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Abstract

In this thesis we lay out an overview of the mathematics required to understand
the reduction of symmetry of the classical Kepler problem and its quantum counter-
part the hydrogen atom within the framework of symplectic geometry and deforma-
tion quantization respectively. In order to do so, we must cover the mathematical
generalization of Hamiltonian mechanics, symplectic geometry. We will show how
conservation of energy and Liouville’s theorem manifest themselves within this gen-
eralization using the tools of differential geometry. After introducing differential
and symplectic geometry, we give brief introduction to Lie Groups, their actions on
smooth manifolds, and moment maps. Lie groups allow us to formalize the very
physical ideas behind continuous symmetry, and they play a principal role in the
reduction of symmetry, along with moment maps, as we will see in the latter half
of this thesis. After having developed the prerequisite theory, we then tackle the
reduction of the Kepler problem, otherwise known as the two body problem. This
section makes mathematically rigorous the method by which the equations of mo-
tion for the two body problem are obtained in a typical undergraduate analytical
mechanics course. After the classical reduction is finished we motivate the idea of
quantization as P.A.M. Dirac does in his 1925 paper [2]. We then cite the Gronewold
van Hove no go theorems [3] to show that such a quantization scheme can not be
strictly satisfied even on R?" and use this to motivate the definitions underlying
deformation quantization. After defining deformation quantizations we give a few
examples of such structures on R?" and reduce one such example, the Weyl-Moyal
product using the classical reduction tools we developed for the Kepler problem.
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1 Introduction

Each approach to classical mechanics has particular strengths, making some more
suited for certain theoretical or practical applications than others. Newtonian me-
chanics is applicable to the widest array of problems, but is unwieldy for certain
systems; Lagrangian mechanics allows one to find the equations of motion for sys-
tems with relative ease, but can hide important symmetries between position and
momentum. When a classical system has a large amount of symmetry, Hamiltonian
mechanics allows one to easily spot these symmetries via the use of conserved quan-
tities. One can even use these symmetries to reduce the complexity of a problem
and to transform a set of opaque equations into something more tractable.

Another factor in Hamiltonian mechanics’ utility is its emphasis on observables
as fundamental components of the theory. Where Lagrangian mechanics begins with
the Lagrangian, a convenient theoretical tool which is not commonly measured or
studied in of itself, Hamiltonian mechanics begins with the Hamiltonian, a quantity
which in many cases represents the real energy of the system. One can compute the
Poisson bracket to determine how arbitrary observables evolve in time as well as
to detect symmetries in the system. It is this emphasis on observables that makes
the transition between classical mechanics and quantum mechanics easiest from the
Hamiltonian point of view.

To move from the classical realm to the quantum one begins with a classical
system. In most cases it suffices to think of our configuration space as R", this is
the set of all positions our system is allowed to take. The phase space of such a
system is described by R™ x R™ where each point (q, p) describes both the position
and momentum of the system. We are given a Hamiltonian H: R?” — R where
H(q,p) describes the energy of the system with position q and momentum p. We
can describe the time evolution of an observable f: R?” — R described by the

equation
df
= H}.
=)

we then “quantize” our observables by replacing them with operators on Hilbert
space, which is the configuration space of a quantum mechanical system. In do-
ing so we replace the Poisson bracket {f, H} by the commutator %[I:I , f} to get a
non-commutative set of observables that are inspired by the classical observables
and their Poisson bracket relations. The idea of replacing the commutative alge-
bra of observables with a non-commutative one with Poisson brackets replaced by
commutators is originally due to P.A.M. Dirac [2].

This transition, up to a certain order, preserves the symmetries of the system.
A quantity ¢ is conserved by the dynamics generated by H if and only if {g, H} = 0,
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so when we replace Poisson brackets with commutators, we see that [ﬁ] , g} =0 and

g _

4t = 0 so our quantum observable does not evolve in time.

As with many things relating to quantum mechanics, things are not as we might
like them to be. The Groenewold van Hove no go theorems [3] tell us that we cannot
quantize all observables on the classical phase space R?” in a way that replaces
Poisson brackets with commutators exactly.

These no go theorems are what inspired Bayen Flato, Frgnsdal, Lichnerowicz,
and Sternheimer to lay the foundations for deformation quantization in their 1978
paper [1]. The key idea of deformation quantization is to take the algebra of ob-
servables on a classical system, i.e. the Poisson alegbra (C*°(P),-,{-,-}) where P is
a Poisson manifold, and deform it into a non-commutative algebra C°°(P)[[h]] (the
space of formal power series of i with coefficients in C*°(P) in a way that satisfies
the Dirac quantization rules up to first order in A. Within this theory, one does not
consider A to be a real physical constant, but rather a formal parameter. When we
take the limit 7z — 0 one recovers the classical algebra of observables.

