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Abstract Genetic and genomic resources have recently been
developed for the bioenergy crop switchgrass (Panicum
virgatum). Despite these advances, little research has been
focused on identifying genetic loci involved in natural varia-
tion of important bioenergy traits, including biomass. Quanti-
tative trait locus (QTL) mapping is typically used to discover
loci that contribute to trait variation. Once identified, QTLs
can be used to improve agronomically important traits through
marker-assisted selection. In this study, we conducted QTL
mapping in Austin, TX, USA, with a full-sib mapping popu-
lation derived from a cross between tetraploid clones of two
major switchgrass cultivars (Alamo-A4 and Kanlow-K5). We

observed significant among-genotype variation for the vast
majority of growth, morphological, and phenological traits
measured on the mapping population. Overall, we discovered
27 significant QTLs across 23 traits. QTLs for biomass pro-
duction colocalized on linkage group 9b across years, as well
as with a major biomass QTL discovered in another recent
switchgrass QTL study. The experiment was conducted under
a rainout shelter, which allowed us to examine the effects of
differential irrigation on trait values. We found very minimal
effects of the reduced watering treatment on traits, with no
significant effect on biomass production. Overall, the results
of our study set the stage for future crop improvement through
marker-assisted selection breeding.
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Introduction

Switchgrass (Panicum virgatum) is a large C4 perennial grass
species native to North America that has recently been the
focus of major research efforts due to its potential as a
bioenergy feedstock [1, 2]. Currently, biofuel in the USA is
primarily derived from corn starch in the form of ethanol [3].
The use of corn as a bioenergy crop has been widely criticized
due to the low net energy return, competition with food pro-
duction, and the environmental degradation, including eutro-
phication that can result from agricultural runoff [4–6]. To
transition domestic biofuel production away from corn-
starch-based ethanol, recent efforts have beenmade to develop
the production of cellulosic ethanol and other biofuels from
large perennial grasses, such as switchgrass [2]. Biofuels
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produced from perennial grasses are projected to have a much
higher net energy return, compete less directly with food pro-
duction, and be more sustainable due to decreased soil degra-
dation and fertilizer inputs [1, 2]. Beyond bioenergy uses,
switchgrass has long been planted as a landscaping plant and
forage crop, has been used to mitigate soil erosion, and has
been important in the restoration of disturbed habitats [2].

Molecular genetic and genomic resources for switchgrass
have been developed over the past two decades [7–13]. These
advances have, in turn, made the construction of genetic link-
age maps for switchgrass possible [8, 14, 15]. Despite the
assembly of multiple switchgrass linkage maps, only one
study [16] has thus far utilized those maps to link genotype
and phenotype through quantitative trait locus (QTL) analysis.
QTLmapping is important for the development of switchgrass
as a bioenergy feedstock because it can identify loci that can
subsequently be used to facilitate the improvement of agro-
nomically important traits through marker-assisted selection
[16, 17]. Marker-assisted selection has additional importance
for breeding of perennial plants because it allows selection to
occur at the seedling stage rather than waiting years for field
phenotypic evaluation [16]. The major limitations to genetic
mapping in switchgrass are its large genome size, long estab-
lishment time, and its polyploid genome. Switchgrass primar-
ily occurs as a tetraploid or octoploid [7, 18]. The original
tetraploidization event appears to be the result of an allopoly-
ploid hybridization between different species [19]. Octoploidy
is also common in switchgrass and has apparently occurred
multiple times independently [20, 21].

Here, we report the results of a QTL mapping study in a
full-sib mapping population resulting from a cross between
two tetraploid (2n=18) genotypes that were derived from ma-
jor cultivars of switchgrass, Alamo-A4 and Kanlow-K5. Both
Alamo and Kanlow are lowland ecotype cultivars, which are
typically found in wet riparian areas of the southern USA.
This is in contrast to the upland ecotype that is found in drier
habitats [2, 21]. We hereafter refer to progeny of the A4 × K5
cross as the Albany mapping population, due to its origin at
the Western Regional Research Center in Albany, CA, USA.
The original linkage map for the Albany population was as-
sembled by Okada et al. [14] and demonstrated for the first
time clear evidence of disomic inheritance in switchgrass.

The primary goals of our study were to evaluate trait
variation in switchgrass and to identify QTLs underlying
genetic variation in those traits. We grew the mapping pop-
ulation in Austin, TX, USA, for two seasons (2011 and
2012) and measured a different set of traits each season. In
the first season, we documented the growth rate of the Al-
bany population through the assessment of plant height and
tiller number at ten time points. Phenological traits and total
biomass accumulation were quantified in both seasons. Mul-
tiple individual tiller traits (e.g., leaf shape, tiller mass, tiller
length, etc.) were also quantified each season as well as

other whole-plant traits. We conducted QTL mapping using
a combined outbred linkage that was built from raw geno-
type data originally collected by Okada et al. [14]. Finally,
we evaluated the effects of a reduced watering treatment on
switchgrass traits, including biomass.

