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Abstract

In this thesis we lay out an overview of the mathematics required to understand

the reduction of symmetry of the classical Kepler problem and its quantum counter-

part the hydrogen atom within the framework of symplectic geometry and deforma-

tion quantization respectively. In order to do so, we must cover the mathematical

generalization of Hamiltonian mechanics, symplectic geometry. We will show how

conservation of energy and Liouville’s theorem manifest themselves within this gen-

eralization using the tools of differential geometry. After introducing differential

and symplectic geometry, we give brief introduction to Lie Groups, their actions on

smooth manifolds, and moment maps. Lie groups allow us to formalize the very

physical ideas behind continuous symmetry, and they play a principal role in the

reduction of symmetry, along with moment maps, as we will see in the latter half

of this thesis. After having developed the prerequisite theory, we then tackle the

reduction of the Kepler problem, otherwise known as the two body problem. This

section makes mathematically rigorous the method by which the equations of mo-

tion for the two body problem are obtained in a typical undergraduate analytical

mechanics course. After the classical reduction is finished we motivate the idea of

quantization as P.A.M. Dirac does in his 1925 paper [2]. We then cite the Gronewold

van Hove no go theorems [3] to show that such a quantization scheme can not be

strictly satisfied even on R2n and use this to motivate the definitions underlying

deformation quantization. After defining deformation quantizations we give a few

examples of such structures on R2n and reduce one such example, the Weyl-Moyal

product using the classical reduction tools we developed for the Kepler problem.
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1 Introduction

Each approach to classical mechanics has particular strengths, making some more

suited for certain theoretical or practical applications than others. Newtonian me-

chanics is applicable to the widest array of problems, but is unwieldy for certain

systems; Lagrangian mechanics allows one to find the equations of motion for sys-

tems with relative ease, but can hide important symmetries between position and

momentum. When a classical system has a large amount of symmetry, Hamiltonian

mechanics allows one to easily spot these symmetries via the use of conserved quan-

tities. One can even use these symmetries to reduce the complexity of a problem

and to transform a set of opaque equations into something more tractable.

Another factor in Hamiltonian mechanics’ utility is its emphasis on observables

as fundamental components of the theory. Where Lagrangian mechanics begins with

the Lagrangian, a convenient theoretical tool which is not commonly measured or

studied in of itself, Hamiltonian mechanics begins with the Hamiltonian, a quantity

which in many cases represents the real energy of the system. One can compute the

Poisson bracket to determine how arbitrary observables evolve in time as well as

to detect symmetries in the system. It is this emphasis on observables that makes

the transition between classical mechanics and quantum mechanics easiest from the

Hamiltonian point of view.

To move from the classical realm to the quantum one begins with a classical

system. In most cases it suffices to think of our configuration space as Rn, this is

the set of all positions our system is allowed to take. The phase space of such a

system is described by Rn ×Rn where each point (q,p) describes both the position

and momentum of the system. We are given a Hamiltonian H : R2n → R where

H(q,p) describes the energy of the system with position q and momentum p. We

can describe the time evolution of an observable f : R2n → R described by the

equation
df

dt
= {f,H}.

we then “quantize” our observables by replacing them with operators on Hilbert

space, which is the configuration space of a quantum mechanical system. In do-

ing so we replace the Poisson bracket {f,H} by the commutator i
~

[
Ĥ, f̂

]
to get a

non-commutative set of observables that are inspired by the classical observables

and their Poisson bracket relations. The idea of replacing the commutative alge-

bra of observables with a non-commutative one with Poisson brackets replaced by

commutators is originally due to P.A.M. Dirac [2].

This transition, up to a certain order, preserves the symmetries of the system.

A quantity g is conserved by the dynamics generated by H if and only if {g,H} = 0,
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so when we replace Poisson brackets with commutators, we see that
[
Ĥ, ĝ

]
= 0 and

dĝ
dt = 0 so our quantum observable does not evolve in time.

As with many things relating to quantum mechanics, things are not as we might

like them to be. The Groenewold van Hove no go theorems [3] tell us that we cannot

quantize all observables on the classical phase space R2n in a way that replaces

Poisson brackets with commutators exactly.

These no go theorems are what inspired Bayen Flato, Frønsdal, Lichnerowicz,

and Sternheimer to lay the foundations for deformation quantization in their 1978

paper [1]. The key idea of deformation quantization is to take the algebra of ob-

servables on a classical system, i.e. the Poisson alegbra (C∞(P ), ·, {·, ·}) where P is

a Poisson manifold, and deform it into a non-commutative algebra C∞(P )[[~]] (the

space of formal power series of ~ with coefficients in C∞(P ) in a way that satisfies

the Dirac quantization rules up to first order in ~. Within this theory, one does not

consider ~ to be a real physical constant, but rather a formal parameter. When we

take the limit ~→ 0 one recovers the classical algebra of observables.

Throughout this thesis, we will develop the ideas behind symplectic geometry,

the natural generalization of classical mechanics to smooth manifolds, Lie groups, a

convenient way to describe the symmetries of both classical and quantum systems,

and deformation quantization, a formal way of producing non-commutative quantum

observables from the classical Poisson bracket.

2 Differential Geometry

Smooth manifolds provide a natural setting to study classical and quantum me-

chanics. The space of classical configurations of systems can often be represented

by smooth manifolds, e.g. the position of a particle on a ring can be described by

a point in S1, the circle. The most important method in classical mechanics is the

generation of a differential equation which describes the time evolution of a system,

and smooth manifolds give one a coordinate independent way of generating and

describing these differential equations.

2.1 Smooth Manifolds

Before we define a smooth manifold, we need to define the concept of a smooth

atlas. Let M be a topological space. A smooth atlas is much like its cartographic

namesake. It is a collection of open sets Uα, which cover M , i.e.
⋃
α Uα = M .

Continuing the atlas analogy, the covering condition means that every point p ∈M
is contained in a “page” Uβ of the atlas. Within a smooth atlas each Uα comes with a
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map ϕα : Uα → Rm, called a chart, such that ϕα : Uα → ϕ(Uα) is a homeomorphism

and ϕα◦ϕ−1
β : ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ), which is a map between open sets of Rm,

is C∞, i.e. all partial derivatives of all orders of ϕα ◦ ϕ−1
β exist and are continuous.

Formally elements of an atlas are the pairs (Uα, ϕα). The atlas analogy begins to

break down with our second condition, but it essentially tells us that locally a space

with a smooth atlas looks like Rm for some integer m. The integer m is called the

dimension of M .

Definition 2.1. Let M be a topological space. M is said to be a smooth manifold

if it is second countable, Hausdorff, and has a smooth atlas A .

The smoothness condition is best illustrated in terms of coordinate representa-

tions of functions. Given p ∈ M,p ∈ Uα one calls the coordinates of p in the chart

Uα, ϕα(p) = (ϕ1
α(p), ϕ2

α, . . . , ϕ
m
α (p)). Then given a function f : M → R and a chart

ϕα we can form a representative function f̃ = f ◦ ϕ−1
α . The function f̃ allows us to

think of f as a function from ϕα(Uα) to R where we know how to apply conventional

multivariable calculus. In order for our definition of a smooth function to coincide

with that on Rm, we give the following definition.

Definition 2.2. Let M be a smooth manifold with atlas A = (Uα, ϕα)α∈A. A

function f : M → R is said to be Ck for k ∈ N∪ {∞, ω} if for each p ∈M there is a

β ∈ A with p ∈ Uβ such that f ◦ ϕ−1
β : ϕβ(Uβ) → R is Ck. A function is said to be

smooth if it is C∞.

This effectively means that a function f is smooth if for every point p there is a

chart Uβ containing p such that the representative function is smooth. Because we

assume that ϕα ◦ ϕ−1
β is smooth, we have f ◦ ϕ−1

α

∣∣
ϕα(Uβ∩Uα)

= f ◦ ϕ−1
β ◦ ϕβ ◦ ϕ

−1
α

which is smooth by the chain rule. So a function with a smooth representative in

one chart has a smooth representative in another chart in their overlap.

Definition 2.3. Let M , N be smooth manifolds with smooth atlases A and B

respectively. A map f : M → N is said to be smooth if for each p ∈ M there are

charts (U,ϕ) ∈ A and (V, ψ) ∈ B with p ∈ U and f(p) ∈ V such that ψ ◦ f ◦
ϕ−1 : ϕ(f−1(V ) ∩ U)→ ψ(V ) is a smooth function.

The preceding definition generalizes the notions of the one before it. We create

a representative function f̃ now by pre and post composing by chart functions and

declare a function to be smooth if it has a smooth representative at every point.

Example 1. The simplest example of a smooth manifold is Rn. This is second

countable and Hausdorff when equipped with the standard topology. We can give

it a single chart IdRn : Rn → Rn, the identity. By our definition, C∞(M) coincides

with the typical multivariable calculus definitions. One can use the identity chart

to make any open subset of Rn into a smooth manifold.
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2.2 The Tangent Bundle

Now that we have defined our object of study, we can define what will be one of the

most important tools for doing classical mechanics on manifolds and for studying

smooth manifolds in general, the tangent vectors.

There are several independent ways to define the tangent space to a smooth

manifold. Here we will give the definition most natural when generalizing classical

mechanics.

Definition 2.4. Let M be a smooth manifold with atlas A . Given p ∈ M , let Cp
be the set of smooth functions γ : (−ε, ε)→M with γ(0) = p. We define two curves

γ, η ∈ Cp to be equivalent if there is a chart (U,ϕ) ∈ A with p ∈ U and

d

dt

∣∣∣∣
t=0

(ϕ ◦ γ)(t) =
d

dt

∣∣∣∣
t=0

(ϕ ◦ η)(t).

We then define the tangent space of M at p to be TpM := Cp/ ∼

Before proceeding, we must show that the equivalence relation defined above is

well defined.

Proposition 2.5. The equivalence relation ∼ defined on Cp is well defined.

Proof. Reflexivity and symmetry both follow from the reflexivity and symmetry of

equality so we need only show that the relation is transitive. Let γ, η, ρ ∈ Cp with

γ ∼ η and η ∼ ρ. These conditions mean that

d

dt

∣∣∣∣
t=0

(ϕ ◦ γ)(t) =
d

dt

∣∣∣∣
t=0

(ϕ ◦ η)(t) and
d

dt

∣∣∣∣
t=0

(ψ ◦ η)(t) =
d

dt

∣∣∣∣
t=0

(ψ ◦ ρ)(t)

for some charts ϕ and ψ. We then see that

d

dt

∣∣∣∣
t=0

(ψ ◦ γ)(t) =
d

dt

∣∣∣∣
t=0

(ψ ◦ ϕ−1 ◦ ϕ ◦ γ)(t)

= D(ψ ◦ ϕ−1)(ϕ(p))

(
d

dt

∣∣∣∣
t=0

(ϕ ◦ γ)(t)

)
after applying the chain rule. Then substituting for η and applying the chain rule

we have:

= D(ψ ◦ ϕ−1)(ϕ(p))

(
d

dt

∣∣∣∣
t=0

(ϕ ◦ η)(t)

)
=

d

dt

∣∣∣∣
t=0

(ψ ◦ ϕ−1 ◦ ϕ ◦ η)(t)

=
d

dt

∣∣∣∣
t=0

(ψ ◦ η) =
d

dt

∣∣∣∣
t=0

(ψ ◦ ρ)

and γ ∼ ρ.
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This proves that ∼ is well defined and Cp/ ∼ is a well defined set. We will now

see how to give TpM a vector space structure.

Proposition 2.6. Let M be a smooth manifold and A an atlas. The map dpϕ : TpM →
Rm by [γ] 7→ d

dt

∣∣
t=0

(ϕ ◦ γ) is a bijection for (U,ϕ) ∈ A and p ∈ U .

Proof. Since we specified a map on TpM by choosing a representative, we first need

to show that dpϕ is well defined. Given γ, γ′ ∈ [γ] ∈ TpM we know that for some

chart ψ containing p,
d

dt

∣∣∣∣
t=0

(ψ ◦ γ) =
d

dt

∣∣∣∣
t=0

(ψ ◦ γ′).

We then have

d

dt

∣∣∣∣
t=0

(ϕ ◦ γ) =
d

dt

∣∣∣∣
t=0

(ϕ ◦ ψ−1 ◦ ψ ◦ γ)

= D(ϕ ◦ ψ−1)(ψ(p))

(
d

dt

∣∣∣∣
t=0

(ψ ◦ γ)

)
= D(ϕ ◦ ψ−1)(ψ(p))

(
d

dt

∣∣∣∣
t=0

(ψ ◦ γ′)
)

=
d

dt

∣∣∣∣
t=0

(ϕ ◦ ψ−1 ◦ ψ ◦ γ′)

=
d

dt

∣∣∣∣
t=0

(ϕ ◦ γ′)

So dpϕ is well defined.

We now show that dpϕ is surjective. Given v ∈ Rm we can create a curve

ηv(t) = ϕ−1(ϕ(p) + tv). We know that ηv ∈ Cp since ηv(0) = ϕ−1(ϕ(p) + 0) = p and

(ϕ ◦ ηv)(t) = ϕ(p) + tv which is a smooth function. We then observe

dpϕ([ηv]) =
d

dt

∣∣∣∣
t=0

(ϕ(ϕ−1(ϕ(p) + tv))) =
d

dt

∣∣∣∣
t=0

(ϕ(p) + tv) = v

meaning that dpϕ is surjective.

We see that dpϕ is injective as follows. Take [γ], [ρ] with dpϕ[γ] = dpϕ[ρ]. This

implies that
d

dt

∣∣∣∣
t=0

(ϕ ◦ γ) =
d

dt

∣∣∣∣
t=0

(ϕ ◦ ρ)

and hence [γ] = [ρ].