Throughout this thesis, we will develop the ideas behind symplectic geometry,
the natural generalization of classical mechanics to smooth manifolds, Lie groups, a
convenient way to describe the symmetries of both classical and quantum systems,
and deformation quantization, a formal way of producing non-commutative quantum
observables from the classical Poisson bracket.

2 Differential Geometry

Smooth manifolds provide a natural setting to study classical and quantum me-
chanics. The space of classical configurations of systems can often be represented
by smooth manifolds, e.g. the position of a particle on a ring can be described by
a point in S, the circle. The most important method in classical mechanics is the
generation of a differential equation which describes the time evolution of a system,
and smooth manifolds give one a coordinate independent way of generating and
describing these differential equations.

2.1 Smooth Manifolds

Before we define a smooth manifold, we need to define the concept of a smooth
atlas. Let M be a topological space. A smooth atlas is much like its cartographic
namesake. It is a collection of open sets U,, which cover M, ie. J,Us = M.
Continuing the atlas analogy, the covering condition means that every point p € M
is contained in a “page” Ug of the atlas. Within a smooth atlas each U, comes with a
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map pq: Uy — R™, called a chart, such that ¢, : Uy — ¢(U,) is a homeomorphism
and @, ocpgl t 0a(UaNUg) = ¢3(UsNUg), which is a map between open sets of R™,
is C*°, i.e. all partial derivatives of all orders of ¢, o gogl exist and are continuous.
Formally elements of an atlas are the pairs (Uy, o). The atlas analogy begins to
break down with our second condition, but it essentially tells us that locally a space
with a smooth atlas looks like R™ for some integer m. The integer m is called the
dimension of M.

Definition 2.1. Let M be a topological space. M is said to be a smooth manifold
if it is second countable, Hausdorff, and has a smooth atlas ..

The smoothness condition is best illustrated in terms of coordinate representa-
tions of functions. Given p € M,p € U, one calls the coordinates of p in the chart
Ua, 0a(p) = (¢L(p), ¢%,...,¢™(p)). Then given a function f: M — R and a chart
o We can form a representative function f=fo ¢ The function f allows us to
think of f as a function from ¢4 (U, ) to R where we know how to apply conventional
multivariable calculus. In order for our definition of a smooth function to coincide
with that on R™, we give the following definition.

Definition 2.2. Let M be a smooth manifold with atlas & = (Ua, @a)aca. A
function f: M — R is said to be CF for k € NU {oo,w} if for each p € M there is a
B € A with p € Ug such that fo gpglz ¢s(Us) — Ris C*. A function is said to be
smooth if it is C'°.

This effectively means that a function f is smooth if for every point p there is a
chart Ug containing p such that the representative function is smooth. Because we

1 _ —1 —1
‘goa(U,gﬂUa) = fows cpgoyp,
which is smooth by the chain rule. So a function with a smooth representative in

assume that o, o gogl is smooth, we have f o ¢,

one chart has a smooth representative in another chart in their overlap.

Definition 2.3. Let M, N be smooth manifolds with smooth atlases &/ and %
respectively. A map f: M — N is said to be smooth if for each p € M there are
charts (U,p) € & and (V,v¢) € £ with p € U and f(p) € V such that ¢po fo
o Lo(f~H(V)NU) = (V) is a smooth function.

The preceding definition generalizes the notions of the one before it. We create
a representative function f now by pre and post composing by chart functions and
declare a function to be smooth if it has a smooth representative at every point.

Ezxample 1. The simplest example of a smooth manifold is R™. This is second
countable and Hausdorff when equipped with the standard topology. We can give
it a single chart Idgn: R™ — R", the identity. By our definition, C°°(M) coincides
with the typical multivariable calculus definitions. One can use the identity chart
to make any open subset of R" into a smooth manifold.
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2.2 The Tangent Bundle

Now that we have defined our object of study, we can define what will be one of the
most important tools for doing classical mechanics on manifolds and for studying
smooth manifolds in general, the tangent vectors.

There are several independent ways to define the tangent space to a smooth
manifold. Here we will give the definition most natural when generalizing classical
mechanics.

Definition 2.4. Let M be a smooth manifold with atlas &/. Given p € M, let C),
be the set of smooth functions 7v: (—¢,e) — M with v(0) = p. We define two curves

v,m € Cp to be equivalent if there is a chart (U, ¢) € o with p € U and
d d

= ) =— £).
G| een0=5| ponw)

We then define the tangent space of M at p to be T,M := C,/ ~

Before proceeding, we must show that the equivalence relation defined above is
well defined.

Proposition 2.5. The equivalence relation ~ defined on C, is well defined.

