions and actions5–7,37,50. 
Quantifying this ability has remained a challenge, even for simple 
binary decision-making tasks12,13,15,23,25,46. The core problem is that 
observable choice-confidence data reflect metacognitive ability as 
well as task difficulty and response bias. To overcome this problem, we 
introduced a metric that is anchored in an explicit hypothesis about 
the decision-making process that underlies behavioural reports. Our 
method is based on likening choice-confidence data to the outcome 
of an abstract mathematical process in which confidence reflects 
a subject’s noisy estimate of their choice reliability, expressed in 
signal-to-noise units14,27,51. This framework allowed us to specify the 
effects of factors that limit metacognitive ability and to summarize 
this loss in a single, interpretable parameter: meta-uncertainty. We 
showed that this process model (which we term the CASANDRE model) 
can explain the effects of stimulus strength and stimulus reliability on 
confidence reports and that meta-uncertainty can be estimated from 
conventional experimental designs. We found that a subject’s level of 
meta-uncertainty is stable over time and across at least some domains. 
Meta-uncertainty can be manipulated experimentally: it is higher in 
tasks that involve more levels of stimulus reliability. Meta-uncertainty 
appears to be mostly independent of task difficulty and confidence 
reporting strategy. Widely used metrics for metacognitive ability are 
poor proxies for meta-uncertainty. As such, the CASANDRE model 
represents a notable advance toward realizing crucial medium and 
long-term goals in the field of metacognition52.

The mental operations underlying confidence in a decision have 
long intrigued psychologists. Two key unresolved issues are the struc-
ture and nature of the confidence computation52. At stake are two 
intertwined questions: (1) Does confidence arise from a single, dual 
or hierarchical process? and (2) What exactly does confidence reflect? 
Some authors have proposed that decision outcome and confidence 
both arise from a single stimulus strength estimation process37,53–55. 
Such models can explain the effects of stimulus strength, but not of 
stimulus reliability. Others have argued in favour of a dual process in 
which decision outcome and confidence are based on different stimu-
lus strength estimates21,56–58. This may be the appropriate framework for 
cases in which subjects acquire additional task-relevant information 
after reporting their choice21,24,59,60. For all other cases, it appears overly 
complex. Instead, we have modelled confidence judgements as arising 
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from a hierarchical process61. The first stage determines the choice, the 
second stage determines confidence (Fig. 1e). We found that this model 
structure systematically outperforms a single stage alternative (Fig. 3c,  
top). The structure of the computation clarifies its nature. Many 
previous studies are built on the premise that confidence reflects a 
subject’s assessment of decision accuracy (‘What is the probability 
that my choice is correct?’). This premise directly motivates Bayesian 
models of confidence1,22,37,62–68 and tacitly underlies popular metrics 
of metacognitive ability13,27. However, when experimental manipula-
tions bias perceptual choices, aggregated confidence reports do not 
track choice accuracy but choice consistency27,42,43. At the single trial 
level, this suggests that confidence reflects a subject’s assessment of 
decision reliability (‘What is the probability that I would make the same 
choice again?’, see equation 1). For an unbiased subject who is choosing 
between two alternatives, decision accuracy and decision reliability 
are indistinguishable27,67. Yet, the distinction matters greatly, as it 
implies that the same computation that underlies confidence in deci-
sions with a well-defined correct and incorrect option may generalize 
to subjective domains that lack this feature (for example, ‘Which ice 
cream flavour should I have?’)69.

Key to our proposal is that assessing the reliability of a decision 
requires the use of additional information (stimulus uncertainty)28 
that in most tasks has no relevance for the choice as such. The notion 
that subjects can incorporate a stimulus uncertainty estimate when 
making perceptual inferences is well established22,70–72. And there is 