Since TpM is in bijective correspondence with a vector space, we can make it

inherit the vector space operations from Rm, i.e.

α · [γ] := (dpϕ)−1(α · dpϕ[γ])
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and

[γ] + [η] := (dpϕ)−1(dpϕ[γ] + dpϕ[η]).

for all α ∈ R, [γ], [η] ∈ TpM . But, since this definition relies on a choice of chart ϕ,

for this definition to be meaningful we need to show that it does not infact depend

on the choice of ϕ.

Proposition 2.7. Let M be a smooth manifold for which ψ and ϕ are charts con-

taining p. Then the multiplications and additions defined on TpM using dpϕ and

dpψ coincide. That is:

(dpϕ)−1(α · dpϕ[γ]) = (dpψ)−1(α · dpψ[γ])

and

(dpϕ)−1(dpϕ[γ] + dpϕ[η]) = (dpψ)−1(dpψ[γ] + dpψ[η])

for all α ∈ R, [γ], [η] ∈ TpM .

Proof. We begin with the scalar multiplication formula. We see that

(dpψ)−1(α · dpψ[γ]) = (dpψ)−1(α · dpψ(dpϕ)−1dpϕ[γ])

Now, we will prove that dpψ(dpϕ)−1 = D(ψ ◦ ϕ−1)(ϕ(p)). We have (dpϕ)−1(v) =

[ϕ−1(ϕ(p) + tv)] so

dpψ(dpϕ)−1(v) =
d

dt

∣∣∣∣
t=0

(ψ(ϕ−1(ϕ(p) + tv)) = D(ψ ◦ ϕ)(ϕ(p))
d

dt

∣∣∣∣
t=0

(ϕ(p) + tv))

proving our claim. This then gives

αdpψ(dpϕ)−1dpϕ[γ] = αD(ψ ◦ ϕ−1)(ϕ(p))dpϕ[γ]

= D(ψ ◦ ϕ−1)(ϕ(p))α · dpϕ[γ]

= dpψ(dpϕ)−1α · dpϕ[γ]

and

(dpψ)−1(α · dpψ[γ]) = (dpψ)−1(dpψ(dpϕ)−1(αdpϕ[γ])

= (dpϕ)−1(αdpϕ[γ])

Similarly:

(dpψ)−1(dpϕ[γ] + dpϕ[η]) = (dpϕ)−1(dpϕ(dpψ)−1dpψ[γ] + dpϕ(dpψ)−1dpψ[η])

= (dpψ)−1(D(ψ ◦ ϕ−1)(ϕ(p))dpϕ[γ] +D(ψ ◦ ϕ−1)(ϕ(p))dpϕ[η])

= (dpψ)−1(D(ψ ◦ ϕ−1)(ϕ(p))(dpϕ[γ] + dpϕ[η])

= (dpψ)−1(dpψ(dpϕ)−1(dpϕ[γ] + dpϕ[η])

= (dpϕ)−1(dpϕ[γ] + dpϕ[η])

So the vector space structure on TpM does not depend on the choice of chart.
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Given γ : (a, b)→M a smooth curve, we define γ̇(t) := [γ̃t] where γ̃t(s) = γ(s−t).
Given a smooth map f : M → N we can define the derivative map Tpf : TpM →
Tf(p)N by Tpf [γ] = [f ◦ γ].

Since we can associate to each point p ∈M the vector space TpM , we might want

to look at the space of all tangent spaces, to do this we define TM :=
⊔
p∈M TpM ,

the tangent bundle of M . As we do not want to leave the realm of smooth manifolds,

we want to give TM a smooth manifold structure. Here we have not given TM the

disjoint union topology, it will inherit one from the smooth structure we give it.

Assume M is a smooth manifold with atlas A . To each chart (ψ, V ) we associate

a new chart (dψ, TV ) where TV :=
⊔
p∈V TpM and dψ : TV → ψ(V )×Rm is defined

as dψ[γ] := (ψ(γ(0)), dγ(0)ψ[γ]). This is clearly bijective, since we have the two sided

inverse (x, v) 7→ (dψ−1(x)ψ)−1(v). We can then define a topology on TM by taking

U ⊂ TM open if dψ(U ∩ V ) is open for all charts (ψ, V ) ∈ A .

To show that TM is a manifold with this given topology, we must first start by

showing that it is second countable and Hausdorff.

Proposition 2.8. Let M be a smooth manifold with smooth atlas A . The tangent

bundle of M , TM is second countable and Hausdorff.

Proof. We start by proving that TM is second countable. Since M is a manifold

it is second countable and hence can be covered in a countable collection of charts

(Ui, ϕi)i∈Z. Since TUi is homeomorphic to ϕi(Ui)× Rn it has a countable base Bi.

Then
⋃
i∈ZBi defines a base for TM which is countable.

We know show that TM is Hausdorff. Take [γ], [ρ] ∈ TM with [γ] 6= [ρ] and

γ(0) 6= ρ(0). If there is no V ∈ A with TV 3 [γ], [ρ] then any two charts TV and

TU containing [γ] and [ρ] respectively will be separating neighborhoods.

Assume that [γ], [ρ] ∈ TV for some chart (V, ψ) on M but with γ(0) 6= ρ(0).

Since M is Hausdorff, take W,X ⊂ V with γ(0) ∈ W,ρ(0) ∈ X. We then have

TW ∩TX = ∅ and TW, TX are open giving us separating neighborhoods of [γ] and

[ρ].

Now assume that γ(0) = ρ(0) ∈ V . We can take separating open neighborhoods

of dψ[γ] and dψ[ρ] in ψ(V )×Rm since R2m is Hausdorff. Call these neighborhoods

U and W . Then dψ−1(U) and dψ−1(W ) are open neighborhoods of [γ] and [ρ]

respectively which do not intersect. Hence TM is Hausdorff.

As we have defined the charts, we only need to check that the transitions dψ ◦
(dϕ)−1 are smooth in order to conclude that TM is a smooth manifold.
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We have

dψ ◦ (dϕ)−1(x, v) = dψ(ϕ−1(x), (dϕ−1(x)ϕ)−1v)

= ((ψ ◦ ϕ−1)(x), (dϕ−1(x)ψ(dϕ−1(x)ϕ)(v))

= ((ψ ◦ ϕ−1)(x), D(ψ ◦ ϕ−1)(ϕ−1(x))(v))

Which is smooth by the compatibility of ψ and ϕ.

Because TM is constructed directly fromM we get a natural function πTM : TM →
M which takes [γ] to γ(0). We see that πTM is a smooth map as follows. Let

(ψ, V ) be a chart for M and (dψ, TV ) the corresponding chart of TM . Then

ψ ◦ πTM ◦ dψ−1(x, v) = ψ(πTM ([ψ−1(x + tv)])) = ψ(ψ−1(x)) = x. Since the repre-

sentative function is smooth πTM is smooth. TM is an example of what is known

as a vector bundle, a space which locally looks like the product of a vector space

and a smooth manifold.

Now that we have defined the tangent bundle, we can define the space of vector

fields on M .

Definition 2.9. Let M be a smooth manifold. The space of vector fields on M is

the set of sections of the bundle π : TM →M , i.e. smooth maps σ : M → TM such

that πTM ◦ σ = IdM . The set of all vector fields is denoted X(M) or Γ(M,TM).

One can write out a vector field locally as X(p) =
∑
Xi ∂

∂xi
(p) where ∂

∂xi
(p) =

(dpϕ)−1(ei).

Definition 2.10. Let f : M → N be a diffeomorphism between smooth manifolds

M and N , that is f is a smooth bijection with smooth inverse f−1. We can define

the pushforward of f∗ : X(M)→ X(N) which takes a vector field X on M and maps

it to (p 7→ Tf−1(p)fX(f−1(p)).

One can view vector fields as the space of maps δ : C∞(M)→ C∞(M) such that

δ(fg) = g · δf + f · δg. This allows us to define the Lie bracket of vector fields

[X,Y ] := XY − Y X which one easily verifies to give a derivation when X and Y

are derivations.

Definition 2.11. Let M be a smooth manifold and X ∈ X(M). An integral curve

of X with initial condition p is a curve γ : (a, b) → M such that γ(0) = p and

γ̇(t) = X(γ(t)) for all t ∈ (a, b).

To see how integral curves relate to more familiar notions of ordinary differential

equations, we will look at their form in local coordinates.

Let X be a vector field on M and ϕ a chart on M . The equation γ̇(t) = X(γ(t))

corresponds to dϕ(γ̇(t)) = dϕ(X(γ(t))) or (γ(t), d
dt(ϕ ◦ γ)(t)) = (γ(t), dγ(t)ϕX(γ(t))).

9
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The condition on the first coordinate is satisfied trivially, so we can view this as a

ordinary differential equation d
dt(ϕ ◦ γ)(t) = X̃(γ(t)) for X̃(p) = dpϕX(p).

By the existence and uniqueness theorems for ordinary differential equations, for

each point p there is some interval for which an integral curve with initial condition

p exists and these depend smoothly on the choice of point p. This allows us to

generate dynamics on all of M at once, using the following definition.

Definition 2.12. Let M be a smooth manifold and X a vector field on M . The

flow of X is a map ϕt : (a, b) ×M → M such that ϕt(p) is the integral curve of X

with initial condition p.

The existence and uniqueness for ordinary differential equations guarantees the

existence of a flow map and that this map will be a local diffeomorphism from M

to itself.

Mechanically, one can think of a vector field as defining the velocity of some flow

at every point in the manifold in a smooth manner. This will be the view point that

will be the most helpful as we continue.

2.3 Differential Forms

Now that we have developed some of the ideas behind vector fields and their flows,

we can begin with the theory of differential forms. Differential forms allow us to

generalize oriented areas and volumes to the manifold setting and provide the natural

setting for the generalized Stokes’ theorem.

Definition 2.13. Let V be a finite dimensional R-vector space. We denote V ∗ =

{λ : V → R|λ is a linear map}. This is called the dual space of V . V ∗ caries a

natural vector space structure given by (λ + τ)(v) = λ(v) + τ(v) and (αλ)(v) =

α(λ(v)) for all λ, τ ∈ V ∗, α ∈ R, v ∈ V . One writes λ(v) = 〈λ, v〉 for any λ ∈
V ∗, v ∈ V . We define the space of alternating k-linear maps on V ,

∧k V ∗ to be the

space of k-linear maps µ :
∏k
i=1 V → R such that

µ(vσ(1), . . . , vσ(k)) = sgn(σ)µ(v1, . . . , vk)

for all v1, . . . , vk ∈ V and σ ∈ Sk. We also define a
∧0 V := R.

We see that
∧k V ∗ carries an R-vector space structure as a subspace of Hom(V k,R),

owing to the fact that

(µ+ λ)(vσ(1), . . . , vσ(k)) = µ(vσ(1), . . . , vσ(k)) + λ(vσ(1), . . . , vσ(k))

= sgn(σ)µ(v1, . . . , vk) + sgn(σ)λ(v1, . . . , vk)

If we want to talk about all alternating forms, we will refer to
∧• V ∗ :=

⊕
j∈N

∧j V ∗.

10
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Theorem 2.14. Let V be a finite dimensional R-vector space. There is a bilinear

map ∧ :
∧k V ∗×

∧l V ∗ →
∧k+l V ∗ such that α∧β = (−1)klβ ∧α and (α∧β)∧ γ =

α ∧ (β ∧ γ). That is ∧ makes
∧• V ∗ into a graded commutative algebra over R.

Proof. We begin by explicitly defining the wedge product. Given µ ∈
∧k V ∗ and

λ ∈
∧l V ∗ define

(µ∧λ)(v1, . . . , vk+l) :=
∑

σ∈Sk+l

(k + l)!

k!l!
sgn(σ)µ(vσ(1), . . . , vσ(k))λ(vσ(k+1), . . . , vσ(k+l))

We must first show that this results in a an element of
∧k+l V ∗. We have

(µ ∧ λ)(vτ(1), . . . , vτ(k+l)) : =
∑

σ∈Sk+l

1

k!l!
sgn(σ)µ(v(σ(τ(1)), . . . , vσ(τ(k)))λ(vσ(τ(k+1)), . . . vσ(τ(k+l)))

=
∑

σ∈Sk+l

1

k!l!
sgn(τ)sgn(στ)µ(v(σ(τ(1)), . . . , vσ(τ(k)))λ(vσ(τ(k+1)), . . . vσ(τ(k+l)))

= sgn(τ)
∑

η∈Sk+l

1

k!l!
sgn(η)µ(vη(1), . . . , vη(k))λ(vη(k+1), . . . , vη(k+l))

= sgn(τ)(µ ∧ λ)(v1, . . . , vk+l)

and we see that µ∧λ ∈
∧k+l V ∗. To approach associativity, we note that the wedge

product can be written as

µ ∧ λ =
1

k!l!
Ak+l(µ⊗ λ)

where Ak(κ)(v1, . . . vk) =
∑

σ∈Sk+l sgn(σ)κ(vσ(1), . . . , vσ(k)). For α ∈
∧a V ∗, β ∈∧b V ∗, γ ∈

∧c V ∗ We then have

(α ∧ β) ∧ γ =
1

a!b!

1

(a+ b)!c!
Aa+b+c(Ab+c(α⊗ β)⊗ γ).