Methods

Experimental Design

The experiment was conducted in a rainout shelter facility
(N 30.2845, W −97.7809) located within the 33-ha
Brackenridge Field Laboratory property of the University
of Texas, in Austin, TX, USA, adjacent to the Colorado
River. The rainout shelter has a steel frame (Windjammer
Cold Frame, International Greenhouse Company, Danville,
IL, USA) of dimensions 18.3×73 m. The shelter was cov-
ered with a clear 240-μm polyethylene roof, which reduced
photosynthetically active radiation by ∼10 %. The walls
(2.1 m) and eaves (4.2 m) of the shelter were not covered,
so as to allow airflow with the ambient environment. The
site elevation is 133 m above sea level. Mean maximum
temperature (July–August) is ∼35.0 °C, and the mean min-
imum temperature (December) is ∼3.0 °C. Soils are Yazoo
sandy loam and are greater than 1.2 m deep.

Each member of the Albany population was clonally
divided in Austin, TX, USA, in the summer of 2010. We
planted two replicates of 192 genotypes from the mapping
population in the third week of October of 2010. Plants
were arranged in rows, with 0.9-m spacing between plant
centers within rows and 2.1-m spacing between rows.
Twelve genotypes from the mapping population were
planted in each of the 32 rows. One complete set of Alba-
ny genotypes was randomized across even rows, while the
other set was randomized across odd rows.

To prevent the spread of applied irrigation water and roots
between rows, we inserted 3.2-mm-thick hollow plastic sheets
(Regal Plastics, Austin, TX, USA) 1.2 m deep between each
row. To minimize edge effects, we planted a border of switch-
grass plants around the entire field. Plants were hand-watered
with a hose twice a week until late November 2010, at which
point plants were only watered once a week. Hand watering
continued weekly until the completion of the irrigation system
onMarch 3, 2011. All subsequent irrigation was supplied with
an irrigation system that consisted of three parallel strands of
10-mm-diameter irrigation drip tape (T-Tape, John Deere,
Moline, IL, USA) separated by 0.4 m running the length of
each row. The drip tape had a flow rate of 4.22 L per minute
per 100 m of tape. Pressure regulators maintained water pres-
sure in the irrigation system at 0.7 bar. For the remainder of
2011 and until May 31, 2012, all planting rows were irrigated
at a rate equal to 90 % of expected plant water requirements
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(WRs).WRwas calculated on a monthly basis using historical
reference evapotranspiration (ETo) data from the TexasET
network (http://texaset.tamu.edu). To determine WR,
monthly ETo data for the Austin area were multiplied by a
crop coefficient (Kc);WR=ETo×Kc. The Kc (0.9) utilized for
the duration of this experiment was obtained from Sudan grass
at peak production, as it was the most similar crop to P.
virgatum on the TexasET network crop coefficient database
(http://texaset.tamu.edu/cropcoe.php).

To test the effects of soil water availability on biomass and
other traits during the summer months, we conducted a differ-
ential irrigation treatment in 2012. For the treatment, one set of
clonal replicates (clonal replicates in even rows) received re-
duced irrigation with respect to the second set of clonal repli-
cates (clonal replicates in odd rows). Differential irrigation
began on June 1, 2012 and continued until September 31,
2012, with no further irrigation (as a harvest aid) until harvest
on October 24, 2012. The irrigation differential applied was
based on the calculated WR, with dry rows receiving 50 %
less irrigation than the wet rows. For the first 6 weeks of the
treatment period, wet and dry rows were irrigated at 80 and
40 % of WR, respectively. Beginning on July 15, 2012, the
treatment levels were reduced to 50 and 25 % of WR to in-
crease the magnitude of the treatment effect. The differences
in applied irrigation can be seen in Fig. S1.

Phenotypic Variation

We quantified multiple phenological traits over the course of
both seasons. The dates when traits were measured are listed
in Table 1. Each season, we monitored emergence (greening
up time) at multiple time points from early February into the
spring. We measured the number of days until anthesis (the
first open floret on plant) in 2011 and the date of heading
(50% of tillers heading) in 2012. To assess the timing at which
plants grew the most during the season, we measured plant
height (cm) and tiller number at ten time points each over the
course of 2011. We also measured plant height for three times
in 2012 to compare growth between years.

In both seasons, we selected three tillers from each plant to
quantify a suite of morphological traits. We measured a dif-
ferent set of tiller traits each season. In June 2011, we mea-
sured morphological traits on the three tallest tillers of each
plant and calculated the mean of each trait across the three
tillers. These traits included the length (cm) and width (mm)
of the third fully elongated leaf above the ground, the length
(cm) and diameter (mm) of the second internode, and the
height of the tiller to the tip of the panicle (cm). In the summer
of 2012, we destructively collected three single tillers from
each plant for trait measurements.We based the timing of tiller
collection on plant maturity, with tillers being harvested after
the plant produced panicles on 50 % of its tillers (heading
date). Selected single tillers possessed an emerging or

flowering panicle and were representative in size of each
plant’s average tiller diameter and length. We cut tillers below
the first node that could be located above the soil surface and
transported them immediately to the lab for measurement. For
each tiller, we measured its total length (cm), base width
(mm), length (cm) of the first internode (cm), and length
(cm) and width (mm) of the terminal internode and counted
the total number of phytomers per tiller. We also measured the
length (cm), width (mm), and leaf area (cm2) of the fourth leaf
and flag leaf of each tiller. The means for each trait across the
three harvested tillers are reported in Table 1.