considerable evidence that neural activity in sensory areas of the brain 
conveys information about stimulus features as well as the uncer-
tainty of those features68,73–78. Our proposed confidence computation 
yielded a new prediction: the more levels of stimulus uncertainty a task 
involves, the more variable uncertainty estimates will be. We validated 
this prediction by analysing data from six different confidence experi-
ments in which 160 subjects completed a total of 243,000 trials (Fig. 6c).  
This finding is arguably the strongest piece of empirical evidence that 
meta-uncertainty is the critical factor that limits human metacogni-
tive ability. It was enabled by the use of modern computational tools 
to quickly compute the approximate ratio of two distributions (that 
is, the confidence variable distribution) and by the availability of the 
confidence database31. This phenomenon also raises the question to 
what degree metacognitive ability estimates are influenced by experi-
mental design. We speculate that many previously proposed sources 
of metacognitive limitations (such as arousal or fatigue79,80, sequential 
dependencies of confidence reports or ‘confidence leak’81, and disrup-
tions to frontal cortical function82) could be mediated through their 
effect on the fidelity of uncertainty estimation. An important future 
direction will be to investigate the Bayesian uncertainty estimation 
framework introduced here (in Fig. 6a,b), in particular by examining 
how meta-uncertainty is affected by manipulations of both the likeli-
hood and prior distributions of stimulus uncertainty.

The CASANDRE model provides a static description of the out-
come of a hierarchical decision-making process. However, making 
a decision requires time. The more difficult the decision, the more 
time it requires83,84. For this reason, some authors have suggested that 
decision time directly informs confidence59,85. This proposal enjoys 
strong empirical support44,63,85,86. It remains to be seen whether choice 
outcome, reaction time and metacognitive ability can all be modelled 
simultaneously.

Process models are powerful tools to study cognition and per-
ception. Here we leveraged a process model to interrogate the com-
putations underlying our sense of confidence, to determine the 
effectiveness of various experimental designs and to examine model 
recoverability. However, the usefulness of process models far exceeds 
our current application. Specifically, when coupled to an explicit goal 
such as maximizing choice accuracy, process models can be used 
to derive the optimal task strategy. The resulting predictions offer 
a critical point of reference for human behaviour87. This approach 
has revealed that humans improve the quality of uncertain decisions 
by accumulating evidence over time83, by combining information 
acquired through different sensory modalities70, and by exploiting 
knowledge of statistical regularities in the environment88. Might the 
same hold true for uncertain confidence judgements? Stated more gen-
erally: does our brain attempt to maximize the precision of our sense of 
confidence? This is a fundamental question that is ripe to be addressed. 
Doing so will require experiments that manipulate meta-uncertainty 
and incentivize the confidence reporting strategy (for example,  
refs. 37,50,55,57,63,89–91). The process model we have developed provides 
a vehicle to derive the reward-maximizing strategy and to evaluate 
whether human meta-uncertainty changes as expected for theoreti-
cally ideal introspection. We took a first step in this direction and vali-
dated a new prediction: meta-uncertainty changes with task structure 
as expected under an ideal Bayesian uncertainty estimation strategy.

Methods
Modeling the hierarchical decision-making process
We model choice-confidence data in binary decision-making tasks as 
arising from a hierarchical process. The first stage follows conventional 
signal detection theory applications29 and describes primary decision 
as resulting from the comparison of a one-dimensional decision vari-
able, Vd, with a fixed criterion, Cd. The decision variable is subject to 
zero-mean Gaussian noise and hence follows a normal distribution 
with mean μd and standard deviation σd. The decision variable is 
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converted into a signed confidence variable, V′c, by taking the difference 
of Vd and Cd, and dividing this difference by ̂σd, the subject’s estimate 
of σd. The family of normal distributions is closed under linear trans-
formations. This means that, if ̂σd were a constant, V′c would also follow 
a normal distribution with mean μ′c = (μd − Cd)/ ̂σd and standard devia-
tion σ′c = σd/ ̂σd. The confidence report results from the comparison of 
V′c with a fixed criterion magnitude, Cc, mirrored across 0 to create two 
signed criteria (or two sets of criteria if the confidence scale has more 
than two levels). It follows that the probability of a ‘confident’ judge-
ment given a ‘category A’ decision is given by P(C = 1∣D = 0) = Φ( − Cc), 
where Φ(.) is the cumulative normal distribution with mean μ′c and 
standard deviation σ′c. By the same logic, P(C = 0∣D = 0) = Φ(0) − Φ( − Cc),  
P(C = 0∣D = 1) = Φ(Cc) − Φ(0), and P(C = 1∣D = 1) = 1 − Φ(Cc). Key to the 
CASANDRE model is that ̂σd is not a constant, but a random variable 
that follows a log-normal distribution with mean σd and standard devia-
tion σm. Consequently, the signed confidence variable is a mixture of 
normal distributions, with mixing weights determined by σm. To obtain 
the probability of each response option under this mixture, we sample 
̂σd in steps of constant cumulative density (using the Matlab function 