We see that

Aa+b+c(Ab+c(α⊗ β)⊗ γ)(v1, . . . , va+b+c) =
∑

σ∈Sa+b
τ∈Sa+b+c

sgn(σ)sgn(τ)α(vτ(σ(1)), . . . vτ(σ(a)))

β(vτ(σ(a+1)), . . . vτ(σ(a+b)))γ(vτ(a+b+1), . . . , vτ(a+b+c))

In permuting each term by τσ−1τ−1 we have

Aa+b+c(Ab+c(α⊗ β)⊗ γ)(v1, . . . , va+b+c) = (a+ b)!
∑

τ∈Sa+b+c

sgn(τ)α(vτ(1), . . . vτ(a))

β(vτ(a+1), . . . , vτ(a+b))γ(vτ(a+b+1), . . . , vτ(a+b+c))

= (a+ b)!Aa+b+c(α⊗ β ⊗ γ)(v1, . . . , va+b+c)

11
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Then (α∧β)∧γ = 1
a!b!c!Aa+b+c(α⊗β⊗γ) and similarly Aa+b+c(α⊗ (Ac+b(β⊗γ)) =

(c+ b)!Aa+b+c(α⊗ β ⊗ γ) and (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

Through a simple argument, one finds that
∧j(Rn)∗ is given by dxi1 ∧ . . . dxij

where i1 < i2 < . . . < ij and the dxk are defined by

dxk (ej) := δjk

Example 2. To better understand what these represent, we consider an example

when V = R3. Take u, v, w ∈ R3 with

u =

u1

u2

u3

, v =

v1

v2

v3

, w =

w1

w2

w3

.
Since R3 has a basis (e1, e2, e3) we get a dual basis dx1 ,dx2 , dx3 with dxk (ej) = δkj .

If we take ω = dx1 ∧ dx2 ∧ dx3 we see that

ω(u, v, w) = A3(dx1 ⊗ dx2 ⊗ dx3)(u, v, w)

= (dx1 ⊗ dx2 ⊗ dx3 − dx1 ⊗ dx3 ⊗ dx2

+ dx2 ⊗ dx3 ⊗ dx1 − dx2 ⊗ dx1 ⊗ dx3

+ dx3 ⊗ dx1 ⊗ dx2 − dx3 ⊗ dx2 ⊗ dx1)(u, v, w)

= u1(v2w3 − v3w2)− u2(v1w3 − v3w1) + u3(v1w2 − v2w1)

Which is is the oriented volume of the parallelpiped spanned by u, v and w. This

hints at the role of these k-forms as measuring oriented areas and volumes.

Definition 2.15. Let V and W be R vector spaces. Given a linear map T : V →W

we can induce a map T ∗ :
∧kW ∗ →

∧k V ∗ by the formula

(T ∗µ)(w1, . . . , wk) := µ(T (w1), T (w2), . . . , T (wk))

Remark. The map T 7→ T ∗ is a generalization of the matrix transpose in the follow-

ing sense. Given v ∈ Rn and an element λ ∈ Rn∗ we have 〈λ, v〉 = utv for a unique

element u ∈ Rn.

Given a map T : Rm → Rn we have

〈λ, Tw〉 = ut(Tw)

= utTw

= (T tu)tw

12
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If ϕ : Rn → Rn is the isomorphism taking λ to u then

〈T ∗λ,w〉 = 〈λ, Tw〉
= (ϕλ)t(Tw)

= (T tϕλ)tw

In the identification between Rn and Rn∗, we see that T ∗ has the same effect as T t.

Using the k-form vector spaces and the dual maps of the isomorphisms define

between TpM and Rm we can create a bundle version of the k-forms. For k ∈ N we

begin by defining the kth exterior bundle as the disjoint union of the exterior spaces,

i.e.
∧k T ∗M :=

⊔
p∈M

∧k T ∗pM . Using the dual map we can construct natural

charts on
∧k T ∗M . Given a chart ϕ : U → Rm define the chart d∗kϕ :

∧k T ∗U →
ϕ(U) ×

∧k Rm by d∗kϕ(µp) := (ϕ(p), ((dpϕ)−1)∗µp). The arguments for a topology

and smoothness coincide with the tangent bundle case so we easily get a vector

bundle structure on
∧k T ∗M .

Definition 2.16. We define Ωk(M) the space of k-forms on M as the sections of

the vector bundle π :
∧k T ∗M → M , i.e. smooth functions ω : M →

∧k T ∗M such

that π ◦ ω = IdM .

Given a smooth map f : M → N we can induce the pullback of forms using the

dual map.

Definition 2.17. Given f : M → N a smooth map between manifolds M and N ,

define the map f∗ : Ωk(N)→ Ωk(M) by (f∗ω)(p) = Tpf
∗ω.

This allows us to move forms around using smooth maps.

Definition 2.18. We may define the wedge product ∧ : Ωk(M)×Ωl(M)→ Ωk+l(M)

by (ω∧η)(p) = (ω(p))∧(η(p)), since each fiber of
∧•(T ∗M) carries a wedge product

as defined before. This makes Ω•(M) :=
⊕

i Ωi(M) into a graded commutative

algebra over R or a graded commutative ring over C∞(M).

Definition 2.19. Given a form ω ∈ Ωk(M) and a vector field X ∈ X(M) we can

define the interior product ιXω by

ιXω(X1, . . . Xk−1) = ω(X,X1, . . . Xk−1),

for X1, . . . Xk−1 ∈ X(M). The map ιX is still a form since permutations of the

remaining slots give a sign that agrees with the definition.

13



2. DIFFERENTIAL GEOMETRY J.V. Gaiter, April 4, 2022

In coordinates, one can write any form ω as∑
i1<...<ik

ωi1...ik(p) dxi1 ∧ . . . ∧ dxik .

Given a function f : M → R we can define a one form df ∈ Ω1(M) by df (p)([γ]) :=
d
dt

∣∣
t=0

f ◦ γ. The form df (p) essentially measures how quickly f changes from the

point of view of a curve at p.

Proposition 2.20. The map f 7→ df is well defined, linear and a derivation.

Proof. We start by showing well definedness. Take γ, γ′ ∈ [γ] and (U,ϕ) a chart

containing p. Then

d

dt

∣∣∣∣
t=0

f ◦ γ =
d

dt

∣∣∣∣
t=0

f ◦ ϕ−1(ϕ ◦ γ)

= D(f ◦ ϕ−1)(ϕ(p))
d

dt

∣∣∣∣
t=0

(ϕ ◦ γ)

= D(f ◦ ϕ−1)(ϕ(p))
d

dt

∣∣∣∣
t=0

(ϕ ◦ γ′)

=
d

dt

∣∣∣∣
t=0

f ◦ γ′

We now prove linearity. For [γ], [ρ] ∈ TpM we have

df ([γ] + [ρ]) = df((dpϕ)−1(dpϕ[γ] + dpϕ[ρ])

= df

(
ϕ−1

(
ϕ(p) + t

d

dt

∣∣∣∣
t=0

ϕ ◦ γ(t) + t
d

dt

∣∣∣∣
t=0

ϕ ◦ ρ(t)

))
=

d

dt

∣∣∣∣
t=0

f

(
ϕ−1

(
ϕ(p) + t

(
d

dt

∣∣∣∣
t=0

ϕ ◦ γ +
d

dt

∣∣∣∣
t=0

ϕ ◦ ρ
)))

= D(f ◦ ϕ−1)(ϕ(p))

(
d

dt

∣∣∣∣
t=0

ϕ ◦ γ +
d

dt

∣∣∣∣
t=0

ϕ ◦ ρ
)

= D(f ◦ ϕ−1)(ϕ(p))
d

dt

∣∣∣∣
t=0

ϕ ◦ γ +D(f ◦ ϕ−1)(ϕ(p))
d

dt

∣∣∣∣
t=0

ϕ ◦ ρ

= df [γ] + df [ρ]

with scalar multiplication following verbatim.

We see that dfg = g df + f dg as follows. Given [γ] ∈ TpM we have

dfg [γ] =
d

dt

∣∣∣∣
t=0

(fg) ◦ γ

= f(p)
d

dt

∣∣∣∣
t=0

(g ◦ γ) + g(p)
d

dt

∣∣∣∣
t=0

(f ◦ γ)

= f(p) dg (p)[γ] + g(p) df (p)[γ]

14



2. DIFFERENTIAL GEOMETRY J.V. Gaiter, April 4, 2022

Definition 2.21. Let d: Ωk(M)→ Ωk+1(M) be the map that in local coordinates

has

d(
∑
i1...ik

ωi1...ik dxi1 ∧ . . . dxik) :=
∑
i1...ik

dωi1,...,ik ∧ dxi1 . . . ∧ dxik

A form ω is said to be closed if dω = 0 and is said to be exact if ω = dα for some

form α. The map d is called the exterior derivative.

Proposition 2.22. d: Ω•(M) → Ω•(M) is a graded derivation with d2 = 0, that

is:

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

with ω and η taken to be k and l-forms respectively, and d(dω) = 0 for ω ∈ Ω•(M).

Proof. We start by proving the graded derivation property:

dω ∧ η = d

 ∑
i1<...<ik
j1<...<jl

ωi1...ik dxi1 ∧ . . . ∧ dxik ∧ ηj1...jl dxj1 ∧ . . . ∧ dxjl



= d

 ∑
i1<...<ik
j1<...<jl

ωi1...ikηj1...jl dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl


=

∑
i1<...<ik
j1<...<jl

ηj1...jl dωi1...ik dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl

+
∑

i1<...<ik
j1<...<jl

dηj1...jl ωi1...ik dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl

=
∑

i1<...<ik
j1<...<jl

dωi1...ik dxi1 ∧ . . . ∧ dxik ∧ ηj1...jl dxj1 ∧ . . . ∧ dxjl

+ (−1)k
∑

i1<...<ik
j1<...<jl

ωi1...ik dxi1 ∧ . . . ∧ dxik ∧ dηj1...jl ∧ dxj1 ∧ . . . ∧ dxjl

= dω ∧ η + (−1)kω ∧ dη

To show d2 = 0 we start by seeing that

d dω = d
∑

i1<...<ik

dωi1...ik dxi1 ∧ . . . ∧ dxik

=
∑

i1<...<ik

d2ωi1...ik dxi1 ∧ . . . ∧ dxik +
∑

dωi1...ik d(dxi1 ∧ . . . ∧ dxik)

15
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So it suffices to show that each of these terms vanishes. We can write d
(
dxi1 ∧ . . . dxik

)
=

d(1)∧dxi1∧. . .∧dxik . We see that d(1) = 0 since d(1) ([γ]) = d
dt

∣∣
t=0

1◦γ = d
dt

∣∣
t=0

1 =

0 for all [γ] ∈ TpM . From this we conclude that our second term vanishes.

For the first term to vanish, it suffices to show that d2f = 0 for any f ∈ C∞(M).

Our previous proof leads us to the equality df [γ] = D(f ◦ ϕ−1)(ϕ(p)) d
dt

∣∣
t=0

ϕ(γ(t))

for a chart ϕ. We see that D(f ◦ϕ−1) is the matrix of partial derivatives of f ◦ϕ−1

and d
dt

∣∣
t=0

ϕ(γ(t)) = dpϕ[γ]. If we write [γ] =
∑
vi

∂
∂xi

then the vi are the coefficients

of dpϕ and df ([γ]) =
∑ ∂f◦ϕ

∂xi
vi meaning that df (p) =

∑ ∂f◦ϕ−1

∂xi
dxi. This means

that

d2f =
∑
i,j

∂2(f ◦ ϕ−1)

∂xj∂xi
dxj ∧ xi

=
∑
j<i

(
∂2(f ◦ ϕ−1)

∂xj∂xi
− ∂2(f ◦ ϕ−1)

∂xi∂xj
) dxj ∧ dxi

= 0

Given a smooth map f : M → N we have an induced map Tpf : TpM → Tf(p)N

meaning that there is a dual map f∗p :
∧• Tf(p)N →

∧• TpM This allows us to define

a map f∗ : Ω•(N)→ Ω•(M) by (f∗µ)(p) = f∗pµ(f(p)) for µ ∈ Ωk(N).

Given a vector field X with flow ϕt, we can pull a form ω back to another form

ϕ∗tω on M . We can then see how ω changes along the flow of X, motivating the

definition:

Definition 2.23. Given ω ∈ Ωk(M) and ϕt the flow of a vector field X, define the

Lie derivative of ω with respect to X to be

LXω :=
d

dt

∣∣∣∣
t=0

ϕ∗tω

This definition gives no indication as to how to calculate a Lie derivative, so the

following proposition is quite helpful.

Proposition 2.24. (Cartan’s Magic Formula) Let X be a vector field on a smooth

manifold M with ϕt the corresponding flow. Given ω ∈ Ωk(M) we have

LXω = dιXω + ιX dω

Proof. We start by calculating the pullback of a general map f : M → N in coordi-

nates. Take ω ∈ Ωk(M) and ϕ,ψ charts containing p ∈ M and n ∈ N respectively.
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We have f∗ω = f∗
∑
ωi1...ik dxi1 ∧ . . .∧dxik =

∑
(ωi1...ik ◦ f) df i1 ∧ . . .∧df ik . In the

case where f = ϕt we then have

d

dt

∣∣∣∣
t=0

ϕ∗tω =

(∑ d

dt

∣∣∣∣
t=0

(ωi1...ik ◦ ϕt)
)

dxi1 ∧ . . . ∧ dxik

+
∑

ωi1...ik
d

dt

∣∣∣∣
t=0

(df i1 ∧ . . . df ik)

=
∑

ιX dωi1...ik dxi1 ∧ . . . ∧ dxik

+
∑

ωi1...ik
d

dt

∣∣∣∣
t=0

(df i1 ∧ . . . df ik)

Seeing that d
dt

∣∣
t=0

df i1 = dXi we then have

d

dt

∣∣∣∣
t=0

ϕ∗tω = ιX dω +
∑
i1...ik

ωi1...ik(−1)j dXj dxi1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxik

= ιX dω + dιXω

3 Symplectic Geometry

Definition 3.1. Let β ∈ Ω2(M). β is said to be non-degenerate if given X ∈ TpM ,

β(X,Y ) = 0 for all Y ∈ TpM implies that X = 0.