Two other leaf traits were quantified in 2011. A SPAD
meter (Konica-Minolta SPAD 502, Chiyoda, Tokyo, Japan)
was used to approximate the chlorophyll content (unitless)
of the highest fully elongated leaf on each tiller using the ratio
of transmitted light with wavelengths 940 and 650 nm [22].
Switchgrass varies extensively in leaf color hue, with waxy
leaves having a bluer hue than less waxy leaves: We visually
scored the color hue of each plant on a five-point scale from 1
being light green to 5 being very blue.

To assess biomass, we harvested all aboveground biomass
from each plant with a sickle bar mower (BCS America,
Portland, OR, USA) at the end of both seasons (Fig. 1). The
plants were dried at 57–65 °C to a constant mass (±1 %) and
weighed to determine aboveground biomass production (g).
We conducted a final tiller count for the season following the
harvest in late December by counting the stumps of cut tillers.
Plants deemed too large to easily manipulate into drying ovens
were ground with a 15-cm-blade chipper, dried at 57–65 °C to
a constant mass (±1 %), and weighed to determine above-
ground biomass production.

Other whole-plant traits were measured in both years, in-
cluding early season crown width andmid-season canopy area
in 2011 as well as leaf area index and tiller angle in 2012.
Canopy area was measured at 0.5 m above the ground by
quantifying two perpendicular diameters and calculating the
area, with the assumption that the cross-sectional shape of the
canopy is an ellipse. We measured the leaf area index (LAI,
m2 m−2) of each plant on March 22 and April 22 using a
Decagon LP-80 Ceptometer (AccuPAR model LP-80, Deca-
gon Devices, Inc., Pullman, WA, USA). LAI was determined
by averaging two perpendicular measurements taken through
the center of each plant at 10 cm above the soil surface. We
scored (1–10 scale) the tillering angle of each plant twice in
2012, with a score of 1 representing completely erect (perpen-
dicular to soil surface) tillers and a score of 10 representing
completely procumbent (parallel to soil surface) tillers. Final-
ly, we rated the degree of post-harvest regrowth following the
2012 harvest of each plant on a 0–10 scale, with 0 being no
regrowth and 10 being very vigorous regrowth.

We calculated the mean, standard error (SE), and range for
all traits (Table 1). To test for significant variation among
genotypes, we also conducted one-way ANOVAs for each
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Table 1 Mean and variation of traits measured on the Albany mapping populations

Trait Date 2011 Mean SE Range Date 2012 Mean SE Range

Anthesis date (Julian day) Multiple days 181 1.77 107–242 – – – –

Base tiller width (mm) – – – – Summer 2012 5.33 0.04 3.30–7.34**

Biomass (g) December 7, 2011 1014.30 25.31 147–3549** October 24, 2012 3198.73 77.60 692–10276**

Canopy area (cm2) June 15, 2011 10781.97 326.14 60.8–40860.8 – – – –

Chlorophyll content (SPAD) June 15, 2011 40.67 0.21 34.4–50.1* – – – –

Crown width (cm) March 23, 2011 8.85 0.20 0.64–16.51* – – – –

First internode length (cm) – – – – Summer 2012 24.33 0.20 14.13–38***

First node width (mm) – – – – Summer 2012 6.98 0.05 4.57–10.53*

Flag leaf area (cm2) – – – – Summer 2012 20.55 0.51 6.18–61.19

Flag leaf length (cm) – – – – Summer 2012 38.16 0.44 19.13–73.16*

Flag leaf width (mm) – – – – Summer 2012 13.08 0.10 7.67–21*

Fourth leaf area (cm2) – – – – Summer 2012 47.70 0.77 12.28–93.29***

Fourth leaf length (cm) – – – – Summer 2012 57.82 0.47 33.73–84.3***

Fourth leaf width (mm) – – – – Summer 2012 15.47 0.11 9.00–23.17***

Green-up time (Julian day) Multiple days 63.31 0.41 43–81*** Multiple days 57.26 0.25 43–75***