‘logninv’), compute the probability of each response option under each 
sample’s resulting normal distribution (using the Matlab function 
‘normcdf’) and average these probabilities across all samples. We found 
that this procedure yields stable probability estimates once the number 
of samples exceeds 25 (that is, sampling the log-normal distribution 
in steps no greater than 4%). For all applications in this paper, we used 
100 samples, thus sampling ̂σd at a cumulative density of 0.5%, 1.5%, 
2.5%,... and 99.5%. We also note that in our Matlab implementation of 
the model, we fix σd to 1 and scale the relation between stimulus value 
and decision variable mean. This is equivalent to fixing the relation 
between stimulus value and decision variable mean while varying σd. 
Finally, note that whenever we report values for σm, we use the coeffi-
cient of variation (σm/σd), as this ratio is identifiable under the model 
(the absolute level of meta-uncertainty is not, just like the absolute 
level of σd cannot be uniquely estimated from choice data).

Model parameterization, simulations and fitting
We analysed data from a large set of previously published studies that 
employed different task designs. The simplest designs involve the com-
bination of a 2-AFC categorization decision and a binary confidence 
report (that is, the model simulations shown in Figs. 2 and 4). Under the 
CASANDRE model, the predicted probability of each response option 
is fully specified by five parameters: the mean of the decision variable 
(μd), the standard deviation of the decision variable (σd), the decision 
criterion (Cd), the level of meta-uncertainty (σm) and the confidence 
criterion (Cc). It is not possible to estimate each of these parameters 
for every unique experimental condition. To make the model iden-
tifiable, we generally assume that μd is identical to the true stimulus 
value, that σd is constant for a given level of stimulus reliability and that  
Cd, σm and Cc are constant across multiple conditions. We limited σm to a 
minimum value of 0.1, as values below this had indistinguishable effects 
on model behaviour. Figure 2 shows how each of the parameters affects 
the model’s behaviour. Finally, when fitting data, we use one additional 
parameter, λ, to account for stimulus-independent lapses92, which 
we assume to be uniformly distributed across all response options. 
We fit the model on a subject-by-subject basis. For each subject, we 
compute the log-likelihood of a given set of model parameters across 
all choice-confidence reports and use an iterative procedure to identify 
the most likely set of parameter values (specifically, the interior point 
algorithm used by the Matlab function ‘fmincon’). Figure 4b shows 
an example model fit to a synthetic dataset whereby we used five free 
parameters (λ, σd, Cd, σm and Cc) to capture data across 20 experimental 
conditions.

Some studies used a task design that combined a 2-AFC catego-
rization decision with a multi-level confidence rating scale (that is,  
refs. 22,25,32,34). To model these data, we used the same approach as 

described above but we used multiple confidence criteria (one less 
than the number of confidence levels). We modelled the data from ref. 34 
using seven free parameters: λ, σd, Cd, σm and Cc (four-point confidence 
rating scale, thus three in total) (Fig. 6c and Supplementary Fig. 5a). 
We modelled some data from ref. 22 (task 1) using 17 free parameters: 
λ, σd (one per contrast level, six in total), Cd (one per contrast level, six 
in total), σm and Cc (four-point confidence rating scale, thus three in 
total). Example fits are shown in Fig. 1b,c and in Supplementary Fig. 1  
(also see Fig. 6c, task 1 and Supplementary Fig. 5e). We modelled the 
data from ref. 32 using 12 free parameters: λ, σd (one per stimulus vari-
ance level, four in total), Cd, σm and Cc (six-point confidence rating 
scale, thus five in total). Example fits are shown in Supplementary  
Fig. 4 (also see Fig. 6c, Supplementary Fig. 9b–d and Supplementary 
Fig. 5d). We modelled the data from ref. 25 using 10 free parameters: 
σd (one per stimulus reliability level, three in total), Cd, σm and Cc (con-
tinuous confidence rating scale, discretized into six-point confidence 
rating scale, thus five in total; see Fig. 6c and Supplementary Fig. 5b).