This means that β establishes a musical isomorphism [ : TpM → TpM
∗ given by

[(X) = ιXβ. This key property will allow us to relate a function on M , typically

the energy of the system, to some vector field which will generate the time evolution

of the system through the exterior derivative d.

Definition 3.2. A symplectic manifold (M,ω) is a manifold M , equipped with a

closed, non-degenerate two-form ω, the so called symplectic form. Later, we will see

that taking dω = 0 will ensure that the Poisson bracket induced by ω satisfies that

Jacobi identity.

One can think of ω as a way to measure oriented parallelograms in TpM . This

is computed by taking ω(u, v) where u, v are the vectors describing the vertices of

the parallelogram. The nondegeneracy of ω means that ωn = ω ∧ ω ∧ · · · ∧ ω is a

non-zero 2n form, meaning that we have a canonical way to measure volumes in

phase space. This allows one to prove one of the non-trivial facts of Hamiltonian

mechanics, the Liouville theorem.
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Definition 3.3. Let (M,ω) be a symplectic manifold and H : M → R a smooth

function on M . The Hamiltonian vector field XH ∈ Γ(TM) of H is the vector field

such that ιXHω = dH. In other words XH = ](dH), where ] : Ω1(M) → Γ(TM)

is the inverse of [ defined previously. In coordinates, we must have ]([(X)) =

ωjk(ωijX
i) = Xi. In other words, ωijω

jk = δki .

Given a Hamiltionian H, the dynamics of a the system corresponding to this

Hamiltionian are given by flowing along the Hamiltonian vector field XH . In order

to find the state of a system after some time t, we apply the diffeomorphism ϕt, the

flow of the vector field XH , to our initial condition p ∈M .

To see the comparisons between symplectic mechanics and classical mechanics

we use the following theorem

Theorem 3.4. (Darboux) Let (M,ω) be a symplectic manifold. Given p ∈M there

exists a coordinate neighborhood U of p such that in local coordinates ω =
∑

i≤n dxi∧
dxi+n or if we take coordinates (q1, qn, . . . , qn, p1, p2, . . . pn) then ω =

∑
i≤n dqi∧dpi.

This extremely deep theorem tells us that locally, all symplectic manifolds of the

same dimension look the same.

We will now calculate what the equations of motion given by a symplectic form

are in a chart of the form above. Given H : M → R we have dH =
∑

i≤n
∂H
∂qi

dqi +
∂H
∂pi

dpi. If we assume our vector field XH =
∑

i≤nX
i
q
∂
∂qi

+Xi
p
∂
∂pi

then

ιXHω =
∑
i≤n

Xi
q dpi −Xi

p dqi =
∑
i≤n

∂H

∂qi
dqi +

∂H

∂pi
dpi

so

Xi
q =

∂H

∂pi
and Xi

p = −∂H
∂qj

Since the flow is described by q̇i = Xi
q and ṗi = Xi

p we then have the equations

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qj

Meaning that locally, the dynamics of any symplectic manifold satisfy Hamilton’s

equations.

Proposition 3.5. Let (M,ω) be a symplectic manifold and H : M → R a smooth

function on M . The dynamics generated by XH , the Hamiltonian vector field of H

preserve ω, that is:

ϕ∗tω = ω, (3.0.1)

where ϕt is the flow of XH .
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Proof. To show this, it suffices to demonstrate that

d

dt

∣∣∣∣
t=0

(ϕ∗tω) = LXHω = 0.

By Cartan’s magic formula, we have:

LXH (ω) = dιXHω + ιXHdω

= d(dH) + 0 (Definition of XH)

= 0

A diffeomorphism ϕ : M → N , where M and N are symplectic, for which

ϕ∗ωN = ωM

is said to be symplectic or canonical. So we have shown that the flow of the Hamil-

tonian vector field is canonical.

Theorem 3.6. (Liouville) Let N be a finite volume, open submanifold of the sym-

plectic 2n-manifold (M,ω), i.e.
∫
N ω

n = C < ∞. Let H be a smooth function on

M and ϕt : M →M be the Hamiltonian flow corresponding to H. The volume of N

is preserved along the flow ϕt, that is∫
N
ωn =

∫
ϕt(N)

ωn

Proof. From the previously proved properties, we immediately see:∫
ϕt(N)

ωn =

∫
N
ϕ∗tω

n =

∫
N
ωn

Definition 3.7. Let M be a symplectic manifold with symplectic form ω. The

Poisson bracket {·, ·} : C∞(M)→ C∞(M) is defined as follows: given f, g ∈ C∞(M),

{f, g} := ω(Xf , Xg)

In coordinates, we see that

{f, g} =
∑
i,j,k,l

ωijω
ki ∂f

∂xk
ωlj

∂g

∂xl
=
∑
j,k,l

δkj ω
lj ∂f

∂xk
∂g

∂xl
=
∑
l,j

ωlj
∂f

∂xj
∂g

∂xl

One recognizes that this is LXg [f ] So:

{f, g} = LXg [f ]
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Proposition 3.8. The Poisson bracket is a bilinear, antisymmetric, derivation

which satisfies the Jacobi identity. i.e.: for all f, g, h ∈ C∞(M) and all λ, η ∈ R

{λf + ηg, h} = λ{f, h}+ η{g, h} (Lin.)

{f, g} = −{g, f} (Antisymm.)

{fg, h} = f{g, h}+ g{f, h} (Deriv.)

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0. (Jacobi.)

These properties make C∞(M) into a Lie algebra under the Poisson bracket.

Proof. The first two properties follow directly from the fact that Xλf+ηg = ](λ df +

η dg) = λ · ](df) + η · ](dg) and ω is linear and skew-symmetric.

For the derivation property, one sees that

Xfg = ](d(fg)) = ](g df + f dg) = g](df) + f](dg)

by the Leibniz rule for the exterior derivative and linearity of ]. Substituting into

our definition, one sees that

{fg, h} = ω(gXf + fXg, Xh)

= gω(Xf , Xh) + fω(Xg, Xh)

= g{f, h}+ f{g, h}

In proving the Jacobi Identity, we start by rewriting the Poisson brackets:

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} =

= LXh [{f, g}] + LXg [{h, f}] + LXf [{g, h}]
= LXhιXg ιXfω + LXg ιXf ιXhω + LXf ιXhιXgω
= ιXg ιXfLXhω + ιXf ιXhLXgω + ιXhιXgLXfω.

Applying Cartan’s magic formula we see that

ιXg ιXfLXhω = ιXg ιXf (dιXhω + ιXhdω) = ιXg ιXfdιXhω

Then our previous formula simplifies to the following:

ιXg ιXfdιXhω + ιXf ιXhdιXgω + ιXhιXgdιXfω

Linearity of ι and d reduce this to:

ιXf+Xh+Xg ιXf+Xh+XgdιXf+Xh+Xgω = 0

Since ιY ιY = 0.
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The most important property of the Hamiltonian vector field is that its flow

preserves the Hamiltonian and hence, energy is conserved in the dynamics generated.

Proposition 3.9. Let (M,ω) be a symplectic manifold and H : M → R a smooth

function. Then

ϕ∗tH = H

where ϕt : M →M is the flow of the Hamiltonian vector field XH .

Proof. Since the flow of a vector field preserves connected components of M , it

suffices to show that
d

dt

∣∣∣∣
t=0

(ϕ∗tH) = 0

By definition of the Lie Derivative, we see that:

d

dt

∣∣∣∣
t=0

(ϕ∗tH) = LXH (H)

= {H,H}
= 0

This gives more testament to the fact that symplectic mechanics generalizes clas-

sical mechanics, since the key feature of time independent Hamiltonian mechanics

is that the energy is conserved.

4 Cotangent Bundles

The quintessential example of a symplectic manifold is the cotangent bundle, T ∗Q,

of a given smooth manifold, Q. Physically, Q is the configuration space of a classi-

cal system, i.e. the manifold of allowable physical configurations. Elements of T ∗Q

correspond to the generalized coordinate positions and corresponding momenta of

the system. Given the second order equations of motion typically seen in classi-

cal mechanics, the specification of a initial position and momentum is enough to

determine the forward evolution of the given situation.

Example 3. Say we wanted to study the motion of a particle confined to a circle.

Since the set of positions the particle may take is that of a circle, we take Q = S1.

In order to specify the momentum of the particle, we must specify a point in T ∗S1.

In order to apply the general theory of symplectic manifolds to cotangent bun-

dles, we must first define a symplectic form on T ∗Q.
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Definition 4.1. Let Q be a smooth manifold and π : T ∗Q → Q be the cotangent

bundle of Q. The tautological one form is the unique one form Θ ∈ Ω1(T ∗Q)

satisfying the property:

〈Θ, vαq〉 = 〈αq, Tqπ(v)〉

for all v ∈ Tαq(T ∗Q) and q ∈ Q.

Since we defined Θ for all v ∈ T (T ∗Q) it is the unique such one form.

Definition 4.2. The canonical 2-form on T ∗Q is defined as ω = −dΘ.

Proposition 4.3. Let Q be a smooth manifold and π : T ∗Q → Q be the cotangent

bundle. Then (T ∗Q,ω) is a symplectic manifold.

Proof. In order to see that ω is closed and non-degenerate, we will begin by comput-

ing Θ in local coordinates. Let (U,ϕ) be a chart containing q ∈ Q with coordinates

(qi). This then induces natural coordinates on T ∗U as an open subset of T ∗Q. We

will label these coordinates (qi, pi). Given v ∈ Tαq(T ∗U) we can decompose v into

its q and p components, i.e. v = vi ∂
∂qi

+ vj ∂
∂pj

for which Tqπ(v) = vi ∂
∂qi
∈ TqQ.

Taking αq = αi dqi we have

〈Θ, v〉 = 〈αq, Tqπ(v)〉

= 〈αi dqi , vi
∂

∂qi
〉

= αiv
i

This means that Θ = pi dqi.

Taking the exterior derivative, we find that ω = −dΘ = dqi∧dpi. This takes the

same form as the canonical two-form on R2n, so ω is nondegenerate. Since the form

is the sum of simple wedge products, we can also conclude that it is closed.

Now that we have shown that T ∗Q is a symplectic manifold, we will see how to

transform diffeomorphisms between manifolds into symplectic diffeomorphisms be-

tween cotangent bundles. This will allow us to more effectively study the symmetries

of phase space, T ∗Q, through the symmetries of Q.

Definition 4.4. Let Q and R be smooth manifolds and F : Q→ R be a diffeomor-

phism. The cotangent lift of F , T ∗F : T ∗R → T ∗Q is the smooth map defined as

follows. Given v ∈ TqQ and α ∈ TF (q)R,

〈T ∗Fα, v〉 = 〈α, TF (p)F · v〉
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In order to show that a diffeomorphism preserves the tautological one form if

and only if it is the cotangent lift of a diffeomorphism on the base space, we need

to prove the following proposition:

Proposition 4.5. Let Ft : T
∗N → T ∗N be the time dependent diffeomorphism α 7→

exp(t)α and XN be the vector field with flow Ft. Then

〈ΘN , XN 〉 = 0, LXNΘN = ΘN , ιXNωN = −ΘN

These facts mean that XN is a Liouville vector field.

Proof. Since Ft only translates along fibers, we can conclude that Tπ · XN = 0.

From this we see that

〈ΘN (αn), XN (αn)〉 = 〈αn, Tπ ·Xn(αn)〉 = 0

In proving our second equation, we start by applying Cartan’s magic formula.

This tells us:

LXNΘN = dιXNΘN + ιXNdΘN .

The first equation of our claim tells us that the first term of this sum vanishes. All

that remains in proving the second equation is to prove the last.

In coordinates, Ft takes the form Ft(qi, p
i) = (qi, e

tpi). Differentiating with

respect to t and taking t = 0, we see that XN = pi ∂
∂pi

. Then:

iXNωN = dqi(pj
∂

∂pj
)dpi − dpi(pj

∂

∂pj
)dqi

= 0− δji pjdq
i

= −pidqi = −ΘN

Proposition 4.6. Let ψ : T ∗R → T ∗Q be a diffeomorphism. This diffeomorphism

preserves the tautological one form, i.e. ψ∗ΘQ = ΘR, if and only if ϕ is the cotangent

lift of some diffeomorphism F : Q→ R.

Proof. Assume ψ : T ∗R → T ∗Q be a diffeomorphism such that ψ∗ΘQ = ΘR. First

we will show that ψ∗XQ = XR. Since the Liouville vector field is uniquely deter-

mined by the properties in Proposition 4.5 it suffices to show the following:

〈ΘQ, ψ∗XR〉 = 0, Lψ∗XRΘQ = ΘQ, ιψ∗XRωQ = −ΘQ

For the first property, we see that:

〈ΘQ, ψ∗XR〉 = 〈ψ∗ΘQ, XR〉 = 〈ΘR, XR〉 = 0
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The second property is verified thusly:

ΘR = LXRΘR = LXRψ
∗ΘQ = ψ∗Lψ∗XRΘQ,

and we conclude that Lψ∗XRΘQ = ΘQ.

We immediately obtain the third property through Cartan’s formula:

Lψ∗XRΘQ = dιψ∗XRΘQ + ιψ∗XRdΘQ

= 0− ιψ∗XRωQ.

By our second property, we can say ιψ∗XRωQ = −ΘQ.