Heading date (Julian day) – – – – Multiple days 153.27 0.96 102–197***

Leaf area index 1 – – – – March 22, 2012 1.84 0.03 0.48–5.23***

Leaf area index 2 – – – – April 22, 2012 2.95 0.06 0.97–12.73

Leaf color (1–5) June 15, 2011 3.64 0.03 2–5** – – – –

Mean tiller mass (g) – – – – Summer 2012 22.38 0.34 3.13–44.67***

Number of phytomers – – – – Summer 2012 8.86 0.08 4–12.33*

Number of tillers 1 March 12, 2011 7.59 0.26 0–27*** – – – –

Number of tillers 2 March 23, 2011 9.60 0.27 0–27*** – – – –

Number of tillers 3 April 3, 2011 9.80 0.26 0–27*** – – – –

Number of tillers 4 April 13, 2011 11.92 0.32 1–38*** – – – –

Number of tillers 5 April 27, 2011 22.80 0.56 1–61*** – – – –

Number of tillers 6 May 11, 2011 27.88 0.66 3–79** – – – –

Number of tillers 7 May 26, 2011 36.14 0.79 4–115** – – – –

Number of tillers 8 June 29, 2011 61.06 1.26 9–155* – – – –

Number of tillers 9 August 12, 2011 103.07 2.43 26–371* – – – –

Number of tillers 10 December 8, 2011 121.03 2.56 32–380* – – – –

Plant height 1 (cm) March 3, 2011 4.60 0.28 0–29.8*** – – – –

Plant height 2 (cm) March 12, 2011 14.89 0.41 0–39*** March 12, 2012 62.46 0.66 23–99***

Plant height 3 (cm) March 23, 2011 40.35 0.64 0–68.58*** – – – –

Plant height 4 (cm) April 3, 2011 68.05 0.74 19.05–100.33*** March 29, 2012 118.62 0.93 69–158*

Plant height 5 (cm) April 13, 2011 83.86 0.77 7.62–121.92*** – – – –

Plant height 6 (cm) April 27, 2011 111.05 0.94 10.16–153.67* April 18, 2012 157.15 1.08 70–210*

Plant height 7 (cm) May 11, 2011 127.95 0.95 29–174*** – – – –

Plant height 8 (cm) May 26, 2011 147.40 1.01 73.5–201*** – – – –

Plant height 9 (cm) June 29, 2011 177.32 1.02 111–239*** – – – –

Plant height 10 (cm) August 12, 2011 186.27 1.25 41–272*** – – – –

Post-harvest green up – – – – November 19, 2012 3.20 0.12 0–10***

Second internode length (cm) June 15, 2011 13.87 0.08 8.33–19.00*** – – – –

Second internode width (mm) June 15, 2011 5.85 0.03 3.87–8.20** – – – –

Terminal internode length (cm) – – – – Summer 2012 16.69 0.26 5.73–39.20

Terminal node width (mm) – – – – Summer 2012 5.58 0.05 3.04–12.21**

Third leaf length (cm) June 15, 2011 55.51 0.37 26.17–73.50*** – – – –

Third leaf width (mm) June 15, 2011 14.94 0.07 9.00–19.33*** – – – –

Tiller angle 1 – – – – March 23, 2012 5.08 0.07 3–7***

Tiller angle 2 – – – – April 30, 2012 4.98 0.06 3–9***

Tiller length (cm) – – – – Summer 2012 189.22 1.35 96.1–279.6**

Date date of measurement, SE standard error

Range includes asterisks to indicate whether among-genotype variation was significant

*P<0.05, **P<0.01, *** P<0.001
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measured trait, except for biomass. Since biomass was quantified
in both 2011 and 2012, we analyzed the effects of genotype, year,
and the genotype × year interaction on biomass with a two-way
ANOVA. All ANOVAs were conducted using the R Language
and Environment (version 3.1.2) [23]. Finally, we evaluated the
effects of the 2012watering treatment on traitsmeasured after the
initiation of the treatment in June. One-way ANOVAs conducted
in R were used to test treatment effects on these traits.

Growth Modeling

Rates of growth based on plant heights (cm) and tiller num-
bers, measured during the 2011 growing season, were
modeled as continuous functions of time (days) using nonlin-
ear mixed-effects models, implemented in R [23] using the
nlme package [24]. Random-effects model coefficients were
estimated for every plant at the experimental site and used to
predict a range of phenotypes. A series of manipulations were
necessary to facilitate curve fitting: Both tiller number and
growth were log(x+1)-transformed to improve homogeneity,
zero values for tiller number were excluded from the analysis,
and the first day on which height measurements were collect-
ed (61 Julian days, March 2) was set to t=0 (this date was also

immediately prior to the first tiller census on which newly
emerged tillers were observed).

Tiller number showed a sigmoidal increase during the
growing season and was modeled using the four-parameter
logistic equation implemented by SSfpl:

N 0 ¼ AN
BN−ANð Þ

1þ e
tIP−t
Φð Þ

where N′ is the transformed number of tillers, AN is the initial
asymptote, BN is the eventual asymptote, t is the time (days),
tIP is the time at which the inflection point of the curve is
reached, and Φ is a scaling coefficient.

Log-transformed plant heights (H′) increased asymptotical-
ly, so were modeled using the monomolecular function, im-
plemented in R using SSasymp:

H 0 ¼ BH þ H0−BHð Þe−rt

where H′ is the transformed plant height, BN is the eventual
asymptotic height, H0 is the height at t=0, and r is a rate
constant (exp(lrc) in the nlme documentation).

Because it was necessary to use a log(x+1) transformation
in order to fit the growth functions, model predictions were
back-transformed to the original scale (Fig. 2a, d) prior to the
derivation of growth rates. For both tiller number and plant
height models, absolute growth rates (AGRN, tillers day−1;
AGRH, cm day−1) were determined as the slopes of the growth
functions on the original scale (dX/dt), using finite differenc-
ing. Relative growth rates (RGRN, tillers tiller

−1 day−1; RGRH,
cm cm−1 day−1) were calculated as (dX/dt)/X [25].