Some studies used a task design in which the 2-AFC categoriza-
tion decision pertained to two category distributions with the same 
mean but different spread (that is, refs. 22,33). To model these data, we 
assumed that the primary decision results from a comparison of the 
decision variable with two decision criteria, and that the confidence 
estimate is based on the distance between the decision variable and the 
nearest decision criterion. We modelled some data from ref. 22 (task 2) 
using 23 free parameters: λ, σd (one per contrast level, six in total), Cd 
(two per contrast level, 12 in total), σm and Cc (four-point confidence 
rating scale, thus three in total; see Fig. 6c, task 2). Example fits are 
shown in Supplementary Fig. 6 (also see Supplementary Fig. 5e). We 
modelled data from ref. 33 using 22 free parameters: λ, σd (one per atten-
tion level, three in total), Cd (two per attention level, six in total), σm 
(one per attention level, three in total) and Cc (four-point confidence 
rating scale, one set per attention level, thus nine in total; see Fig. 6c 
and Supplementary Fig. 5c).

Some studies used a task design that combined a 2-IFC categoriza-
tion decision with a confidence report (that is, Arbuzova and Filevich, 
unpublished but available in the Confidence Database31). In these tasks, 
a subject is shown two stimulus intervals and judges which interval 
contained the ‘signal’ stimulus. To model such data, we assume that 
the decision is based on a comparison of the evidence provided by each 
stimulus interval. The one-dimensional decision variable, Vd, reflects 
the outcome of this comparison, which we model as a difference opera-
tion29. The difference of two Gaussian distributions is itself a Gaussian 
with mean equal to the difference of the means and standard deviation 
equal to the square root of the sum of the variances. Everything else is 
the same as for the 2-AFC task. When different from zero, Cd now reflects 
an interval bias (for example, a preference for ‘interval 1’ choices; see 
example fit in Fig. 1d).

Model comparison
We evaluated CASANDRE’s assumed confidence computation and 
overall model architecture by fitting different model variants to an 
experiment that involved joint manipulations of stimulus strength 
and stimulus reliability (ref. 22, task 1, 19 subjects). For each model 
comparison, we computed the AIC, given by:

AIC = −2ln(L) + 2k,

where L is the maximum value of a model’s likelihood function and k is 
the number of fitted parameters. To focus this analysis on the model’s 
second-stage operations, we began by fitting 13 first-stage parameters 
to each subject’s choice data: λ, σd (one per contrast level, six in total) 
and Cd (one per contrast level, six in total). These parameters were 
kept constant across all model variants. The head-to-head model com-
parisons consisted of (1) confidence as a noiseless stimulus strength 
estimate versus confidence as a noiseless decision reliability estimate, 



Nature Human Behaviour

Article https://doi.org/10.1038/s41562-022-01464-x

(2) confidence as a noiseless decision reliability estimate versus confi-
dence as a noisy decision reliability estimate, (3) symmetric confidence 
criteria versus asymmetric confidence criteria and (4) a log-normal 
versus Gamma second-stage noise distribution.

Datasets
The majority of our analyses focus on two studies22,32. To test the effect of 
task structure on meta-uncertainty, we additionally analysed data from 
three other studies25,33,34. The data from Navajas et al.32 were provided 
by an author32. All other datasets were obtained from the Confidence 
Database31 (available at: https://osf.io/s46pr/). Given that the CASANDRE 
model yields more reliable parameter estimates for longer experiments 
with more stimulus conditions (error bars in Fig. 4c), we included all 
experiments from the database that involved a large number of sub-
jects, several hundred trials per subject, and multiple levels of stimulus 
strength and/or stimulus reliability. All detailed experimental designs 
and procedures are available in the original publications or in abbreviated 
form in the Confidence Database. We briefly describe each dataset below.