Since ψ∗XR = XQ, we can conclude that ψ(etα) = ψ ◦ Ft(α) = etψ(α). Taking

t→ −∞ one sees that ψ(0) = 0. Taking ι : Q→ T ∗Q to be the inclusion of Q into

the zero section of T ∗Q (a diffeomorphism onto the image), we may now conclude

that ϕ = πR◦ψ◦ι : Q→ R is a diffeomorphism. To complete this argument we must

demonstrate that T ∗ϕ = ψ. We start by applying the definition of the cotangent

lift, the tautological one form, and the chain rule to arrive at the conclusion. Let v

be an element of TqQ and α ∈ Tϕ(q)R

〈T ∗ϕ · α, v〉 = 〈α, Tqϕ · v〉
= 〈α, Tq(πr ◦ ψ ◦ ι) · v〉 = 〈α, Tψ◦ι(q)πR · Tq(ψ ◦ ι) · v〉
= 〈ΘR(α), Tι(q)ψ · (Tqι · v)〉
= 〈ψ∗ΘR(ψ(α)), Tqι · v〉 = 〈ΘQ(ψ(α)), Tqι · v〉
= 〈ψ(α), Tπ(ι(q))πQ · (Tqι · v)〉 = 〈ψ(α), Tq(πq ◦ ι) · v〉
= 〈ψ(α), v〉

Now to prove the converse, assume that ϕ : Q → R is a diffeomorphism and

ψ = T ∗ϕ : T ∗R→ T ∗Q. Let αq be an element of T ∗qQ and v ∈ Tψ(αq)T
∗R. We then

prove the identity by applying the definition of the pullback, the cotangent lift and

the product rule.

〈(T ∗ϕ)∗ΘQ, v〉 = 〈ΘQ, Tψ(αq)(T
∗ϕ) · v〉

= 〈ψ(αq), TαqπQ(Tψ(αq)(T
∗ϕ) · v〉

= 〈ψ(αq), Tψ(αq)(πQ ◦ T
∗ϕ) · v〉

One can see that T ∗ϕ
∣∣
T ∗r R

: T ∗rR → T ∗ϕ−1(r)Q So πQ ◦ T ∗ϕ(αr) = ϕ−1(q). This

tells us that the following diagram commutes, i.e. πQ ◦ T ∗ϕ = ϕ−1 ◦ πR (and that
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(ϕ−1, T ∗ϕ) is a bundle map):

T ∗Q T ∗R

Q R

πQ

T ∗ϕ

πR

ϕ−1

From this we conclude

〈ψ(αq), Tψ(αq)(πQ ◦ T
∗ϕ) · v〉 = 〈ψ(αq), Tψ(αq)(ϕ−1 ◦ πR) · v〉

= 〈αq, Tψ(αq)(ϕ
−1 ◦ ϕ ◦ πR) · v〉

= 〈αq, Tψ(αq)πR · v〉 = 〈ΘQ, v〉

Given T ∗ϕ : T ∗R→ T ∗Q we can see that such a map is canonical, i.e. it preserves

the symplectic form. Since the exterior derivative commutes with the pullback, we

have

(T ∗ϕ)∗ωQ = −(T ∗ϕ)∗dΘQ = −d((T ∗ϕ)∗ΘQ) = −dΘR = ωR.

This gives us a convenient way to convert between the dynamics occurring on dif-

feomorphic configuration spaces. By taking the cotangent lift of the dynamics on

T ∗R we obtain “the same” dynamics on T ∗Q. The method applied in the preceding

proof were inspired by the approach in [5].

5 Lie Groups and Group actions

Now that we have described the common method for generating the dynamics of

a system using symplectic geometry, we will now look at a systematic way to in-

vestigate the symmetries of a system. In order to describe smooth symmetries of

manifolds we must first describe what a set of smooth symmetries aught to look like.

In describing general symmetries, we use the language of group theory. This allows

us to speak abstractly about the most important properties a set of symmetries has,

i.e. the law of composition, the existence of the identity and inverses. Since we are

focusing on smooth manifolds, our set of symmetries should be smooth, motivating

the following definition.

Definition 5.1. A Lie group G is a smooth manifold with a smooth group structure.

That is µ : G × G → G, (g, h) 7→ g · h and i : G → G, g 7→ g−1 are smooth maps.

This effectively defines a smooth set of symmetries.
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Definition 5.2. By the definition of µ, we can define an action of G on itself, by

taking Lg : G→ G, h 7→ gh. Similarly, we define a right action Rg by h 7→ hg.

Now that we have restricted ourselves to smooth symmetries, we gain a new tool

for describing these symmetries, the tangent space and vector fields.

Definition 5.3. A vector field X ∈ Γ(TG) is said to be left invariant if Lg∗X = X.

These are vector fields that are unchanged by the left action of G on itself and are

a powerful way to study the properties of a Lie group.

Proposition 5.4. Let G be a Lie group and ΓG(TG) the set of left invariant vector

fields. ΓG(TG) has a natural vector space structure on it, inherited from Γ(TG).

Then ΓG(TG) is isomorphic as a vector space to TeG = g, the tangent space to the

identity.

Proof. Given ξ ∈ g, we define a vector field at every g ∈ G by Xξ(g) = TeLg(ξ)(g).

We see that Xξ is left invariant, since TgLh(Xξ(g)) = TgLh · TeLg(ξ) = Te(Lh ◦
Lg)(ξ) = TeLhg(ξ) = Xξ(hg). We can see that such a map assigns a unique smooth

vector field for every ξ ∈ g.

Now, assume that Y is a left invariant vector field on G. If η = Y (e) ∈ g, then

given h ∈ G, Y (h) = TeLh(Y (e)) = TeLh(η) = Xη(h), this means that the map

η 7→ Xη is a surjection from g to L so we can conclude that g ∼= ΓG(TG).

One property that distinguishes g from the tangent space of a generic manifold

is that we can imbue it with a Lie algebra structure by way of the left invariant

vector fields. To do so, we must first prove the following proposition:

Proposition 5.5. Let G be a Lie group. ΓG(TG) is a Lie subalgebra of Γ(TG).

Proof. Since ΓG(TG) is already a vector subspace of Γ(TG), it suffices to show that

ΓG(TG) is closed under the Jacobi-Lie bracket. Take X,Y ∈ ΓG(TG). Since the

pushforward commutes with the Jacobi-Lie bracket, we have

Lg∗[X,Y ] =
[
Lg∗X,Lg∗Y

]
= [X,Y ]

hence [X,Y ] ∈ ΓG(TG) and ΓG(TG) is a Lie subalgebra of Γ(TG).

We can give the Lie algebra structure on ΓG(TG) to g by evaluation at the

identity.

Definition 5.6. Let G be a Lie group and g = TeG. We say (g, [·, ·]) is the Lie

algebra of G where [·, ·] is defined as follows. Given ξ, η ∈ g,

[ξ, η] := [Xξ, Xη](e).

One easily checks that this bracket gives g a Lie algebra structure.
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Using the left invariant vector fields, we can define the following map from g into

G.

Definition 5.7. We define the exponential map exp: g→ G as the solution to the

equation
d

dt

∣∣∣∣
t=0

(g · exp(tξ)) = Xξ(g)

meaning that exp(tξ) is the flow of the left invariant vector field Xξ.

The theory of ordinary differential equations guarantees the existence of exp(tξ)

for t small enough and one can prove existence for all t by left multiplication.

Example 4. The most prevalent examples of Lie groups in physics and mathematics

are the matrix Lie groups. Our first example is the the simplest, representing the

group of automorphisms on a vector space. Let K ∈ {R,C} and Matn(K) be the

set of n × n matrices. The general linear group is defined to be GLn(K) = {A ∈
Matn(K)| det(A) 6= 0}, the set of invertible linear transformations from Kn to itself.

One can see that GLn(K) is a smooth manifold, owing the the fact that det−1(0)

is a closed subset of Kn×n implies that GLn(K) = Kn×n\det−1(0) is open and

hence a submanifold of Kn×n. This carries a group structure from regular matrix

multiplication. Non-zero determinant means that each element has an inverse, the

identity has determinant 1, and the set is closed under multiplication since given

A,B ∈ GLn(K) we have det(AB) = det(A) det(B) 6= 0. Since matrix multiplication

is a polynomial in the entries of multiplicants it is a smooth map, from this we can

conclude that GLn(K) is a Lie group. Because GLn(K) is an open subset of Kn×n

then gln(K) = TeGLn(K) ∼= Kn×n. Examining our definition for the exponential

map at the identity, we see that it satisfies d
dt

∣∣
t=0

exp(tξ) = ξ so the exponential

map coincides with the matrix exponential for matrix Lie groups.

Since GLn(K) is the largest set of invertible matrices in Matn(K), one can think

of it as the group of symmetries of a generic n-dimensional vector space with no

additional structure. Since we often imbue our vector spaces with extra structures,

e.g. inner products, volume forms, symplectic forms, and the like, we often restrict

ourselves to Lie subgroups of GLn(K) that preserve these structures.

Orthogonal group. If we want to look at the symmetries of an inner product

space, which we will take to be Rn with the standard dot product, we need to

describe all of the linear maps that preserve the dot product. Given u, v ∈ Rn, we can

write u·v = uT v. Then a linear map A ∈ Matn(R) will preserve the dot product if for

all u, v ∈ Rn we have (Au) · (Av) = u ·v. This implies that (Au)T (Av) = uTATAv =

uT v. Since this must hold for every u, v ∈ Rn, as a bilinear form ATA = In. Taking

the determinant of this equation and applying the fact that detAT = detA, we
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see that all such matrices must satisfy (detA)2 = 1 and are therefore invertible.

We then define the Orthogonal group as O(n) = {A ∈ Matn(R)|ATA = In}. This

inherits the multiplication from GLn(R). We can see that this set forms a subgroup

of GLn(R) as follows. Given the fact that (AB)T = BTAT , we then see that if

A,B ∈ O(n) we have (AB)T (AB) = BTATAB = In. Therefore AB ∈ O(n). Since

these maps preserve the inner product, they preserve the length of all vectors. These

form the group of rotations and reflections of Rn. We typically restrict further to the

group of proper rotations SO(n) = {A ∈ O(n)|detA = 1}, the connected component

containing In.

Since the restriction from O(n) to SO(n) corresponds to choosing the connected

component of the identity, we can conclude that so(n) = TeSO(n) = TeO(n) = o(n).

To calculate the form of so(n), we start by assuming A = exp(tξ) for A ∈ SO(n) and

some ξ ∈ so(n). If we differentiate the expression: In = ATA = exp(tξ)T exp(tξ)

with respect to t we arrive at 0 = (ξ exp(tξ))T exp(tξ) + exp(tξ)T (ξ exp(tξ)) by the

Leibniz rule. Letting t = 0 we have ξT + ξ = 0. This means that so(n) is the set of

skew symmetric matrices of dimension n.

Special Linear Group. When a volume form on a vector space is an object

of importance, the special linear group is the relevant Lie group to keep in mind.

One recalls that a volume form on an oriented vector space, take it to be Rn for

definiteness, is a non-zero n-form on that space. Taking the standard basis ei for Rn,

we have the standard volume form constructed by wedging the dual basis vectors

dxi in order. This gives the volume form µ = dx1 ∧ dx2 ∧ · · · ∧ dxn, this means that

the oriented volume of the unit n-cube is 1. We might reasonably define a volume

preserving symmetry as a linear map A ∈ Matn(R) such that µ(Av1, · · · , Avn) =

µ(v1, · · · , vn) for all ordered sets of vectors (vi). Using the fact that µ(v1, · · · , vn) =

det
([
v1 v2 · · · vn

])
, one sees that our previous equation implies that det(AV ) =

det(V ) for all V ∈ Matn(R). This means that A must satisfy detA = 1 in order

to preserve µ. We then define the special orthogonal group as SLn(R) = {A ∈
Matn(R)|detA = 1}. We can easily show that SLn(R) forms a Lie subgroup of

GLn(R) as follows. Let (An) be a convergent sequence of matrices with detAn = 1

for all n ∈ N. Continuity of the determinant implies that A = limAn must also

satisfy detA = 1 and hence A ∈ SLn(R). The closed-subgroup theorem then implies

that SLn(R) forms a Lie subgroup of GLn(R).

Symplectic Group. Since much of the exposition seen previously relates to

the properties of a symplectic form, i.e. a non-degenerate, closed, two-form, it is

natural to ask what kinds of symmetries such a form has. As before, we will look

at the symmetries of a vector space with the extra structure of a symplectic form.

We define a symplectic vector space as follows.
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Definition 5.8. Let V be a vector space and ω : V ×V → R an alternating bilinear

form. (V, ω) is said to be a symplectic vector space if ω is nondegenerate.

The non-degenerative condition requires that V be even dimensional, since it is

equivalent to ωdimV/2 being a volume form. One can prove that symplectic vector

spaces of the same dimension are isomorphic so we can restrict ourselves to the case

V = R2n, ω = εi ∧ εi where εi is the dual basis element for ei, i ≤ n and εi is the

dual basis element for ei, without loss of generality. Since any bilinear form can be

represented as vtWu for some W ∈ Mat2n(R), the relevant symmetry group will be

that for which AtWA = W where W represents ω as a bilinear form. To find W ,

we start by letting v = viei + vie
i and w = wiei + wie

i, then

ω(v, w) = εj(viei + vie
i)εj(w

iei + wie
i)− εj(wiei + wie

i)εj(v
iei + vie

i) (5.0.1)

= viδjiwiδ
i
j − wiδ

j
i viδ

i
j (5.0.2)

= vjwj − wjvj (5.0.3)

One can see that this corresponds to the block matrix

W =

[
0 In
−In 0

]

We define Sp(2n,R) = {A ∈ Mat2n(R)|ATWA = W}.
In order to talk about the symmetries of mechanical systems, we must establish

a concrete way of talking about how symmetries manifest themselves on smooth

manifolds. This is done through the language of group actions.

Definition 5.9. Let G be a Lie group and M a smooth manifold. A map Ψ: G×
M →M , m 7→ Ψg(m) is said to be a left Lie group action if it is smooth, Ψe(m) = m

for all m ∈M and Ψh ◦Ψg = Ψhg for all h, g ∈ G. Ψ is said to be a right Lie group

action if it is smooth, Ψe(m) = m and Ψh ◦Ψg = Ψgh. The criteria Ψh ◦Ψg = Ψhg

means that all group actions must be diffeomorphisms, since (Ψg)
−1 is explicitly

given as Ψg−1 .