Proof. Reflexivity and symmetry both follow from the reflexivity and symmetry of
equality so we need only show that the relation is transitive. Let v,7,p € C), with
v ~n and 17 ~ p. These conditions mean that

d d d q
ax tzo(w o) = o tzo(so on)(t) and tzow o)) = 3 t:O(w o p)(t)
for some charts ¢ and ¥. We then see that
d = g optopo
X tzo(wo'y)(t) =5 t:Dw e opor)(t)
d
=D<ww—1><w<p>>(dt <¢oy>(t>>
t=0

after applying the chain rule. Then substituting for n and applying the chain rule

we have:
d

= ot — o

= Do el (5| (eonin)

= 5| Wee opon

d d

T t:0(¢ on) = En t:O(w °p)

and vy ~ p. O
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This proves that ~ is well defined and C)/ ~ is a well defined set. We will now
see how to give T},M a vector space structure.

Proposition 2.6. Let M be a smooth manifold and </ an atlas. The map dyp: T,M —
R™ by [v] — % |t:0(<,0 o) is a bijection for (U,p) € & andp € U.

Proof. Since we specified a map on T),M by choosing a representative, we first need
to show that dpp is well defined. Given ~,7" € [y] € T,M we know that for some
chart v containing p,

d d /
& tzo(w °y) = & tzo(w o).
We then have
% t:o(‘P"V) :% tzo(soow’lowoﬂ
= D(@ o) (¢(p)) <§t t_OW ° ’Y))
Do ) (5| wo))

(o lorpory))

~d
Cdt
_d
Cdt

t=0
(por)
t=0

So dpp is well defined.

We now show that d,p is surjective. Given v € R™ we can create a curve
ne(t) = o1 (¢(p) +tv). We know that n, € C,, since 1,(0) = ¢~ (p(p) +0) = p and
(pony)(t) = ¢(p) 4+ tv which is a smooth function. We then observe

(p(p) +tv) =v
t=0

(oo (D) + 1)) = &

dyolln) = | -

dt

meaning that d,¢p is surjective.
We see that dpe is injective as follows. Take [v], [p] with dpp[y] = dpe[p]. This

implies that
d

dt
and hence [v] = [p]. O

d

(povy) =

(pop)
—0 dt

t=0

Since T),M is in bijective correspondence with a vector space, we can make it
inherit the vector space operations from R™, i.e.

a-[7] = (dpp) " (o - dpelr])
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and
[+ ) = (dpp) ™ (dpip 7] + dpepn]).
for all & € R, [y], [] € T,M. But, since this definition relies on a choice of chart ¢,

for this definition to be meaningful we need to show that it does not infact depend
on the choice of ¢.

Proposition 2.7. Let M be a smooth manifold for which ¢ and ¢ are charts con-
taining p. Then the multiplications and additions defined on T,M using d, and
dpp coincide. That is:

(dp) ™ (e - dppy]) = (dp0) " (a - dyptb[])
and
(dp )_1(dp§0h] + dp@[n]) = (dpw)_l(dpwh] + dzﬂ/f[n])
for all a € R, [v],[n] € T,M.

Proof. We begin with the scalar multiplication formula. We see that

(dp¢)_1(a ~dpyly]) = (dp¢)_1(a : dp¢(dp@)_1dp@[7])
Now, we will prove that d,¥(dye)~! = D(1p o 1) (p(p)). We have (dyp)~L(v) =
[~ ((p) + tv)] so

Ay (dpp) " (0) = 2

~dt

proving our claim. This then gives

adyh(dpe) " dpely] = aD(1h 0 ™) (@(p))dpelH]
=D(¢ oo ") (p(p))a - dpp[n]
= dytp(dpp) - dpply]

(0~ o(p) + 1) = D o R ;| (olp) + )

and
(dp¢)_1(a dp[y]) = (dp¢)_1(dpw(dp@)_l(adp@h])
= (dpSO)il(adpSO['Y])

Similarly:
(dp¢)_l(dp80h] + dpp[n]) = (dPCP)_l(dPSD(dpw)_ldpd)['Y] + dp@(dp¢)_ldp¢[77])

= (dp)) H(D (W 0 ™) (2(p))dpeln] + D(¥ 0 9™ ) (0 (p))dppli])

(dp)) ™1 (D (¥ 0 ™) (2(p) (dp[y] + dppln])
= (dpw)il(dpw(dp )71(dp80[')’] + dpp[n))
= (dp) " (dpel] + dpep[n])

So the vector space structure on 7, M does not depend on the choice of chart. [

7
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Given v: (a,b) — M asmooth curve, we define §(t) := [J;] where ,(s) = y(s—t).
Given a smooth map f: M — N we can define the derivative map 1), f: T,M —
TN by Tpfly] = [f o]

Since we can associate to each point p € M the vector space 1), M, we might want
to look at the space of all tangent spaces, to do this we define TM := |_|p€M T,M,
the tangent bundle of M. As we do not want to leave the realm of smooth manifolds,
we want to give T'M a smooth manifold structure. Here we have not given T'M the
disjoint union topology, it will inherit one from the smooth structure we give it.

