
Lie Groups: Lie Algebras Jacob Gaiter

1 Motivation

One of the guiding principles of the theory of smooth manifolds is that we can study

maps between smooth manifolds by studying what they do locally, i.e. what their

di�erentials do.

Example 1. The inverse function theorem tells us that if we have a map F :M→ N

for which dF : TpM → TF(p)N is an isomorphism then there exists a neighborhood

U of p for which F
∣∣
U
: U→ F(U) is a di�eomorphism.

Before we get into some Lie theory, we'll recall a few ways of thinking about

tangent vectors and vector �elds.

Philosophy TpM X(M)

Algebraic Space of derivations at p, δp :

C∞(M) → R
Space of global derivations

C∞(M) → C∞(M)

Dynamical Equivalence classes of curves [γ]

at p, γ : (−1, 1) →M,γ(0) = p

Smooth assignments of classes of

curves, i.e. sections of TM→M

We can convert between these notions by using di�erentiation and local construc-

tions in coordinates. One has the isomorphism Ψ : (TpM)dyn → (TpM)alg by

[γ] 7→ (f 7→ d
dt

∣∣
t=0
f(γ(t)), i.e. we obtain a unique derivation at p by di�eren-

tiating the composition f ◦ γ at t = 0. We can extend this notion to give an

isomorphism X(M)dyn → X(M)alg by the vector �eld X ∈ X(M)dyn is mapped to

(f 7→ (p 7→ Ψ(X(p)) · f)).
These isomorphisms are manifest in the notation often used for the local frame

corresponding to a coordinate system. Many times TpM = span ∂
∂x1
, · · · , ∂

∂xn
where

we now identify the operator f 7→ ∂f
∂xi

with the equivalence class of curves [t 7→
p+ tei].

Definition 1.1. It is natural to think of vector �elds as in�nitesimal motions and

hence dynamically interesting to ask how well do these in�nitesimal motions com-

mute with one another. The Jacobi-Lie bracket [·, ·] : X(M) × X(M) → X(M)

quanti�es this di�erence and is de�ned as [X, Y]f := XY(f) − YX(f).

Proposition 1.2. The Jacobi-Lie bracket, as de�ned, maps into X(M).

Proof. It is clear that this map is from X(M)×X(M) → Hom(C∞(M), C∞(M)) so

it su�ces to show that this yields a derivation.
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Given f, g ∈ C∞(M) we have

[X, Y](fg) = XY(fg) − YX(fg)

= X(gY(f) + fY(g)) − Y(gX(f) + fX(g))

= X(g)Y(f) + gX(Y(f)) + X(f)Y(g) + fX(Y(g))

− Y(g)X(f) − gY(X(f)) − Y(f)X(g) − fY(X(g))

= gX(Y(f)) − g(Y(X(f)) + fX(Y(g)) − fY(X(g))

= g[X, Y]f+ f[X, Y]g

2 Mixing Algebra and Differential Geometry

One way to state the mantra is \Studying the global properties of smooth maps is

di�cult, but the di�erential allows us to learn a lot about the local properties of a

map using linear algebra." In the spirit of Lie theory, we should attempt to combine

di�erential geometry and group theory in order to understand Lie groups. First o�,

we can use the group action to identify the tangent spaces of the Lie group at every

point.

Theorem 2.1. Let Lg : G→ G be the map of left multiplication by G on itself,

i.e. Lg(g
′) = gg ′. For each g ∈ G, the di�erential d(Lg)h : ThG → TghG is an

isomorphism.

Proof. The map Lg is a smooth bijection G → G, and this map has inverse given

by Lg−1 . Hence Lg is a di�eomorphism.

This then gives us a \canonical" (up to choice between left and right actions)

isomorphism TeG→ TgG for all g ∈ G, d(Lg)e.

Definition 2.2. Let H and G be Lie groups. A Lie group homomorphism is a

smooth map ϕ : G→ H which is a group homomorphism. This means that ϕ◦Lg =
Lϕ(g)ϕ.

One of the most powerful facts in Lie theory is that the local information of the

di�erential at the identity actually gives all the information we need to know about

the di�erential of a Lie group homomorphism.
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Theorem 2.3. Let ϕ : G → H be a Lie group homomorphism, then for any

g ∈ G dϕg = d(Lϕ(g))e ◦ dϕe ◦ d(Lg−1).

Proof. We have ϕ = Lϕ(g) ◦ϕ ◦ (Lg)−1 = Lϕ(g) ◦ϕ ◦ Lg−1 . The chain rule then gives

dϕg = d(Lϕ(g))e ◦ dϕe ◦ d(Lg−1)g.