We predicted growth rates and plant sizes from the growth
functions (Fig. 2b, c, e, f) and used these predictions to derive
several growth traits: the maximum AGR obtained for both
tillers and height (AGRN,max and AGRH,max), the days on which
maximum AGR was obtained for both tillers and height (tAGR,N
and tAGR,H), and the maximum RGR (RGRN,max) and day on
which it was achieved (tRGR,N) in terms of tillers (we did not
calculate equivalent RGR values for plant height because rela-
tive growth rates calculated from the monomolecular function
decline asymptotically from maximums when H>0 that can be
extreme as H→0 (Fig. 2b); finally, we predicted the days (tAsym,
N and tAsym,H) on which tiller number and height were within
5 units (cm, and tillers, respectively) of the predicted asymptotic
values on the original scale (exp(BH)−1 and exp(BN) −1).

Linkage Map

The first linkage map for the Albany full-sib mapping popu-
lation was constructed as two separate maps based on recom-
bination events that occurred in the male parent (Alamo-A4)
or female parent (Kanlow-K5). To conduct QTL mapping, we
first combined the male and female maps together into a single
outbred map using the R package OneMap [26]. OneMap is a
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Fig. 1 Histogram distribution of biomass in 2011 and 2012, with means
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maximum-likelihood-based methodology for linkage map
construction in outbred species, where highly informative
markers that are polymorphic in both parents (e.g., AB ×
CD) are used to unite homologous linkage groups from male
and female maps. Okada et al. [14] originally constructed their
linkage map by treating all alleles as independent presence/
absence markers. In contrast, we evaluated all alleles simulta-
neously for each marker, which allowed us to group multiple
alleles together by genetic locus. Following the grouping of
alleles by locus, we determined the segregation category des-
ignation of each locus according to the OneMap instructions.

We conducted initial grouping of markers using the two-point
algorithm in OneMap (log of odds (LOD)=10, max.rf=0.5). We
then constructed each linkage group individually using the fol-
lowing protocol. We used rapid chain delineation (RCD) to iden-
tify a preliminary marker order [27] for each linkage group. We
then removed all but seven markers for the construction of a
framework map. We preferentially selected markers that were
the most informative and spread as broadly across the prelimi-
nary RCD linkage map as possible. The initial seven markers
were ordered with the COMPARE algorithm. We then used the
TRYalgorithm to place one marker at a time onto the framework
map. After each ten additional markers, we checked their order

using the RIPPLE algorithm to search for higher likelihood al-
ternative orders within a five-marker window [28].When adding
markers, we tried to avoid adding markers with ambiguous or-
ders, especially when many markers were available.

We began linkagemap assemblywith 637markers,which had
successfully been assigned OneMap designations and did not
have significant segregation distortion at P<0.001. Through the
process, we strove to make sure that we recovered the full length
of the linkage maps assembled by Okada et al. [14], by compar-
ing their map to our early map assemblies. We had difficulty in
fully assembling four linkage groups with the set of 637 markers
(LG1a, LG1b, LG2b, and LG7b). To complete the assembly of
these linkage groups, we searched our pool of markers that had
previously been previously filtered for segregation distortion
(P<0.001) and recovered 41 markers from those four linkage
groups. We then added a subset of those markers with the TRY
algorithm to the linkage maps to complete their assemblies.

QTL Mapping

We observed considerable spatial heterogeneity across our
field site. Because the trait data showed systematic trends,
unrelated to genotype, across the plot, we estimated and

Fig. 2 Fitted curves for growth of individual plants predicted on a daily
time step. Height, fitted as a monomolecular, asymptotic function on a
log(x+1) scale: a) plant heights and fitted curves on the original scale, b
relative growth rates for height (curves have been truncated to eliminate
RGR values calculated for H≤1 cm, which result in unrealistic values),

and c absolute growth rates for height. Tiller numbers, fitted as a four-
parameter logistic function on a log(x+1) scale after removal of zero
counts: d tiller numbers and fitted curves on the original scale, e relative
growth rates for tiller number, and f absolute growth rates in terms of tiller
accumulation
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removed these trends prior to QTL mapping. An example of
this process can be seen in Fig. S3. Trend estimation and
removal were accomplished using the tps from the fields pack-
age [29] in R [23].We estimated the trend surface using the tps
mixed-effects model where

Yk ¼ Zkbþ P xkð Þ þ G xkð Þ þ ϵk

where Yk is the measured trait at location k, Zk is a design
matrix that accounts for the covariates when present, b is a
vector of coefficients, P(xk) is a linear spatial trend function at
spatial coordinate xk, G(xk) is a Gaussian random field con-
structed from radial basis functions, and ϵk are iid. random
errors. The degree of smoothing was adjusted using cross
validation to minimize

g fð Þ ¼
Z

∇2 f xð Þdx

where f(x)=P(x)+G(x) and x represents the spatial plane. The
residuals ϵk are estimates of each trait.

