SUMMER 2018
Undergraduate Research in Plant Field Evolutionary Ecology

Switchgrass (*Panicum virgatum*) is emerging as an important biofuel candidate in the United States. Our labs collectively study the evolutionary ecology, physiological genetics and agronomy/plant breeding of Switchgrass, and its close relative and genetic model, *P. hallii*. We are seeking a talented and diverse group of undergraduate students interested in conducting field studies on Switchgrass biology at one of multiple locations across the United States.

You will be immersed in a sustained research experience, focused primarily on the field biology of Switchgrass. Your research will mostly consist of intense field work with additional lab components. While all science majors are encouraged to apply, preference will be given to candidates with a strong interest and/or background in evolutionary ecology, environmental biology, quantitative genetics and agronomy.

Website: https://sites.cns.utexas.edu/juenger_lab/summer-research-opportunities (If link does not work, copy and paste into browser)

Who should apply?
- All undergraduate not in their senior year are welcome to apply
- Must be a US citizen or permanent resident

Program description
- 10 week internship at one of several universities located across the US, beginning the first week of June
- $4500 stipend + housing, food allowance, and travel costs to and from host university
- A poster, lab meeting, or powerpoint presentation on research must be administered at the end of the program

Collaborators
- Prof. Thomas Juenger, University of Texas
- Prof. David Lowry, Michigan State University
- Dr. Philip Fay, ARS-USDA Temple Texas
- Prof. Felix Fritschi, University of Missouri
- Prof. Rob Mitchell, University of Nebraska
- Prof. Arvid Boe, South Dakota State University
- Prof. Yanqi Wu, Oklahoma State University

How to apply?
- Please visit our website for details on how to apply for this opportunity