We can define a left action on a Lie group G by itself using conjugation. Define

Ad : G × G → G by Adg(h) := ghg−1. This is called the adjoint action. Taking

h = exp(tξ) for ξ ∈ g we can define an action of G on g as follows: Adg(ξ) :=
d
dt

∣∣
t=0

g exp(tξ)g−1.

One of the common threads of differential geometry is studying smooth objects

by linear approximation, i.e. studying the tangent maps. Given a group action

Ψ: G×M → M , we can induce a map from g to Γ(TM) by mapping ξ ∈ g to the
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vector field whose flow corresponds to Ψexp(tξ), we will call this vector field ξM . This

can be defined formally as:

ξM =
d

dt

∣∣∣∣
t=0

Ψexp(tξ).

We will now prove an important proposition regarding the vector fields generated

by a group action, also know as infinitesimal symmetries.

Proposition 5.10. Let G be a Lie group with a left Lie group action on a smooth

manifold M . The induced map g → Γ(TM) by ξ 7→ ξM is a Lie algebra anti-

homomorphism, i.e.

[ξ, η]M = −[ξM , ηM ]

for all ξ, η ∈ g.

To prove this, we must first prove a lemma regarding how the adjoint action of

G on g interacts with the Lie group action on M .

Lemma 5.11. Given ξ ∈ g and g ∈ G, the following identity holds:

(Adgξ)M = Ψ∗g−1ξM .

Proof. We start our proof from the definition of (Adgξ)M .

(Adgξ)M =

(
d

ds

∣∣∣∣
s=0

Ψexp( d
dt |t=0

g exp(tξ)g−1)

)
=

d

ds

∣∣∣∣
s=0

(Ψg exp(tξ)g−1)

=
d

ds

∣∣∣∣
s=0

(Ψg ◦Ψexp(tξ) ◦Ψg−1)

= TΨg−1Ψg(ξM (Ψg−1))

= Ψ∗g−1ξM

Proof. One then sees the proof of our original proposition by taking g = exp(tη)

and differentiating with respect to t.

[ξ, η]M :=

(
d

dt

∣∣∣∣
t=0

Adexp(tη)ξ

)
M

=
d

dt

∣∣∣∣
t=0

Ψ∗exp(−tη)ξM = −[ξM , ηM ]
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If we think of a Lie group action as a Lie group homomorphism G→ Diff(M) =

{ϕ : M →M |ϕ is a diffeomorphism} then this induces a Lie algebra (anti)homomorphism

g→ Γ(TM) where Γ(TM) is viewed as the Lie algebra of Diff(M), in the case where

M is compact.

At this point, we can begin applying group actions to our previously mentioned

symplectic manifolds. This will lead us towards the topic of moment maps, a gener-

alized version of the Hamiltonian, and eventually to the ideas of Noether’s theorem

and Marsden-Weinstein reduction.

Definition 5.12. Let (M,ω) be a symplectic manifold and G be a Lie group that

acts on M on the left by Ψ. The action Ψ is said to be symplectic if for each g ∈ G,

the diffeomorphism Ψg : M →M is symplectic. That is

Ψ∗gω = ω.

Taking g = exp(tξ) for ξ ∈ g and differentiating with respect to t yields

LξMω = 0.

By Cartan’s magic formula,

LξMω = dιξMω + ιξM dω = dιξMω

This means that locally ξM = Xf for f ∈ C∞(U) with U ⊆M open. One can view

such an H as the generalized energy corresponding to the infinitesimal symmetry

ξ. By the definition of Xf , f will be preserved along the flow of ξM where defined.

We will soon specialize to the case where H is globally defined, this motivates the

so called momentum map.

Definition 5.13. Let g be a Lie algebra with a left action ξ 7→ ξM on a symplectic

manifold M . A Moment mapping corresponding to the left action of g is a map

J : M → g∗ such that ξM = XJ(ξ), this of course means that ιξMω = dJ(ξ).

Just as regular linear momentum is the dual of the velocities, which generate

translations when exponentiated, moment maps are the dual of Lie algebra elements,

which generate general symmetries based on the specific group action. Of course, we

can simply be given a moment map J : M → g∗ and a group action Ψ: G×M →M ,

and we might like to know if these are compatible in some sense. This motivates

the following definition.

Definition 5.14. Let (M,ω) be a symplectic manifold, and Ψ: G × M → M a

symplectic G-action. A moment map J : M → g∗ is said to be G-equivariant if for

each g ∈ G,

Ψ∗gJ = Ad∗g−1J
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that is J(Ψg(x))(ξ) = 〈J(x),Adgξ〉. This means that the following diagram com-

mutes:

M g∗

M g∗

Ψg

J

Ad∗
g−1

J

In the cotangent bundle case, one immediately has such a moment map. One

can take J(ξ) = ιξT∗QΘ where Θ is the canonical one form mentioned previously.

Now that we have formulated the ideas of continuous symmetries and moment

maps, we can now state Noether’s theorem for symplectic mechanics.

Theorem 5.15. (Noether) Let M be a symplectic manifold,G a Lie group with a

left action Ψ : G×M →M and a corresponding moment map J : M → g∗. Assume

H ∈ C∞(M). If LξM (H) = 0 then LXH (J(ξ)) = 0.

This means that if ξM is an infinitesimal symmetry of H, then J(ξ) is conserved

along the flow generated by H.

Proof. By the definition of J , we know that XJ(ξ) = ξM , then

0 = LξM (H) = LXJ(ξ)(H) = {H,J(ξ)} = −{J(ξ), H} = −LXH (J(ξ))

At this point, a physicist may be contented in calling J a conserved quantity, and

”spending” this symmetry to reduce the degrees of freedom of the problem. This

will lead to difficulty if care is not taken. In order to apply a reduction procedure

and spend our symmetry, we must first show, under the proper assumptions, that

identifying points under symmetry leaves us with a smooth manifold. To do so, we

will state the quotient manifold theorem, which is instrumental in reduction.

Theorem 5.16. (Quotient Manifold Theorem) Let M be a manifold and G be a

compact lie group with a left action Ψ : G ×M → M that is proper and free; i.e.

G×M → M ×M , (g, x) 7→ (Ψgx, x) is a proper map and Ψgx = Ψhx implies that

g = h. Then

M/G = {[x] | x ∈M, x ∼ y if Ψgx = y for some g ∈ G}

is a smooth manifold and π : M →M/G, x 7→ [x] is a smooth submsersion.

The proof of this result can be found in Abraham and Marsden [6]. This gives a

concrete way to tell when the process of identifying points under symmetry gives a

smooth manifold. Before we can describe how to reduce symmetries, we must state

the following definition.
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Definition 5.17. Let G be a Lie group with a group on a set X. Given x ∈ X, we

define the isotropy subgroup Gx as follows:

Gx := {g ∈ G|gx = x}

This is instrumental in proving the following theorem, which tells us how to

reduce a symplectic manifold under the action of a symmetry.

Theorem 5.18. (Marsden-Weinstein Reduction Theorem) Let (M,ω) be a sym-

plectic manifold, equipped with a G-action Ψ and an equivariant moment map J

such that η ∈ g∗ is a regular value of J , i.e. TpJ has full rank for all p ∈ J−1(η).

Take

π : J−1(η)→ J−1(η)/Gη

to be the natural projection p 7→ [p]. If Gη acts properly and freely on J−1(η), there

exists a symplectic form ωred ∈ Ω2(Mred) such that

ι∗ω = π∗ωred.

In simple terms, J−1(η) is the submanifold of M with moment map value η. This

is the set of all phase points p such that J(p) = η. We require that η is a regular

value of J to guarantee that J−1(η) is a regular submanifold of M . We then identify

all points in the orbits under the action of G, since G is a set of symmetries of M

and hence J−1(η), this means we are removing the redundant degrees of freedom

associated to these symmetries. A proof of this theorem can be found in [4].

Given a G-invariant Hamiltonian H ∈ C∞(M), i.e. Ψ∗gH = H, we get a Hamil-

tonian on the reduced space Hred ∈ C∞(Mred) with H
∣∣
J−1(η)

= Hred ◦ π. We then

generate the dynamics on the reduced space as before, using the vector field XHred

such that ιXHredωred = dHred.

6 The Classical Kepler Problem

We now will examine reduction of the classical two-body problem. Our configuration

space will be Q = R6\{q1 = q2}. Q is the set of positions of the two bodies in

question, where they are not permitted to collide. Then the phase space of the

system is T ∗Q = R6 ×Q since Q is an open subset of R6. The Hamiltonian of this

system is

H =
‖p1‖2

2m1
+
‖p2‖2

2m2
− k

‖q1 − q2‖
.

This is the sum of the kinetic energies of the bodies plus the potential energy between

them.
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6.1 First Reduction

We begin with a symmetry that will correspond to the conservation of total linear

momentum. One notes that if we map (q1,q2,p1,p2) to (q1 + x,q2 + x,p1,p2),

the Hamiltonian remains unchanged. We will take this map to be a left R3 action

on T ∗Q. Differentiating the action tells us that the infinitesimal symmetry of this

action is Xη = ηi ∂
∂qi1

+ ηj ∂

∂qj1
for η belonging to the Lie algebra of R3 canonically

identified with R3 itself.

The moment map arising from this action must satisfy d(J(η)) = ιXηω. We see

that

iXηω = (dqi1 ∧ dp1
i + dqj2 ∧ dp2

j )

(
ηk

∂

∂qk1
+ ηl

∂

∂ql1
, ·
)

= ηk dqi1

(
∂

∂qk1

)
dp1

i + ηl dqj2

(
∂

∂ql2

)
dp2

j

= ηkδik dp1
i + ηlδjl dp2

j = ηi dp1
i + ηj dp2

j

Then ∂J(η)

∂pji
= ηi, ∂J(η)

∂qji
= 0 so we can conclude that J(η) = ηip1

i +ηjp2
j = η ·(p1 +p2)

and J = p1 + p2, where we implicitly identify R3∗ with R3. We can immediately

see that this moment map is equivariant because R3 is an abelian group.

To start the reduction process, we look at the preimage of 0 ∈ R3 under the

moment map. We see that J−1(0) = {(q1,q2,p1,p2) ∈ T ∗Q | p1 + p2 = 0}.
This is precisely the set where the total linear momentum of the system is zero.

Now when we take the quotient by the group action, we make the identification

(q1,q2,p1,p2) ∼ (q1 + x,q2 + x,p1,p2). To know that the result of the quotient is

still a smooth manifold, we must show that our action is free and proper. We start

by assuming that there is some (q,p) ∈ T ∗Q for which x ·(q,p) = y ·(q,p) for some

x,y ∈ R3. This implies that q + x = q + y and hence x = y, therefore our action

is free. To show that this group action is proper it suffices to show that the action

R3 × R3 → R3 by (q,x) 7→ q + x is a proper map.

Let K be a compact subset of R3 then for x +K to have non-trivial intersection

withK, ‖x‖ < diam(K) since the bounding balls ofK and x+K must intersect forK

and x+K to intersect. this means that {x ∈ R3|(x+K)∩K 6= ∅} is bounded and thus

has compact closure. We can then conclude that our action is proper and J−1(0)/R3

is a smooth manifold. Since J−1(0) has p2 = −p1 and (q1 +x)− (q2 +x) = q1−q2

we can take our coordinates on Mred = J−1(0)/R3 ∼= T ∗(R3\{0}) ∼= (R3\{0})× R3

to be

(q,p) = (q1 − q2,p1 − p2) = (q1 − q2,p1 + p1),

with q 6= 0. Our Hamiltonian is invariant under the R3 action since ‖q1 + x− (q2 + x)‖ =
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‖q1 − q2‖ and it descends to a Hamiltonian on the reduced space. Our new Hamil-

tonian is

Hred =
‖p‖2

2

(
m1 +m2

m1m2

)
+

k

‖q‖
=
‖p‖2

2µ
+

k

‖q‖

6.2 Second Reduction

Now that we have reduced the phase space of the system to half the dimension, we

can now examine the rotational invariance of the system. If we take the standard

SO(3) action on R3\{0} by ΨA(q) = Aq we can then take the cotangent lift of this

action. We start by noticing that TΨA(v) = Av, then 〈T ∗ΨAp, v〉 = pTA−1v =

pTAT v = (Ap)T v and hence T ∗ΨA(q,p) = (Aq, Ap). Since SO(3) does not affect

the norm of q or p we see that Hred is invariant under this action.

In order to find the moment map corresponding to the SO(3) action we have to

find the vector field corresponding to ξ ∈ so(3). Taking A = exp(tξ) we have

Xξ =
d

dt

∣∣∣∣
t=0

T ∗Ψexp(tξ)(q,p)

=
d

dt

∣∣∣∣
t=0

(exp(tξ)q, exp(tξ)p)

= (ξq, ξp)

= qjξij
∂

∂qi
+ plξkl

∂

∂pk
.

Now,

ιXξω = dqm ∧ dpm (Xξ)

= qjξijδ
m
i dpm − plξkl δmk dqm

= qjξij dpi − plξkl dqk

This implies that ∂µ(ξ)
∂pi

= qjξij and we can conclude that µ(ξ) = ξijq
jpi = p · (ξq).

Identifying so(3) with R3 by 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 7→ ξ̃ =

ξ1

ξ2

ξ3


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and noting that

ξq =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


q1

q2

q3


=

ξ2q3 − ξ3q2

ξ3q1 − ξ1q3

ξ1q2 − ξ2q1

 = ξ̃ × q

Then p · (ξq) = p · (ξ̃ × q) = ξ̃ · (q × p). We then conclude that J = q × p under

our identification, this is the angular momentum of the system.

