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Background and Motivation

Historically, the method in which one passes from classical mechanics to quantum mechanics

has been as follows. One begins with a classical system, (R2n, ω,H). The vector space

R2n describes the state space, it encodes the generalized positions qi and momenta pj of

the system. The two form, ω ∈
∧2 R2n is the canonical symplectic form on R2n ∼= T ∗Rn

and H =
∑ p2j

2mj
+ V (q), with V ∈ C∞(Rn) describes the energy of the system at a point

(p, q) ∈ R2n. One then ”quantizes” the system by mapping the Hamiltonian, H, to the

densely defined, closable operator Ĥ : D(Ĥ) → H on the Hilbert space H = L2(Rn). To

do this, we replace pj by p̂j = −i~ ∂
∂qj

and V (q) by V̂ (q) : ψ 7→ V (q)ψ(q). An important

property we notice is the relation between the classical Poisson relations of qi and pj and the

quantum commutation relations. One verifies by a quick calculation that:

[q̂i, p̂j] = i~δij
[q̂i, q̂j] = [p̂i, p̂j] = 0

{qi, pj} = δij

{qi, qj} = {pi, pj} = 0

The similarities between the two sets of equations became the inspiration for Dirac’s quan-

tization condition. If we say that Q is a linear map from C∞(R2n) to Diff(R2n), it fulfills the

quantization condition if [Q(a), Q(b)] = i~Q({a, b}) for all a, b ∈ C∞(R2n). Here we already

run into serious issues codified in the following theorem:

Theorem 1. (Groenewald-Van Hove) There does not exist a map Q : P≤4(R2n)→ Diff(Rn)

such that

Q(1) = id

Q(qj) = qj

Q(pj) = −i~ ∂

∂qj

i~Q({f, g}) = [Q(f), Q(g)]

for all f, g ∈ P≤4(R2n)

This means that we cannot create a quantization that adheres to the Dirac quantization

condition strictly, this leads to a modified quantization condition:

[Q(f), Q(g)] = i~Q({f, g}) + ~2R(f, g).
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So we only enforce Dirac’s commutation relation up to order ~ or ”asymptotically”. The

Moyal product was first introduced to give a correct version of commutators in terms of

derivatives of the quantized observables. This then inspired Bayen et al. to write down the

first definitions of deformation quantiztion in their seminal 1978 paper [1].

Definitions and Examples

In order to formally define what deformation quantization is, we must define a few concepts

relating to formal series in ~.

Definition 1. Let (A , ·) be an associative algebra over the ring R. We define

A [[~]] :=

{∑
i∈N

al~l
∣∣∣∣ al ∈ A

}
as the set of formal power series in ~ with coefficients in A . This set A [[~]] inherits the

R-algebra structure from A as follows. Given a, b ∈ A [[~]], with a =
∑
al~l, b =

∑
bk~k,

a · b :=
∑
k,l∈N

albk~l+k

Definition 2. Let (A , ·) be an associative algebra over R. The triple (A , ·, {·, ·}), with

{·, ·} : A × A → A, is said to be a Poisson algebra if {·, ·} is a biderivation of · and defines

a Lie bracket on A , i.e. for all a, b, c ∈ A , r ∈ R

{a, b} = −{b, a},

{ra, b} = r{a, b},

{ab, c} = a{b, c}+ {a, c}b,

0 = {{a, b}, c}+ {{c, a}, b}+ {{b, c}, a}

Definition 3. Let (A , ·, {·, ·}) be a Poisson algebra over C. A bilinear map ? : A [[~]] ×
A [[~]]→ A [[~]] is said to define a star product if the following conditions are satisfied:

f ? g = f · g + o(~)

[f, g]? := f ? g − g ? f = i~{f, g}+ o(~2)

1 ? f = f ? 1 = f

We can expand a star product out as

f ? g =
∑

~rCr(f, g)
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where each Cr is a bilinear map A ×A → A . When A = C∞(P ) for a Poisson manifold

P , ? is said to be a differential if each Cr is a bidifferential operator, and natural if Cr is of

order maximum r in each input.

We will now furnish some of the most basic examples of ?-products, coming from our

previous setting.

In order to motivate our first star product on C∞(R2n), we will begin by mapping P :=

C[q, p] into Diffpoly(R), the space of differential operators from C[q] to C[q].

Definition 4. We define the standard ordering representation, ρs : P → Diffpoly(Rn) by:

qnpm 7→ q̂np̂m

which one can extend linearly to all of C[q, p].

It is clear that ρs is injective, so we can create our first star product on C[q, p] by

f ?s g := ρ−1
s (ρs(f) ◦ ρs(g)).