We analysed data from all three experiments in ref. 22. All subjects in 
experiments 1 and 2 performed both task 1 (discriminating categories 
of orientation distributions with different means but the same stand-
ard deviation; their ‘Task A’) and task 2 (discriminating categories of 
orientation distributions with the same mean but different standard 
deviations; their ‘Task B’). As stimulus orientations were drawn from a 
continuous distribution, to plot the data we grouped nearby orienta-
tions into nine bins with similar numbers of trials. Data and model fits 
from two example subjects performing task 1 in experiment 1 are shown 
in Fig. 1b,c and Supplementary Fig. 1. Fitted parameters from all 19 sub-
jects who performed experiments 1 and 2 are included in Fig. 6c (task 
1) and Supplementary Fig. 5f. Subjects in experiment 3 performed only 
task 2. Data and model fits from an example subject performing task 2 
in experiment 3 are shown in Supplementary Fig. 6. Fitted parameters 
from all 34 subjects who performed task 2 in experiments 1, 2 and 3 are 
included in Fig. 6c (task 2) and Supplementary Fig. 5e.

We analysed data from all three experiments in ref. 32. Thirty sub-
jects performed experiment 1. Fourteen of those 30 subjects returned 
about a month after their first session to perform the same task again as 
experiment 2. Finally, 20 subjects performed experiment 3, participat-
ing in a perceptual (experiment 3A) and cognitive (experiment 3B) task 
in two different sessions. We analysed each of these 84 different experi-
mental sessions independently. Data and model fits from an example 
subject are shown in Supplementary Fig. 5. Fitted parameters and 
alternative metacognitive metrics from all 14 subjects who performed 
both experiments 1 and 2 are included in Fig. 5a and Supplementary 
Fig. 9d (test–retest stability). Fitted parameters and alternative meta-
cognitive metrics from all 20 subjects who performed experiment 3 
are included in Fig. 5d and Supplementary Fig. 9d (domain generality). 
Fitted parameters from 50 subjects performing experiment 1 and the 
perceptual task of experiment 3 (experiment 3A) are included in Sup-
plementary Figs. 6c and 5d. Further analyses using these data to test 
the independence of meta-uncertainty from confidence reporting 
strategy and uncertainty are explained in the next section.

We analysed unpublished data from Arbuzova and Filevich (avail-
able in the Confidence Database under the name Arbuzova_unpub_1)31. 
This experiment demonstrates the generalization of the CASANDRE 
model to a visuomotor estimation task as well as 2-IFC experimental 
designs. Data and model fits from a representative subject are shown 
in Fig. 1d.

Fitted parameters from all 25 subjects from ref. 34 and from all 
20 subjects from ref. 25 are included in Fig. 6c. We analysed data from 
12 subjects performing a version of task 2 in ref. 22 with an added 
attention manipulation from ref. 33. To get the single estimate of 
meta-uncertainty included in Fig. 6c for each subject, we averaged 
the values estimated from all three attention conditions, as these were 
not notably different.

Construct validity analyses
To test the independence between confidence reporting strategy and 
measures of metacognitive ability, we manipulated the confidence 
reporting behaviour of subjects across all sessions from ref. 32 (follow-
ing an analysis developed by ref. 46). In these experiments, confidence 
reports were measured using a six-point rating scale. We remapped 
responses into a four-point rating scale using two different grouping 
rules (one conservative, one liberal). The conservative mapping is [1∣2 
3 4∣5∣6], the liberal mapping is [1∣2∣3 4 5∣6] (that is, for the conservative 
mapping, ratings 2, 3 and 4 were combined, and for the liberal mapping, 
ratings 3, 4 and 5 were combined.) To limit the model comparison to the 
second stage of the decision-making process, the lapse rate, stimulus 
sensitivity and perceptual criterion were shared across both model 
variants. Only the meta-uncertainty and confidence criteria differed 
across both model variants. To obtain adequately constrained and 
stable model fits to these manipulated data, we only included a session 
in the analysis if at least 10 responses were recorded at the highest level 
of the confidence scale. This reduced a total of 84 sessions to 43 (and 
50 subjects to 32) (Fig. 5b).