Now we will show that the moment map is equivariant. We have

〈µ ◦ T ∗ΨA(q,p), ξ〉 = ξ · (Aq×Ap)

= ξ ·A(q× p) = (AT ξ) · (q× p)

= 〈Ad∗A−1(µ(q,p)), ξ〉

Since we have shown that we have an equivariant moment map arising from a

symplectic SO(3) action, we can begin with the reduction procedure.

Instead of taking µ−1(0) to be the manifold we will quotient, we now take

µ−1(L),where L ∈ so(3)∗ ∼= so(3) is the angular momentum of the system, this

means that every point in our reduced phase space will satisfy q× p = L 6= 0. We

must first examine the form of SO(3)L. We can imediately observe that SO(3)L ∼=
SO(2), since every rotation that fixes L corresponds to a rotation of the plane per-

pendicular two L. Now we must show a few properties of the group action in order

to fulfill the assumptions of the Marsden-Weinstein Reduction theorem.

We automatically know that our SO(3) action is proper since SO(3) is compact.

Therefore, to show that µ−1(L)/SO(3)L is a smooth manifold, we only need to

demonstrate that our action is free. Because q × p 6= 0, q and p are linearly

independent and neither is parallel to L. We then see that there is no trans-

formation that fixes both p and q. This tells us the chosen action is free and

Mred′ = µ−1(L)/SO(3)L ∼= T ∗R+ ∼= R+ × R is a smooth manifold.

We will now choose coordinates on Mred′ , our first coordinate being r = ‖q‖.
Since q × p is constant, p is uniquely determined by its component parallel to q.
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Letting p = p⊥ + p‖, we then have L = q× (p⊥ + p‖) = q× p⊥ and

‖p‖2

2m
=

(p⊥ + p‖) · (p⊥ + p‖)

2µ

=

∥∥p⊥∥∥2

2µ
+ 2

p⊥ · p‖

2µ
+

∥∥p‖∥∥2

2µ

=

∥∥p⊥∥∥2

2µ
+

∥∥p‖∥∥2

2µ

Letting q = rv̂ and p⊥ = p⊥ŵ where then we have L = rp⊥(v̂× ŵ) = L This means

that r2(p⊥)2 = ‖L‖2 and hence
∥∥p⊥∥∥2

= ‖L‖2
r2

. We now induce the coordinate

pr being the momentum associated to r which corresponds to ±
∥∥p‖∥∥, this can be

written as pr = q·p
‖q‖ .

Our previous reduced Hamiltonian now gives:

Hred′ =
‖L‖2

2µr2
+
p2
r

2µ
− k

r

We see that

dHred′ =

(
k

r2
− ‖L‖

2

µr3

)
dr +

pr
µ

dpµ

Let XH′ = Xr
∂
∂r +Xpr

∂
∂pr

, then

ιXH′ω = Xr dp−Xpr dr .

Taking dH ′red = ιXH′ω we have Xr = pr
µ and Xpr = ‖L‖2

µr3
− k

r2
. We then obtain the

equations of motion:

ṙ =
pr
µ
, ṗr =

‖L‖2

µr3
− k

r2

7 Deformation Quantization

7.1 Motivation

In doing typical quantum mechanics, we begin with some classical phase space,

typically M ∼= Rn × Rn∗ with coordinates (qi, pi), and a Hamiltonian, a smooth

function H : R2n → R which is a low degree polynomial in pi with coefficients in

C∞(Rn). From here, we take our complex Hilbert space (H, 〈·, ·〉) = L2(Rn), which

describes the set of complex probability density functions on Rn with the usual

inner product of functions, and we would like to find a representation of a suitable

subspace of C∞(M) containing H on our Hilbert space. To do this, we make a
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guess. We map pi to the operator −i~ ∂
∂qi

and map qi to the operator ψ 7→ qi · ψ.

We call the operator form of H, Ĥ.

At this point, our guess appears to have little to do with the classical case. We

make reference to a classical system, but apparently no reference to the geometry

of phase space. This is not quite true, there is a hidden reference to the classical

symplectic geometry outlined in the first half of this thesis. When we look at the

commutation relations between the q̂i’s and p̂j ’s we see a glimpse of the classical

regime shining through. Let ψ ∈ D(q̂i) ∩D(p̂j), then:[
q̂i, p̂j

]
ψ = −i~qi ∂ψ

∂qj
+ i~

∂

∂qj
(
qiψ
)

= −i~qi ∂ψ
∂qj

+ i~qi
∂ψ

∂qj
+ i~δijψ

= i~δijψ

Since functions commute with functions and derivatives commute by the Schwartz

theorem, we have the following set of commutation relations:[
q̂i, p̂j

]
= i~δij ,

[
q̂i, q̂j

]
= 0, [p̂i, p̂j ] = 0.

Now, using the canonical Poisson bracket on Rn × Rn∗ we come to the following

similar result: {
qi, pj

}
=
∑
k

∂qi

∂qk

∂pj
∂pk
− ∂qi

∂pk

∂pj
∂qk

= δikδ
k
j = δij

and: {
qi, qj

}
=
∑
k

∂qi

∂qk
∂qj

∂pk
− ∂qi

∂pk

∂qj

∂qk
= δik · 0− 0 · δjk = 0

One similarly confirms that {pi, pj} = 0. Comparing these equations to the previous

ones, we recognize that the quantum commutation relations are exactly i~ times the

Poisson commutation relations. If we wanted to generalize this scheme, we might

like to take the Poisson algebra of observables and find a new associative product

on it that satisfies i~ times the Poisson commutation relations. It turns out that

enforcing the commutation relations for all observables is an impossible task, even

on a set of observables polynomial in qi and pj of bounded degree. This fact coming

from the Gronewold-van Hove no go theorems. Instead of strictly enforcing these

relations we will want our algebra to follow these relations “asymptotically”, a notion

which will be the basis for deformation quantization.
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7.2 Basic Definitions

Before we get to defining what a deformation is, we will describe the basic algebraic

structure used to describe the asymptotics of deformation quantization.

Definition 7.1. Let R be a unital ring, R[[λ]] is the ring of formal power series in

λ with coefficients in R, i.e. formal linear combinations r =
∑∞

i=0 riλ
i with ri ∈ R.

The ring structure is given by

r · s = (
∑

riλ
i)(
∑

sjλ
j) =

∑
risjλ

i+j

with addition defined as r + s =
∑

(ri + si)λ
i.

Definition 7.2. Let R be a unital ring and M a left R-module. Then M [[λ]] is the

left R[[λ]] module of formal power series in λ with coefficients in M . We define the

module structure analogously to the ring structure on R[[λ]].

We commit an abuse of notation and identify R and M with R0 and M0, the

subring/module of R[[λ]] and M [[λ]] of zeroth order. We then define a formal

deformation quantization as follows:

Definition 7.3. Let A be a Poisson algebra with bracket {·, ·}, i.e. a commutative

algebra over C, (A, ·,+), where {·, ·} satisfies the axioms from Proposition 3.8. The

bilinear map ? : A[[λ]]×A[[λ]]→ A[[λ]] is said to be a star product if it satisfies the

following: assume f, g, h ∈ A

f ? g = f · g + o(λ), (7.2.1)

f ? g − g ? f = iλ{f, g}+ o(λ2), (7.2.2)

(f ? g) ? h = f ? (g ? h). (7.2.3)

These can be extended billinearly to all of A[[λ]]. Of the conditions, Equations 7.2.1

and 7.2.2 are the modified Dirac quantization conditions and Equation 7.2.3 ensures

that (A[[λ]], ?) is an associative algebra. We now see how to enforce the original

Dirac quantization rules asymptotically. We require the ?-commutator to agree with

iλ{·, ·} up to order λ2. As a matter of convention one can take λ = ~ so that the

commutation relation matches with Dirac’s original condition. ~ is nothing more

than a formal parameter within the scope of deformation quantization.

Since the typical way we find said star products is through differential operators

on some domain, we define the following:

39



7. DEFORMATION QUANTIZATION J.V. Gaiter, April 4, 2022

Definition 7.4. Let A ⊂ C∞(U) a sub-algebra, where U is an open subset of some

smooth manifold M . We define Diff(A) to be the set of differential operators on A,

i.e. for each a ∈ Diff(A) and x ∈ U

(af)

∣∣∣∣
V

=
∑
|α|≤l

aα∂
αf

for some V an open neighborhood of x, aα ∈ C∞(U).

7.3 Examples of Star Products

It is easy to map polynomials purely in p or q into differential operators, since[
q̂i, q̂j

]
=
[
p̂i, p̂j

]
= 0 we can map

∏
(qj)αj to (q̂1)α1 ◦ . . . ◦ (q̂n)αn and

∏
(pj)

βj to

(p̂1)β1 ◦ . . . ◦ (p̂n)βn with no issues.

We will construct a prototypical example on C[q, p], the space of complex poly-

nomials in q and p, and then see how this might be extended to C[qi, pi]. We will

begin by constructing a star product ? that extends the typical quantization q 7→ q̂,

ψ 7→ qψ; p 7→ −i~ d
dq .

Naively, one might map polynomials into the differential operators as follows:

Definition 7.5. We define the standard ordering representation as the map ρs : C[q, p]→
Diff(C[q]) with:

qnpm 7→ ρs(q
npm) := qn

(
−i~ d

dq

)m
.

This is an injective linear map.

Definition 7.6. To deform the associative algebra on C[q, p] we define

f ?s g := ρ−1
s (ρs(f) ◦ ρs(g)).

Proposition 7.7. The preceding map ?s is a star product on C[q, p]

Proof. We begin by computing ?s using monomials and extending bilinearly. For
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m,n, j, k ∈ N we have

ρs(q
mpn) ◦ ρs(qjpk) = qm(−i~)n

dn

dqn

(
(qj)(−i~)k

dk

dqk

)
= qm(−i~)n+k dn

dqn

(
qj

dk

dqk

)
= qm(−i~)n+k

n∑
r=0

(
n

r

)
j!

(j − r)!
qj−r

dk+n−r

dqk+n−r

=
∑

(−i~)r
n!

(n− r)!r!
j!

(j − r)!
qj+m−r(−i~)n+k−r dk+n−r

dqk+n−r

=
∑ (−i~)r

r!

j!

(j − r)!
qj+m−r

n!

(n− r)!
(−i~)n+k−r dk+n−r

dqk+n−r

If we convert back to q and p and say f(q, p) = qmpn, g(q, p) = qjpk this sum can

be written as ∑ (−i~)r

r!

∂rf

∂pr
∂rg

∂qr

which is a terminating sum for f, q ∈ C[q, p], so we might define

f ?s g := fg − i~∂f
∂p

∂g

∂q
+
∞∑
r=2

(−i~)r

r!

∂rf

∂pr
∂rg

∂qr
. (7.3.1)

We see that this satisfies the asymptotic Dirac condition:

[f, g]?s = f ?s g − g ?s f = −i~∂f
∂p

∂g

∂q
+ i~

∂g

∂p

∂f

∂q
+ o(~2) = i~{f, g}+ o(~2)
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We can show associativity by taking f, g, h ∈ C[q, p], we have

(f ?s g) ?s h =

( ∞∑
r=0

(−i~)r

r!

∂rf

∂pr
∂rg

∂qr

)
?s h

=
∞∑
k=0

(−i~)k

k!

∂k

∂pk

( ∞∑
r=0

(−i~)r

r!

∂rf

∂pr
∂rg

∂qr

)
∂kh

∂qk

=
∞∑

k,r=0

(−i~)k

k!

(−i~)r

r!

∑
n≤k

(
k

n

)
∂r+nf

∂pr+n
∂k−n

∂pk−n

(
∂rg

∂qr

)
∂kh

∂qk

=

∞∑
k,r=0

(−i~)k

k!

(−i~)r

r!

∑
n≤k

(
k

n

)
∂r+nf

∂pr+n
∂r

∂qr

(
∂k−ng

∂pk−n

)
∂kh

∂qk

=
∞∑

k,r=0

(−i~)k

k!

(−i~)r

r!

∑
n≤k

k!

(k − n)!n!

∂r+nf

∂pr+n
∂r

∂qr

(
∂k−ng

∂pk−n

)
∂kh

∂qk

=

∞∑
k,r=0,n≤k

(−i~)k+r

r!

∂r+nf

∂pr+n
1

(k − n)!n!

∂r

∂qr

(
∂k−ng

∂pk−n

)
∂n

∂qn

(
∂k−nh

∂qk−n

)

Let j = r + n, then n = j − r and our sum becomes

∑ (−i~)k+r

r!

∂jf

∂pj
1

(k − j + r)!(j − r)!
∂r

∂qr

(
∂k−j+rg

∂pk−j+r

)
∂j−r

∂qj−r

(
∂k−j+rh

∂qk−j+r

)
=
∑ (−i~)j

j!

(−i~)k−j+r

(k − j + r)!

∂jf

∂pj
j!

r!(j − r)!
∂r

∂qr

(
∂k−j+rg

∂pk−j+r

)
∂j−r

∂qj−r

(
∂k−j+rh

∂qk−j+r

)
Taking the new index l = (k − j + r) we have

∑ (−i~)j

j!

(−i~)l

l!

∂jf

∂pj

∑
r≤j

(
j

r

)
∂r

∂qr

(
∂lg

∂pl

)
∂j−r

∂qj−r

(
∂lh

∂ql

)

=
∑ (−i~)j

j!

∂jf

∂pj
∂j

∂qj

(∑ (−i~)l

l!

∂lg

∂pl
∂lh

∂ql

)
= f ?s (g ?s h)

In a similar way, we can define ?s on C∞(R2n) as follows:

f ?s g :=
∑ (−i~)r

r!

n∑
k=1

∂rf

∂prk

∂rg

∂qrk

and readily sees that the Dirac-Poisson relation and associativity follow from the

preceding proof.