To compute this, we start by computing ρs(q
mpn) ◦ ρs(qjpk).

ρs(q
mpn) ◦ ρs(qjpk) = qm(−i~)n

dn

dqn

(
(qj)(−i~)k

dk

dqk

)
= qm(−i~)n+k dn

dqn

(
qj

dk

dqk

)
= qm(−i~)n+k

n∑
r=0

(
n

r

)
j!

(j − r)!
qj−r

dk+n−r

dqk+n−r

=
∑

(−i~)r
n!

(n− r)!r!
j!

(j − r)!
qj+m−r(−i~)n+k−r dk+n−r

dqk+n−r

=
∑ (−i~)r

r!

j!

(j − r)!
qj+m−r

n!

(n− r)!
(−i~)n+k−r dk+n−r

dqk+n−r

Taking ρ−1
s (qj+m−r(−i~) and replacing qmpn and qjpk by f and g respectively, we arrive at

the formula

f ?s g =
∑ (−i~)r

r!

∂rf

∂pr
∂rg

∂qr
.

This is a terminating, finite series in ~, but we can extend this to a formula for all of

C∞(R2)[[~]] by the same formula and to C∞(R2n)[[~]] by

f ?s g :=
∑
r∈N

(−i~)r

r!

∑
1≤j≤n

∂rf

∂(pj)r
∂rf

∂(qj)r
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Definition 5. Let A be a Poisson algebra over C and ?, ?′ be star products on A [[~]].

(A , ?′) is said to be isomorphic to (A , ?) if there exists a bijective linear map N : A → A

with N(f ?′ g) = Nf ? Ng.

To generate the Weyl-Moyal and Wick products we saw in our lecture, we can apply the

transformations: Nwm = exp
(
− ~

2i

∑
j≤n

∂
∂(qj)

∂
∂(pj)

)
and Nw = exp

(
~
4

∑
j≤n

∂2

∂(qj)2
+ ∂2

∂(pj)2

)
.

Before providing examples of star products on cotangent bundles, we will give exposition on

Hochschild cohomology, and its use in deformation quantization.

Definition 6. Hochschild Cohomology

We can approach deformations in an algebraic manner using the cohomology theory devel-

oped by Hochschild.

Let V be a left R module. We define HCk(V ) := Hom(V k, V ), the set of k-linear maps

V k → V . Take HC0(V ) := V .

We define the Gerstenhaber bracket on HC•(V ) :=
⊕

k∈N HCk(V ) as a graded Lie bracket

[·, ·]G : HC
k̄
(V )×HC

l̄
(V )→ HC

k̄+l̄
(V ), with HC

k
(V ) := HCk−1(V ), k̄ := k− 1. The grading

is with respect to the shifted degree.

[α, β](v1, v2, . . . , vk̄+l̄+1) =
∑
i≤k

(−1)īk̄α(v1, v2, . . . , vi−1, β(vi, . . . , vi+l̄), vi+l, . . . , vk̄+l̄+1)

− (−1)k̄l̄
∑
j≤l

(−1)j̄ l̄β(v1, v2, . . . , vj−1, α(vj, . . . , vj+k̄), vj+k, . . . , vk̄+l̄+1)

for v1, . . . vk̄+l̄+1 ∈ V . For C ∈ HC2(V ), we have

[C,C]G(v1, v2, v3) = −C(C(v1, v2), v3) + C(v1, C(v2, v3))− C(C(v1, v2), v3) + C(v1, C(v2, v3)

= −2C(C(v1, v2)v3) + 2C(v1, C(v2, v3))

We see that C defines an associative product on V if and only if [C,C]G = 0

Definition 7. Let V be a left R module and µ ∈ HC2(V ) an associative product on V . We

define the following coboundary operator δk : HCk(V )→ HCk+1(V ) by

δkµ(α)(x1, . . . , xk+1) := −[µ, α]G.

we also define the following cochain complex

· · · −→ HCk−1(V )
δk−1
µ−→ HCk(V )

δkµ−→ HCk+1(V ) −→ · · ·
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This is the Hochschild complex of V . The cohomology of this complex

HHµ(V ) :=
⊕
k∈N

HHk
µ(V )

is the Hochschild cohomology of V . We of course have HHk
µ(V ) := ker δkµ/imδ

k−1
µ .

We will calculate δkµ explicitly. Plugging in to our Gerstenhaber bracket formula we have

δkµ(α(x1, . . . , xk+1)) = x1α(x2, . . . , xk+1) + (−1)k+1α(x1, . . . , xk)xk+1

+
k∑
i=1

(−1)iα(x1, . . . , xixi+1, . . . , xk+1)

For α ∈ HC1(V ) we have δ1
µα(x1, x2) = x1α(x2) − α(x1x2) + α(x1)x2. This means that

α ∈ ker δ1
µ if and only if α is a derivation over µ. We will now give a cohomological description

of deformations.