Prior to QTL mapping, we calculated the mean for the two
replicates of each clone of Albany population using the spa-
tially adjusted data. We then implemented QTL mapping
using R/qtl [30]. We first calculated the probabilities of geno-
types using a hiddenMarkovmodel (calc.genoprob) under the
outbred mapping design. We then conducted genetic mapping
using Haley-Knott regression with the scanone function in R/
qtl and calculated significance thresholds for each trait with
1000 permutations. The 1.5 LOD drop confidence intervals
were calculated for each QTL.We also imputed genotype data
with sim.geno and estimated the variance explained and addi-
tive effects for each identified QTL with fitqtl. Additive ef-
fects were calculated as differences in phenotypic means be-
tween individuals with the AC genotype and each of the other
three genotypes (AD, BC, and BD) at the QTL. Finally, we
conducted mapping of genotype × environment QTLs by first
calculating the difference in trait values for each genotype
between wet and dry treatments, for traits measured after the
initiation of the treatment in June 2012. We then conducted
QTL mapping on the values of the difference, using the
methods described above, as in Lowry et al. [31].

Results and Discussion

Phenotypic Variation

Phenological traits varied greatly among experimental plants.
We observed significant among-genotype variation in spring
emergence (green-up time) in both 2011 and 2012 (Table 1).
We also observed significant among-genotype variation in
heading date in 2012. However, there was no significant var-
iation in date of anthesis in 2011. Some whole-plant traits,

such as tiller angle, were significantly variable among geno-
types, while others, such as canopy area, were not (Table 1).
All individual tiller traits varied significantly among geno-
types. There was also significant variation among genotypes
for leaf color and leaf chlorophyll content (Table 1).

Growth in plant height and tiller production both had a sig-
moidal shape in 2011, with slow early season growth, rapid
mid-season growth, and a late season asymptote (Fig. 2a). Plant
height began its rapid growth phase around March 12, while
new tiller production did not reach a rapid growth phase until
later in the growing season (Fig. 2d). Plant height began to level
off around June 29, while new tiller production leveled off
around August 12. Plant height growth occurred much more
rapidly in 2012 than in 2011, with plants achieving a mean
height of 157.15 cm on April 18, 2012 but only 111.05 cm
on April 27, 2011. The more rapid growth in 2012 likely re-
flects the more moderate winter conditions of that year and the
fact that plants were better established in 2012 than in 2011.

There was a high degree of variation in total biomass pro-
duction in both 2011 and 2012 (Fig. 1), with some plants over
an order of magnitude larger in size than other plants
(Table 1). Mean biomass was more than three times greater
in 2012 than in 2011 (Tables 1 and 2), which reflects vigorous
growth following establishment. There was also significant
among-genotype variation in biomass (Table 2).

Only four traits were significantly affected by the watering
treatment in 2012. These traits included tiller length (F1,378=
9.735, P=0.00195), fourth leaf length (F1,378=3.888, P=
0.0494), fourth leaf area (F1,378=4.226, P=0.0405), and mean
tiller mass (F1,378=4.671, P=0.0313). Biomass was not sig-
nificantly affected by the watering treatment (F1,378=1.676,
P=0.196). The lack of effect of the watering treatment on
biomass could be the result of the treatment’s late initiation
in the growing season (June), after which point plants had
already accumulated a fair amount of aboveground biomass.
Regardless of the cause, these results suggest that watering
during summer months can be reduced in central Texas with-
out major consequences on overall yield for the season. Long-
term, however, reduced watering of a perennial grass in one
season could have consequences for biomass yield in subse-
quent years. We are currently in the process of studying those
legacy effects in other experiments.

Table 2 Analysis of variance of biomass production in the Albany
population

Sources Df Mean squares F value

Genotype 191 1,771,531 1.352**

Year 1 907,971,795 692.870***

Genotype × year 378 669,439 0.511

Residuals 378 1,310,450

**P<0.01, ***P<0.001
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Linkage Map

We successfully assembled a combined outbred linkage map
for the full-sib population using OneMap. The final linkage
map included 366 markers across 18 linkage groups, with a
total map length of 2200.75 cM (Fig. 3). The map had an
average intermarker spacing of 6.3 cM, with 3.4 % missing
genotype data. There were 100 fully informative, four allele
(A, B, C, and D), markers included in the final map, which
helped to unite male and female linkage groups together. The
recombination fractions of the final map (Fig. S2) generally
supported the order and linkage group association of markers.
The linkage groups were named by the same conventions used
in previous switchgrass linkage mapping studies [14–16].