If we take ρs(C[q, p]) to be operators on C∞cpt(R)[[~]] ⊂ L2(R)[[~]] equipped with

its standard inner product, we soon see an issue with our naive guess. One recalls
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that ρs(q) = q̂, ρs(p) = p̂ = −i~ d
dq are self adjoint operators on C∞cpt(R) which is

an important property of observables, since one expects the expectation value of an

observable to correspond to a real number. We see that ρs(qp)
† = (q̂p̂)† = p̂q̂ mean-

ing that we have not assigned a self-adjoint operator to a real valued polynomial.

In remedying this, we might map monomials to their symmetrization, which we will

describe in the next definition:

Definition 7.8. We now define the so-called Weyl-Moyal representation, ρw : C[q, p]→
Diff(C[q]), as

qmpn 7→ 1

(m+ n)!

∑
σ∈Sm+n

σ(q̂, . . .
m times

, q̂, p̂, . . .
n times

, p̂)

Where σ(a1, . . . , am+n) = aσ(1) . . . aσ(m+n).

For example ρw(qp) = 1
2(q̂p̂+ p̂q̂). One verifies that ρw(qmpn) is self-adjoint and

ρw is injective.

In order to define the Weyl-Moyal product in a more convenient way, we will

define the next operation.

Definition 7.9. Let A be a commutative associative algebra over C. We define

µ : A⊗A→ A by bilinear extension of the following property:

µ(u⊗ v) := uv

for all u, v ∈ A.

Definition 7.10. Let (M,ω) be a symplectic manifold. The Poisson tensor P ∈∧2 TM is defined by

P (f, g) := ω(Xf , Xg).

In canonical coordinates P (f, g) =
∑ ∂f

∂qi
∂g
∂pi
− ∂f

∂pi
∂g
∂qi

so

P =
∑ ∂

∂qi
∧ ∂

∂pi

We then define Λ: C∞(M)⊗ C∞(M)→ C∞(M)⊗ C∞(M) by

Λ(f ⊗ g) :=
∑ ∂f

∂qi
⊗ ∂g

∂pi
− ∂f

∂pi
⊗ ∂f

∂qi

In non-canonical coordinates, we simply have

Λ(f ⊗ g) =
∑

P ij
∂f

∂xi
⊗ ∂g

∂xj
.
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Definition 7.11. When M = R2n and ω =
∑

dqi ∧ dpi we define the Weyl-Moyal

Product as follows:

f ?w g :=
∑ (i~)n

2nn!
µ(Λn(f ⊗ g)).

Equivalently, we could define it as(
exp

(
i~Pxy

2

)
f(x, px)g(y, py)

)∣∣∣∣
x=y=q,px=py=p

Where

Pxyf(x, px)g(y, py) =
∑ ∂f

∂xi
(x, px)

∂g

∂piy
(y, py)−

∂f

∂pix
(x, py)

∂g

∂yi
(y, py)

Proposition 7.12. The map ?w : C∞(R2n) × C∞(R2n) → C∞(R2n) defined above

is a star product.

Proof. By simple computation we immediately see:

f ?w g − g ?w f = fg − gf +
i~
2
{f, g} − i~

2
{g, f}+ o(~2) = i~{f, g}+ o(~2)

Now, let f, g, h ∈ C∞(R2n). We then have the following

(f ?w g) ?w h =

(
exp

(
i~Pxy

2

)
(f ?w g)(x, px)h(y, py)

)∣∣∣∣
x=y,px=py

=

(
exp

(
i~Pxy

2

))(
exp

(
i~Pxz

2

)
f(x, py)g(z, pz)

∣∣∣∣
x=z,px=pz

h(y, py)

)∣∣∣∣
x=y,px=py

=

(
exp

(
i~(Pxy + Pxz + Pyz)

2

)
f(x, px)g(z, pz)h(y, py)

)∣∣∣∣
x=y=z,px=py=pz

= f ?w (g ?w h)

and we conclude that this defines a star product on C∞(R2n)

8 The Hydrogen Atom

The classical hydrogen atom’s Hamiltonian takes the exact same form as the one

from the Kepler problem, where this time k = e2

4πε0
, rather than the typical k =

Gm1m2. Though this detail is not mathematically important. The fact that the

hydrogen atom and the two body problem have functionally equivalent Hamiltoni-

ans comes from the inverse square force law, which tells us that point objects (or

spherical bodies) which have potential energy fields that obey ∆Φ = αρ have force

laws of the form F = k
r2
r̂.
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8.1 First Reduction

Throughout this section, we will take the typical star product ?1/2 on T ∗(R6\∆)

and find a natural star product on the reduced phase space T ∗R+. To find these

reductions, we will mirror the classical case, starting with the reduction of phase

space from T ∗(R6\∆) to T ∗(R3\{0}).
The fashion in which we have created our projection π : J−1(0)→ J−1(0)/R3 al-

lows us to extend this to πt : T
∗(R6\∆)→ T ∗(R3\{0}) by taking πt(q1,q2,p1,p2) :=

(q1 − q2,p1 − p2). We see that πt : T
∗(R6\∆) → T ∗(R3\{0}) has a right inverse.

Our right inverse is given by j : T ∗(R3\{0})→ T ∗(R6\∆), (q, p) 7→ (q, 0,p/2,−p/2).

We immediately see that (πt ◦ j)(q,p) = πt(q, 0,p/2,−p/2) = (q,p/2− (−p/2)) =

(q,p). Then, to define our star product on C∞(T ∗(R3\{0})) we take

f?̃1/2g := j∗(π∗t f ?1/2 π
∗
t g)

for all f, g ∈ C∞(T ∗(R3\{0})).

Proposition 8.1. The map

?̃1/2 : C∞(T ∗(R3\{0}))[[ν]]× C∞(T ∗(R3\{0}))[[ν]]→ C∞(T ∗(R3\{0}))[[ν]]

as defined above is a star product.

Proof. We start with our zeroth order condition. Given f, g ∈ C∞(T ∗(R3\{0})) we

see

f?̃1/2g = j∗(π∗t (f) ?1/2 π
∗
t (g))

= j∗(π∗t (f)π∗t (g) + o(ν))

= j∗(π∗t (f))(π∗t (g)) + o(ν)

= (πt ◦ j)∗(f)(πt ◦ j)∗(g) + o(ν)

= fg + o(ν)

So ?̃1/2 fulfills the zero order quantization condition.

We now move on to the first order condition. Taking f and g as before, we have:

f ?̃1/2 g − g ?̃1/2 f = j∗(π∗t f ?1/2 π∗t g)− i∗(π∗t g ?1/2 π∗t f)

= j∗(π∗t f ?1/2 π∗t g − π∗t g ?1/2 π∗t f)

= j∗(iν{π∗t f, π∗t g}+ o(ν2))

= iνj∗{π∗t f, π∗t g}+ o(ν2)
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From the preceding calculation, we know that in order to prove the first order

condition, we need to prove the following:

j∗{π∗t f, π∗t g} = {f, g}.

We can do this by a simple coordinate calculation.

{π∗t f, π∗t g}(q1,q2,p1,p2) = ∇q1f(q1 − q2,p1 − p2) ·∇p1g(q1 − q2,p1 − p2)

−∇p1f(q1 − q2,p1 − p2) ·∇p1g(q1 − q2,p1 − p2)

+ ∇q2f(q1 − q2,p1 − p2) ·∇p2g(q1 − q2,p1 − p2)

−∇p2f(q1 − q2,p1 − p2) ·∇p2g(q1 − q2,p1 − p2)

= (∇qf∇pg −∇pf∇qg)(q1 − q2,p1 − p2)

+ (−1)(−1)(∇qf ·∇pg −∇pf ·∇qg)(q1 − q2,p1 − p2)

= π∗t {f, g}

Then we have j∗{π∗t f, π∗t g} = j∗π∗t {f, g} = (πt ◦ j)∗{f, g} = {f, g}.
We will now prove the associativity condition.

(f ?̃1/2 g) ?̃1/2 h = j∗(π∗t j
∗(π∗t f ?1/2 π∗t g)) ?1/2 π∗t h)

= j∗((π∗t f ?1/2 π∗t g) ?1/2 π∗t h)

= j∗(π∗t f ?1/2 (π∗t g ?1/2 π∗t h))

= j∗(π∗t f ?1/2 π∗t j
∗(π∗t g ?1/2 π∗t h))

= f ?̃1/2 (g ?̃1/2 h)

Since ?̃1/2 satisfies all three of the Dirac quanitization conditions, we conclude that

it defines a star algebra structure on C∞(T ∗(R3\{0}))

8.2 Second Reduction

Using this same argument, we can see that Λ(π∗(f ⊗g)) = π∗Λ(f ⊗g) meaning that

?̃1/2 coincides with ?1/2 defined on C∞(R6\{0})

Now that we have created a star algebra on the first reduced space, we would

like to do so in a similar fashion for the second reduced space. Without loss of

generality, we will take L̃ = lẑ. We can then define an inclusion ι : T ∗R+ → µ−1(L)
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by (q, p) 7→ (q, 0, 0, p, lq , 0). We see that

(π2 ◦ ι)(q, p) = π(q, 0, 0, p,
l

q
, 0)

=

(√
q2,

1

q
(qx̂ · (px̂+

l

q
ŷ))

)
= (q,

qp

q
) = (q, p)

We then define our new star product on C∞(T ∗R+) by

f ?′1/2 g := ι∗(π∗f ?̃1/2 π
∗g)

Proposition 8.2. The map ?′1/2 : C∞(T ∗R+)[[λ]]×C∞(T ∗R+)[[λ]]→ C∞(T ∗R+)[[λ]]

as defined above defines a star product on C∞(T ∗R+).

Proof. Our proof is almost verbatim to that of Proposition 5.0.1. We begin with

the zeroth order condition. Given f, g ∈ C∞(T ∗R+)[[λ]] we have

f ?′1/2 g : = ι∗(π∗f ?̃1/2 π
∗g)

= ι∗(π∗f · π∗g + o(ν))

= ι∗(π∗f · π∗g) + o(ν)

= (π ◦ ι)∗f · ι∗π∗g + o(ν)

= f · g + o(ν)

We now consider the second order condition. Taking f and g as before, we see that

f ?′1/2 g − g ?′1/2 f = ι∗(π∗f ?̃1/2 π
∗g)− ι∗(π∗g ?̃1/2 π

∗f)

= ι∗(π∗f ?̃1/2 π
∗g − π∗g ?̃1/2 π

∗f)

= ι∗(iν{π∗f, π∗g}+ o(ν2))

= iνι∗{π∗f, π∗g}+ o(ν2)

Once again it suffices to show that π is a Poisson map. One sees that

π∗f(q,p) = f

(
‖q‖, q · p

‖q‖

)
We can rewrite the Poisson bracket as

{π∗f, π∗g} = ∇qπ
∗f ·∇pπ

∗g −∇qπ
∗g ·∇pπ

∗f
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The chain rule then gives ∇qπ
∗f = ∇q(f◦π) = ∇q(‖q‖)

(
∂f
∂q ◦ π

)
+∇q(q·p

‖q‖)
(
∂f
∂p ◦ π

)
and ∇pπ

∗f = ∇p(q·p
‖q‖)(

∂f
∂p ◦ π). In the first case we have

∇q‖q‖ =
q

‖q‖

and

∇q
q · p
‖q‖

=
p

‖q‖
− q · p
‖q‖2

q

‖q‖
=

p

‖q‖
− (q · p)q

‖q‖3
.

The second case simply gives ∇p(q·p
‖q‖) = q

‖q‖ . Plugging these expressions into our

Poisson bracket equation then gives

{π∗f, π∗g} =

(
q

‖q‖

(
∂f

∂q
◦ π
)

+

(
p

‖q‖
− (q · p)q

‖q‖3

)(
∂f

∂p
◦ π
))
· q

‖q‖

(
∂g

∂p
◦ π
)

−
(

q

‖q‖

(
∂g

∂q
◦ π
)

+

(
p

‖q‖
− (q · p)q

‖q‖3

)(
∂g

∂p
◦ π
))
· q

‖q‖

(
∂f

∂p
◦ π
)

=
q · q
‖q‖2

(
∂f

∂q

∂g

∂p

)
◦ π +

(
p · q
‖q‖

− (p · q)(q · q)

‖q‖3

)(
∂f

∂p

∂g

∂p

)
◦ π

− q · q
‖q‖2

(
∂g

∂q

∂f

∂p

)
◦ π −

(
p · q
‖q‖

− (p · q)(q · q)

‖q‖3

)(
∂g

∂p

∂f

∂p

)
◦ π

=

(
∂f

∂q

∂g

∂p

)
◦ π + 0−

(
∂g

∂q

∂f

∂p

)
◦ π − 0

= π∗{f, g}

From this we conclude that ι∗{π∗f, π∗g} = ι∗π∗{f, g} = {f, g} and the first order

quantization condition is fulfilled. Because our definition takes the same form as in

Proposition 8.1 we omit the associativity argument.

Due to the simplicity of the preceding arguments, it is easy to come up with the

following proposition:

Proposition 8.3. Let M be a symplectic manifold equipped with a G-equivariant

momentum map J : M → g∗ with µ ∈ g∗ a regular value. Let ?1/2 : C∞(M)[[λ]] ×
C∞(M)[[λ]] → C∞(M)[[λ]] be a star product on M . If J−1(µ) is a trivial Gµ
bundle with a section ι : J−1(µ)/Gµ → J−1(µ) and there is a global projection

π : M → J−1(µ) which is Poisson then the following formla defines a star prod-

uct on J−1(µ)/Gµ:

f ˜?1/2 g := ι∗(π∗f ?1/2 π∗g)

Proof. The proof follows in the same fashion as Propositions 8.3 and 8.2.
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