Definition 8. Let A be an R algebra. A k-th order deformation of A is a bilinear map

µk := µ+ νµ(1) + . . .+ νkµ(k) : A ×A → A [[ν]] such that [µk, µk] = 0 + o(νk+1). where each

µ(i) is a bilinear map A ×A → A .

Let µ(k+1) : A ×A → A be a bilinear map. By definition µk+1 := µk + νµ(k+1) defines a

k+1th order deformation of µ if and only if [µk+1, µk+1]G = o(νk+2). Since [µk, µk]G = o(νk+1)

we have

[µk+1, µk+1]G =
[
µk + νk+1µ(k+1), µk + νk+1µ(k+1)

]
G

= [µk, µk]G + νk+1(
[
µk, µ(k+1)

]
G

+
[
µ(k+1), µk

]
) + o(νk+2)

If we look at the νk+1 term we have∑
i+j=k+1,
k+1>i,j>0

[
µ(i), µ(j)

]
G

+
[
µk, µ(k+1)

]
G

+
[
µ(k+1), µk

]
G

=
∑

i+j=k+1,
i,j≥0

[
µ(i), µ(j)

]
G

This term must vanish if µk+1 is to be a k + 1-th order deformation. We can rewrite this

condition as

δ2
µ(µ(k+1)) = −

[
µ(k+1), µ(0)

]
=

1

2

∑
i+j=k+1,
i,j≥1

[
µ(i), µ(j)

]
.
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This means that the right hand side must be a coboundary. We see that the right hand side

is a cocycle as follows:

δ3
µ

 ∑
i+j=k+1,
i,j≥1

[
µ(i), µ(j)

]
G

 : =
∑

i+j=k+1,
i,j≥1

[
µ,
[
µ(i), µ(j)

]
G

]
G

=
∑

i+j=k+1,
i,j≥1

([
µ(i),

[
µ(j), µ

]
G

]
G

+
[
µ(j),

[
µ, µ(i)

]
G

]
G

)
= 2

∑
i+j=k+1,
i,j≥1

[
µ(i), δ

2
µ(µ(j))

]
G

=
∑

i+j+l=k+1,
i,j,l≥1

[
µ(i),

[
µ(j), µ(l)

]
G

]
G

This final sum is equal to zero by the graded Jacobi identity. This means that given a k-th

order deformation
∑
µ(i)ν

i, this can be extended to a k + 1th order deformation if and only

if the Hochschild cocycle
∑[

µ(i), µ(k+1−i)
]
G

is a Hochschild coboundary.

We can show that for µ′ =
∑
µi 3i an element of HC2(A )[[ν]], the associativity condition

[µ′, µ′]G = 0 is equivalent to requiring that for γ = µ∗ − µ ∈ νHC2(A )[[ν]] is a solution to

the equation

δ2
µ(γ)− 1

2
[γ, γ]G = 0

the Maurer Cartan equation.

Constant Poisson Structure

We now describe the construction of a start product on a constant Poisson structure.

Given a vector space F and endomorphisms V1,V2 : F → F we can define an endomor-

phism V1 ⊗ V2 by

V1 ⊗ V2(ξ ⊗ η) := V1(ξ)⊗ V2(η).

One recalls that a constant Poisson structure on a vector space V , with basis xi can be

written as a constant bivector field on V ,

π =
∑

Pij
∂

∂xi
∧ ∂

∂xj
=
∑

Pij

(
∂

∂xi
⊗ ∂

∂xj
− ∂

∂xj
⊗ ∂

∂xi

)
So π defines an endomorphism on F ⊗ F = C∞(V ) ⊗ C∞(V ). We’ll continue to call this

endomorphism π. We can write π(f, g) = µ(π(f ⊗ g)) where µ : F ⊗ F → F is defined by

6



MATH6260, Deformation Quantization Talk Jacob Gaiter

f ⊗ g 7→ fg. Because π(f ⊗ g) ∈ F ⊗ F we can apply π arbitrarily many times. We can

then define the following formal series in ν,

exp(νπ/2)(f ⊗ g) :=
∑
j∈N

νj

2jj!
πj(f ⊗ g)

Proposition 1. Let (V, π) be a finite dimensional constant Poisson structure. The map

defined by

f ? g := µ(exp(νπ/2)(f ⊗ g))

is a star product on (C∞(V ), {·, ·}, ·).