QTL Mapping

We conducted QTL mapping on the 56 traits reported in Ta-
ble 1. Overall, we mapped 27 significant QTLs across 23 of
those traits (Fig. 3, Table 3). We detected no significant QTLs
for the remaining 33 traits. One of the most significant findings
of our study was the identification of a major biomass QTL.We
mapped the same QTL for biomass production on linkage
group (LG) 9b, centered on marker nfsg262, in both 2011
and 2012. This QTL was primarily caused by the effect of
alternative alleles contributed by the Alamo-A4 parent of the
hybrid population (Fig. 4). The additive effect of the difference
between the two Alamo-A4 alleles accounted for 208 g of
biomass per plant (20.5 % of the mean biomass) in 2011 and
565 g per plant (17.7 % of the mean biomass) in 2012 (Fig. 3).
The Kanlow-K5 alleles also had an effect on biomass, albeit
weaker, accounting for 42 g in 2011 and 252 g in 2012.

Seven of the 27 (25.9%) QTLs colocalized to one region of
LG 1b. All of these colocalizing QTLs had effects on individ-
ual tiller traits including tiller width, tiller length, tiller mass,
and leaf area (Table 3). The overlap of so many QTLs in this
region suggests that selection upon this locus could be useful
for changing tiller architecture. There was also a QTL for
heading date that had overlapping confidence intervals with
the seven tiller QTLs on LG 1b. While we detected this QTL
for heading date in 2012, we did not detect any QTLs for
anthesis date in 2011.

We mapped QTLs for plant height at four different points
during the 2011 season. There were colocalizing QTLs for
plant height on LG 3b for two consecutive measurement dates
(April 3 and April 13), but QTLs from later in the season

mapped to different LGs (LG 2a on May 26 and LG 4a on
August 12). We only mapped a single QTL for plant height at
one time point in 2012 (April 18), which colocalized with the
major biomass QTL on LG 9b. Serba et al. [16] found that
some QTLs for end of season plant height were consistently
detected across environmental conditions, so there is potential
to use marker-assisted selection to stably change plant height
across environmental heterogeneity. However, our study sug-
gests that there are different QTLs for different developmental
time points, and thus, timing of trait measurement needs to be
carefully considered in future QTL and breeding studies. Even
though there was significant among-genotype variation for
number of tillers at all of the time points, we did not map
any significant QTLs. Neither did we map any significant
QTLs for growth traits that were derived from tiller data, nor
did we map any significant QTLs for growth traits that were
derived from plant height data. One possible hypothesis for
why we did not map QTLs for growth traits is that these traits
have a highly polygenic genetic basis with relatively small
individual QTL effect sizes.

An upright growth architecture is highly desirable in
bioenergy grasses because lodging can make the harvesting
of stands difficult [32]. We mapped colocalizing QTLs for
tiller angle on March 23 and April 30 of 2012 to LG 8a.
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Fig. 4 Plot for phenotypic effects of genotypes at the nfsg262 marker of
linkage group 9b on plant biomass in a 2011 and b 2012. A and B alleles
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Kanlow-K5. Means and standard errors are plotted for each genotype

�Fig. 3 Combined outbred linkage map with location of quantitative trait
loci (QTLs). LOD (1.5) drop confidence intervals of QTLs for traits
measured in 2011 (white) and 2012 (gray) are plotted. TMass tiller
mass, InWidth internode width, HeadDate heading date, TLn tiller
length, TWidth tiller width, NWidth node width, PlHt plant height, InLn
internode length, CrWidth crown width, LfColor leaf color, PHR post-
harvest regrowth, TAngle tiller angle, FLfWidth flag leaf width
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Segregating variation in Alamo-A4 primarily caused this
QTL. The consistent finding of a tiller angle QTL on LG 8a
suggests that it might be useful for breeding of an upright
growth architecture.

We identified twoQTLs (LG 5b and LG 6b) that contributed
to leaf color. Variation in leaf color among switchgrass plants at
least partially reflects variation in leaf wax composition. Leaf
waxes can have the function of preventing water loss and can
be important for drought tolerance [33]. We also identified a
QTL for chlorophyll content (measured by SPAD) on LG 9b,
which did not colocalize with either of the leaf color QTLs.

We identified a QTL for post-harvest regrowth located on
LG 5b. Variation in post-harvest regrowth was striking, with
some plants producing new leaves on a majority of tillers,
while others were completely dormant. This variation may
reflect differences in phenology of the plants, with some
plants becoming dormant earlier in the fall. Variation in
regrowth could also reflect differences in the tolerance of
plants to harvesting, which would be a beneficial trait for

biomass production over consecutive seasons or in multiple
cut harvesting schemes.

We detected no significant genotype × environment QTLs
by mapping on the difference in trait values between the wet
and dry treatment in 2012. The lack of these QTLs could be due
to the weak overall treatment effects, for which we observed
significant effects for only four traits (described above).

A Common Locus of Biomass Variation?