This means that the di�erential of a Lie group homomorphism \looks the same"

everywhere and if we know the behavior of the map at the identity, we know its

behavior everywhere. For instance, if ϕ : G → H a Lie group homomorphism and

dϕ : TeG→ TeH is an isomorphism, then ϕ is a local di�eomorphism.

A group acts naturally on itself in another way apart from left and right multipli-

cation, in particular through conjugation. Denote the conjugation map h 7→ ghg−1

by Adgh. This is the adjoint representation of G on itself. This tells us some-

thing about how the group elements commute with one another. Since Adg(e) = e,

d(Adg)e : Te(G) → Te(G) we can study the action of G on itself by understanding

this family of isomorphisms. By abuse of notation we write d(Adg)e = Adg. This

abuse is somewhat justi�ed by the case of matrix groups. If G is a matrix Lie group

and ξ ∈ TeG = g we have Adg(ξ) = d
dt

∣∣
t=0
Adg(exp(tξ)) = d

dt

∣∣
t=0
g exp(tξ)g−1 =

d
dt

∣∣
t=0

exp(gtξg) = gξg−1.

Now, we have constructed a family of linear maps TeG → TeG parametrized by

G. Taking our habit of di�erentiating all maps involving G to get local information

and thinking of the map for �xed ξ as Ad·ξ : G → TeG we get a family of maps

d(Ad·ξ) : TeG→ TeG, or now a map TeG× TeG→ TeG. This map is bilinear and is

quite familiar in the case of a matrix group. We have

d(Ad·ξ)e(η) =
d

dt

∣∣∣∣
t=0

Adexp(tη)ξ

=
d

dt

∣∣∣∣
t=0

exp(tη)ξ exp(tη)−1

=
d

dt

∣∣∣∣
t=0

exp(tη)ξ exp(−tη)

=

(
d

dt

∣∣∣∣
t=0

exp(tη)

)
ξ+ ξ

(
d

dt

∣∣∣∣
t=0

exp(−tη)

)
= ηξ− ξη
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This is the commutator bracket. In essence, the commutator bracket tells us, near

the identity, how much elements commute with one another. The Baker-Campbell-

Hausdor� formula hints that the \local behavior" of multiplication is controlled

entirely by the commuator bracket, and we might expect this intuition to extend

for more general Lie groups.

There is a more global way in which we can de�ne the Lie bracket using the

idea of Left invariant vector �elds.

Definition 2.4. Let X(G) denote the collection of smooth vector �elds on G a Lie

group. The action of G on itself by left multiplication gives an action of G on X(G)

by the pushforward, more explicitly ((Lg)∗X)(h) = d(Lg)g−1h(X(g
−1h)). A vector

�eld X on G is called left invariant if it is �xed under the action of G, that is

X(h) = d(Lg)g−1hX(g
−1h). Denote the collection of left invariant vector �elds on G

by g.

Proposition 2.5. The set g is a vector subspace of X(G), is closed under the

Jacobi-Lie bracket (X, Y) 7→ [X, Y] = XY − YX (one can naturally de�ne this

bracket when we consider X(G) as the space of derivations of C∞(G)) and

satis�es the following Jacobi identity for all X, Y, Z ∈ g

[[X, Y], Z] + [[Z,X], Y] + [[Y, Z], X] = 0

Proof. The �rst statement follows from the fact that (Lg)∗ acts linearly.

For the second statement, we have (Lg)∗(XY) = ((Lg)∗X)((Lg)∗Y) and hence

(Lg)∗[X, Y] = ((Lg)∗X)((Lg)∗Y) − ((Lg)∗Y)((Lg)∗X) = XY − YX

The �nal statement is a standard computation using the commutator bracket

and application of associativity.

A priori the space of left invariant vector �elds could be some very large collec-

tion of vector �elds that captures too much information, but the following propo-

sition shows that this space is �nite dimensional and isomorphic to TeG

Proposition 2.6. Let G be a Lie group. The evaluation map ψ : g → TeG is a

linear isomorphism.

Proof. The map ψ : g → TeG is injective since ψ(X) = 0 then X(g) = d(Lg)eX(e) =

d(Lgψ(X) = 0 for all g and X = 0. We can de�ne an inverse by taking ξ ∈ TeG
and Xξ(h) := d(Lh)eξ. We must show that Xξ is smooth. Let U be a coordinate

4



Lie Groups: Lie Algebras Jacob Gaiter

neighborood of e for which U ∩ gU = ∅. This exists by the following argument.