To test the independence between stimulus uncertainty and meas-
ures of metacognitive ability, we split experimental data from each 
session in half32. We estimated meta-uncertainty independently for the 
two easiest and the two hardest stimulus conditions. To limit the model 
comparison to the question of whether meta-uncertainty is independ-
ent of stimulus reliability, all other model parameters were fixed across 
conditions. For consistency with the criterion analysis, we applied the 
same inclusion criteria, yielding data from 43 sessions included in Fig. 5c.

Bayesian uncertainty estimation
We examined a simple model of Bayesian uncertainty estimation (Fig. 
6a,b.). We modelled the uncertainty likelihood function as a log Gauss-
ian function with a geometric mean value, μu, that varied from trial 
to trial. Each trial, μu was randomly drawn from a log Gaussian distri-
bution whose geometric average matched the true level of stimulus 
uncertainty, Su, and with spread σu. As is typical for a well-calibrated 
model, the spread of the likelihood function equalled σu. We assumed 
three different experimental designs that yielded a prior uncertainty 
belief function composed of a single delta function (N = 1), three delta 
functions (N = 3) and five delta functions (N = 5). We simulated 1,000 
trials per design. In this simulation, we computed the posterior on a 
single trial basis and selected its maximum as the MAP uncertainty 
estimate. Figure 6b summarizes a simulation in which Su = 2.5, σu = 1.5 
and the prior belief function peaked at 2.5 for N = 1, at 1.67, 2.5 and 3.33 
for N = 3, and at 0.83, 1.67, 2.5, 3.33 and 4.17 for N = 5.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
This study generated no new data. The data used in this study are avail-
able from the Confidence Database (available at: https://osf.io/s46pr/).

Code availability
The code supporting the findings of this study and a software package 
implementing the CASANDRE model is publicly available (https://
github.com/gorislab/CASANDRE.git).
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

This study generated no new data. The data used in this study are available from the Confidence Database (available at:  https://osf.io/s46pr/).
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Study description All studies analyzed in this manuscript were previously published or are publicly available in a repository. Data are quantitative and 
include information about decision choice, decision confidence, reaction time, and stimulus parameters.

Research sample Each dataset has a different sample of adult participants. The details of each dataset used in this paper can be found in the original 
publications associated with each dataset.

Sampling strategy Details of the sampling strategy of individual datasets can be found in the original publications associated with each dataset. 
Generally the main selection criterion for subjects was that the participant was over 18 years old and had normal or corrected to 
normal vision.

Data collection Details of the data collection strategy of individual datasets can be found in the original publications associated with each dataset. No 
study employed blinding. The apparatus used to collect data varied based on the nature of the study. 

Timing Information about when data were collected is present in read-me files associated with each dataset available on the Confidence 
Database OSF website. 

Data exclusions Detailed information about data exclusion are reported in the manuscript's methods section. In two analyses (see Methods: 
Construct validity analyses) we excluded datasets if the subject did not use the highest confidence reporting level at least 10 times 
during the session. This reduced the number of possible sessions to analyze from 84 to 43. 

Non-participation Details about non-participation for each individual dataset can be found in the original publication associated with each dataset

Randomization Details about randomization for each individual dataset can be found in the original publication associated with each dataset. In 
general, studies analyzed in this manuscript did not involve multiple groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Animals and other organisms

Human research participants
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Methods
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ChIP-seq
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Human research participants
Policy information about studies involving human research participants

Population characteristics Each dataset has a different sample of adult participants. The details of each dataset used in this paper can be found in the 
original publications associated with each dataset or read-me file available on the Confidence Database.

Recruitment Information about the recruitment of study participants can be found in the original publications associated with each 
dataset or read-me file available on the Confidence Database.

Ethics oversight Each dataset was approved by a corresponding IRB committee that is identified in the orignal publication assosiated with 
each dataset. 
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