Recent studies have demonstrated that large gains in bio-
mass yield are possible after only a few generations of mass
selection [34, 35]. However, breeding efforts have yet to
take advantage of marker-assisted selection [35, 36]. One
of the most significant results of this study was mapping
of the biomass QTL on linkage group 9b that was consis-
tently found across years. The largest (LOD=6.8) biomass
QTL discovered by Serba et al. [16] was in a similar region
of linkage group 9b and had a similar sized additive effect,

Table 3 Significant quantitative trait loci discovered in the Albany population

Year Trait Linkage group Position CI LOD %var BC AD BD

2011 Biomass (g) 9b 83 48–96 4.431 10.285 247.131 80.940 250.032

2011 Chlorophyll content (SPAD) 9b 195.85 174–195.85 4.524 7.932 −1.569 −0.106 −1.874
2011 Crown width (cm) 5a 108 98–124.45 4.379 9.556 0.644 −1.882 −0.619
2011 Leaf color (1–5) 5b 97 30–103 4.428 9.916 −0.211 −0.301 −0.392
2011 Leaf color (1–5) 6b 9 0–19 4.526 10.463 −0.147 −0.026 −0.378
2011 Plant height April 13, 2011 (cm) 3b 58 0–74 4.436 10.068 −5.826 4.185 −0.078
2011 Plant height April 3, 2011 (cm) 3b 61 0–68.22 5.366 12.063 −3.905 7.052 −0.385
2011 Plant height May 26, 2011 (cm) 2a 63.17 51–125.37 4.605 10.472 7.827 −5.174 0.340

2011 Plant height August 12, 2011 (cm) 4a 37 15–65 4.667 10.521 12.412 3.518 14.472

2011 Second internode length (cm) 2b 8 0–22 4.215 8.216 −0.873 −0.220 −0.804
2011 Second internode length (cm) 9b 89.7 48–155 4.441 7.858 0.313 0.453 1.035

2011 Second internode width (mm) 1b 34.02 22–76 4.720 10.703 0.078 0.392 0.349

2012 Base tiller width (mm) 1b 38 12–67 5.972 13.172 −0.066 0.366 0.314

2012 Biomass (g) 9b 84.06 56–100 5.401 12.029 808.280 494.976 817.418

2012 First node width (mm) 1b 38 3–76 6.037 13.299 0.064 0.534 0.496

2012 Flag leaf width (mm) 8b 90 80–99.97 4.578 8.916 1.718 −1.448 −3.523
2012 Fourth leaf area (cm2) 1b 50.91 34.02–73 4.575 9.889 3.323 10.491 7.153

2012 Fourth leaf length (mm) 1b 56.84 35–73 5.994 12.346 −0.824 6.406 3.306

2012 Fourth leaf length (mm) 2a 72 60–86 5.319 11.598 2.672 −4.114 −1.892
2012 Heading date (Julian day) 1b 100 47–109 4.589 9.114 −9.691 −0.227 1.207

2012 Mean tiller mass (g) 1a 31 23–41 5.695 12.718 2.176 0.693 4.497

2012 Mean tiller mass (g) 1b 41.27 34.02–82 5.493 12.052 0.554 4.369 2.976

2012 Plant height April 18, 2012 (cm) 9b 76 61–93 4.530 9.574 9.959 4.906 10.240

2012 Post-harvest regrowth 5b 109 101–116 6.015 12.822 1.696 0.233 1.430

2012 Tiller angle March 23, 2012 8a 51 30–75 4.618 10.501 0.820 0.010 0.629

2012 Tiller angle April 30, 2012 8a 22 7–63 4.633 9.999 0.860 0.521 0.575

2012 Tiller length (cm) 1b 55.72 34.02–86 4.716 8.784 −1.318 11.802 8.031

CI confidence interval, LOD log of odds,%var percent of phenotypic variance explained byQTL, BC, AD, BD the additive effects of the BC, AD, or BD
genotypes relative to the mean of the AC genotype
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accounting for 18.1 % of the average biomass. In contrast to
our study, the large biomass QTL of the Serba et al. study
was caused by variation harbored within Summer-VS16.
The results of Serba et al. [16] and our study suggest that
segregating variation for biomass could be frequently locat-
ed on this portion of linkage group 9b. Future studies could
very inexpensively genotype this region on linkage group
9b with a handful of existing markers (sww2524, nfsg262,
sww25, nfsg283, etc.) in any hybrid mapping population. If
an association were detected, then those same markers could
be used for marker-assisted breeding.

Conclusions and Future Directions

Our study identified QTLs for biomass and multiple other
potentially useful traits for improvement of switchgrass.
Based on this study, markers from the regions of discov-
ered QTLs can now inexpensively be used to conduct
targeted genotyping in other mapping populations to estab-
lish direct links between genomic regions and important
phenotypes for breeding. This is especially true for
markers in the vicinity of the biomass QTLs on LG 9b
in both our study and that of Serba et al. [16]. Further,
comparative mapping with other closely related species,
including Setaria italica and Panicum hallii, has great po-
tential to uncover common loci that are responsible for
within-species variation in important traits [37, 38].

Our study and the study of Serba et al. [16] were both
limited by the full-sib mapping population design, which is
only capable of identifying QTLs caused by within-individual
variation. We have recently constructed a four-way cross-
mapping population with two southern lowland and two
northern upland parents. The genetic divergence between up-
land and lowland ecotypes and the clines found along the
latitudinal gradient across North America represents large
sources of phenotypic variation in switchgrass [21]. We ex-
pect that our four-way cross-mapping population will allow us
to identify QTLs involved in key regional adaptations, be-
tween the upland and lowland ecotypes, and across latitudes.
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