Since G is Hausdor� there are neighborhoods ~U and ~V of e and g respectively

for which ~U ∩ ~V = ∅. Since left multiplication is a di�eomorphism g−1 ~V is a

neighborhood of e. Then ~U ∩ g−1 ~V is a neighborhood of e and g(~U ∩ g−1 ~V) ⊂ V.
Then take U = ~U ∩ g−1 ~V. Intersecting U with a coordinate neighborhood of e

gives a new coordinate neighborhood. We want to show that if Xξ is smooth on U

then it is smooth everywhere. Since (Lg)∗Xξ = Xξ then (Lg)∗(Xξ|U) = Xξ|gU. Let

Φ : U→ Rn be a chart. our map Xξ can be thought of as ψ : TeG×U→ TU gotten

by (ξ, g) 7→ (TeLgξ). The coordinate chart gives an isomorphism Tϕ : TU→ U×Rn

when then have Tϕ ◦ψ(ξ, g) = (Tgϕ ◦ TeLg(ξ), g). Since the group action is smooth

this map is smooth and Xξ is smooth.

This gives our �rst interesting constraint on the di�erential topology of Lie

groups, namely they must be parallelizable:

Theorem 2.7. If G is a Lie group, G is parallelizable.

Proof. Let e1, . . . , en be a basis for TeG. Under ψ this gives a set of n vector �elds

{Xe1 , . . . , Xen}. We see that Xei(g) = TeLgei and hence this set gives a global frame

on G and G is parallelizable.

3 Lie Algebras

The map ψ actually interweaves the two bilinear operations we have de�ned, i.e. for

all ξ, η ∈ g, [ξ, η] = adξη. This tells us that what seemed like global information,

namely that of the commutator bracket of vector �elds is actually a local thing

gotten by taking a derivative of the conjugation near the identity.

Remark. Given a homomorphism of Lie groups Φ : G→ H there is a corresponding

map Φ∗ : g → h given by the composition g → TeG → TeH → h and this map

intertwines the bracket operation on g with that on h, i.e. [Φ∗(ξ), Φ∗(η)] = Φ∗[ξ, η].

The object g allows us to study G via linear algebra and begs to be studied

independently without reference to the underlying group G.

Definition 3.1. A Lie algebra for k = R or C is a k-vector space g and a bilinear

map [·, ·] : g× g → g which is anti-commutative: [ξ, η] = −[η, ξ] for all η, ξ ∈ g and

satis�es the Jacobi identity:

[[ξ, η], ζ] + [[ζ, ξ], η] + [[η, ζ], ξ] = 0
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Remark. The assignment G 7→ g and Φ 7→ Φ∗ gives a functor LieGp → LieAl. Is

this functor an equivalence of categories?

Remark. When a Lie group G acts on a smooth manifold M by di�eomorphisms

it gives a map g → X(M) by associating ξ 7→ (p 7→ d
dt

∣∣
t=0
γ(t) · p) in this way if we

think of X(M) as TeDi�(M) this map is the induced map from G→ Di�(M).

We can use vector calculus to �nd the Lie algebra of various matrix groups:

Recall that det(exp(tξ)) = exp(tr(tξ)) and for A(t) and B(t) smooth curves in

Mn(k)
d
dt
|t=0(A(t)B(t)) = _A(0)B(0) +A(0) _B(0).

The special linear group is the space of volume preserving linear maps on a

space, this is de�ned as SLn(k) := {A ∈ Mn(K)|det(A) = 1}. Multiplicativity of

det shows that SLn(k) is a group and we can see that sln(k) = ker tr through the

following argument. det : GLn(k) → k∗ is a Lie group homomorphism and as such

if det∗ : gln(k) → k is non-zero, the map is a submersion. We have det∗(ξ) =
d
dt
|t=0 det(exp(tξ)) = d

dt
|t=0 exp tr(tξ)) = tr(ξ). Since the matrix diag(1, 0, . . . , 0)

has non-zero trace, det is a submersion and det−1(1) is a Lie subgroup of GLn(k).

The tangent space to the level set of a submersion is given by the kernel of its

di�erential so sln(k) ∼= TeSLn(k) = ker tr the trace free n× n matrices.

If B is a matrix the map (u, v) 7→ utBv de�nes a bilinear function on kn. The

space of automorphisms of kn which preserve B form a Lie group in many cir-

cumstances by the following: Automorphisms are linear maps A with AtBA = B.

De�ne a map FB : GLn(k) → Mn(k) by A
tBA meaning that Aut(kn, B) = F−1B (B).

At h ∈ Aut(kn, B) we have

ThFB(ξ) =
d

dt
|t=0(h+ tξ)tB(h+ tξ) (1)

=
d

dt
|t=0(h

tBh+ tξtBh+ thtBξ+ t2ξtBξ) (2)

= ξtBh+ htBξ (3)

Since h is always invertible, this map is of constant rank and hence Aut(kn, B) is a

Lie group with Lie algebra given by ker TeFB = {ξ ∈Mn(k)|ξ
tB+ Bξ = 0}.
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