Deformation Quantization on Symplectic Manifolds

We will use this star product to construct a star product on symplectic manifolds. This

construction comes from Boris Fedosov’s 1994 paper [2], though my exposition is largely

based on [3]. One recalls that for (V, ω) a finite dimensional real vector space, we have the

canonical poisson bracket {f, g} := ω(Xf , Xg) making (V, π) a constant Poisson structure.

We denote F̂ (V ) as the space of formal power series in the variables that give a basis for

V ∗, i.e. an arbitrary element of F̂ , is a =
∑

α∈Nd aαx
α1
1 x

α2
2 . . . xαdd . Denote

F̂ (V )≥j = {a ∈ F̂ (V )|aα = 0 for|α| < j}

and for k ∈ N we define

E≥k(V ) =
∑
i,j∈N,

2i+j≥k

νiF̂ (V )≥j

Since the Moyal product on V preserves polynomials, we can restrict the product on C∞(V )[[ν]]

to F̂ (V )[[ν]] and we have the property

E≥k(V ) ? E≥l(V ) ⊂ E≤k+l(V ).

To V we associate an an associative algebra

A(V ) := E≥0(V )⊗
∧

V ∗

with the product ©? : A(V )× A(V )→ A(V ) given by

(F ⊗ ξ)©? (G⊗ η) := (F ? G)⊗ (ξ ∧ η)
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for each F,G ∈ E≥0(V ), ξ, η ∈
∧
V ∗. We have a decreasing sequence of vector spaces

A≥k(V ) := E≥k(V )⊗
∧

V ∗

and A(V )/A≥k(V ) is a finite dimensional vector space for all k ∈ N. We have a natural

linear map P0 : A(V ) → R defined by F ⊗ ξ 7→ 0 if ξ ∈
⊕

i≥1

∧i V ∗ and F ⊗ 1 7→ F (0) for

all F ∈ E≥0(V ), F (0) is the constant term of F .

We now switch gears back to our symplectic manifold (M,ω). We know that each tangent

space TpM is a symplectic vector space with constant Poisson structure πp. We can consider

the Weyl-Moyal product ?p on F̂ (TpM) and the induced associative product ©? p on A(TpM).

We define a section of the projection
⋃
p∈M A(TpM) → M is smooth if the projection onto

each of the vector bundles
⋃
p∈M A(TpM)/A≥k(TpM) → M is smooth. For each k ∈ N, the

space of smooth sections which are A≥k(TpM) for each p ∈M will be denoted by A ≥k(M),

and A (M) := A ≥0(M). Since we have defined a product on each of the fibers, we can define

a product of sections. Given a ∈ A ≥k(M), b ∈ A ≥l(M) we define a ©? b as the section of

A ≥k+l(M) with (a©? b)(p) = a(p)©? p b(p). By combining the maps P0,p : A(TpM)→ R gives

us a linear map P0 : A (M)→ C∞(M)[[ν]].

Theorem 2. Let M be a symplectic manifold and (A (M),©? ) the associative algebra con-

structed previously. There exists a derivation D : A (M) → A (M) satisfying the follow-

ing: For each F ∈ C∞(M)[[ν]] there exists a unique aF ∈ A (M) such that D(af ) = 0,

P0(aF ) = F .

We briefly discuss the construction of such a D.

The D takes the form

D = d∇ + [ω + γ, ·]

where d∇ denotes a choice of symplectic connection, i.e. a connection on TM such that

ιX d (ω(Y, Z)) = ω(∇XY, Z) + ω(Y,∇XZ)

for all X, Y, Z ∈ Γ(TM). We can use this symplectic connection on
⋃
p∈M F̂ (TpM) → M .

This bundle is technically not a vector bundle, since its fibers are infinite dimensional, but

we do get a covariant derivative d∇ : A (M) → A (M). We define [·, ·] point wise by [·, ·]p
using the following formula

[a⊗ ξ, b⊗ η]p := (a ? b− b ? a)⊗ (ξ ∧ η).

Here ω is identified with an element of A (M) and γ ∈ A ≥3 is a section of
⋃
p∈M F̂ (TpM)[[ν]]⊗

T ∗pM chosen such that D2 = 0.
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Corollary 1. Let (M,ω) be a symplectic manifold, (A (M),©? ) the algebra from before,

and D the derivation of A (M) from the preceding theorem. Denote ? the bilinear map on

C∞(M)[[ν]] defined on F,G by F ? G = P0(aF ©? aG) where aF , aG are the elements of kerD

with P0(aF ) = F, P0(aG) = G. Then ? defines a star product on (M,π).
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