Assume M is a smooth manifold with atlas 7. To each chart (¢, V') we associate
anew chart (dy, TV) where TV :=| | oy, T, M and dip: TV — (V) x R™ is defined
as dy[v] := (¢(7(0)), dy0)¥[7])- This is clearly bijective, since we have the two sided
inverse (2,v) = (dy-1(;)¥) " (v). We can then define a topology on T'M by taking
U C TM open if diy(UNV) is open for all charts (¢, V) € 7.

To show that T'M is a manifold with this given topology, we must first start by
showing that it is second countable and Hausdorff.

Proposition 2.8. Let M be a smooth manifold with smooth atlas </. The tangent
bundle of M, TM is second countable and Hausdorff.

Proof. We start by proving that T'M is second countable. Since M is a manifold
it is second countable and hence can be covered in a countable collection of charts
(Ui, pi)icz- Since TU; is homeomorphic to ¢;(U;) x R™ it has a countable base B;.
Then | J;c;, Bi defines a base for T'M which is countable.

We know show that T'M is Hausdorff. Take [v], [p] € TM with [vy] # [p] and
v(0) # p(0). If there is no V € & with TV > [v], [p] then any two charts TV and
TU containing [y] and [p] respectively will be separating neighborhoods.

Assume that [y],[p] € TV for some chart (V,%) on M but with v(0) # p(0).
Since M is Hausdorff, take W, X C V with v(0) € W,p(0) € X. We then have
TWNTX =0 and TW,TX are open giving us separating neighborhoods of [y] and
[o]-

Now assume that 7(0) = p(0) € V. We can take separating open neighborhoods
of di[y] and dio[p] in (V) x R™ since R?™ is Hausdorff. Call these neighborhoods
U and W. Then dyp~'(U) and dip~'(W) are open neighborhoods of [y] and [p]
respectively which do not intersect. Hence T'M is Hausdorff. O

As we have defined the charts, we only need to check that the transitions dvy o
(dp)~! are smooth in order to conclude that TM is a smooth manifold.
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We have

dy o (dso)_l(xv U) dw( (ZE), (dw—l(:v)@) lv)
= (W op™)(2), (dw () w(dwl(x)ﬂﬂ)(v))
= ((Wop ) (@), Do) (¢~ (2))(v))

Which is smooth by the compatibility of ¢ and .

Because T'M is constructed directly from M we get a natural function wpps: TM —
M which takes [y] to v(0). We see that 7y is a smooth map as follows. Let
(¥,V) be a chart for M and (di), TV') the corresponding chart of TM. Then
om0 dpHw,v) = (e ([ Hx + tv)])) = ¥(¢ 1 (x)) = 2. Since the repre-
sentative function is smooth 7pps is smooth. T'M is an example of what is known
as a vector bundle, a space which locally looks like the product of a vector space
and a smooth manifold.

Now that we have defined the tangent bundle, we can define the space of vector
fields on M.

Definition 2.9. Let M be a smooth manifold. The space of vector fields on M is
the set of sections of the bundle 7: TM — M, i.e. smooth maps o: M — T'M such
that mrar o 0 = Idps. The set of all vector fields is denoted X(M) or I'(M,TM).

2:(p) where 52:(p) =

One can write out a vector field locally as X (p) = > X' Do

(dpp) ().

Definition 2.10. Let f: M — N be a diffeomorphism between smooth manifolds
M and N, that is f is a smooth bijection with smooth inverse f~'. We can define
the pushforward of f.: X(M) — X(N) which takes a vector field X on M and maps

it to (p = Tp-1) FX(f (D).

One can view vector fields as the space of maps 6: C*°(M) — C°°(M) such that
5(fg) = g-6f + f-dg. This allows us to define the Lie bracket of vector fields
[X,Y] := XY — Y X which one easily verifies to give a derivation when X and Y
are derivations.

Definition 2.11. Let M be a smooth manifold and X € X(M). An integral curve
of X with initial condition p is a curve v: (a,b) — M such that v(0) = p and
A(t) = X (y(t)) for all t € (a,b).

To see how integral curves relate to more familiar notions of ordinary differential
equations, we will look at their form in local coordinates.
Let X be a vector field on M and ¢ a chart on M. The equation ¥(t) = X (v(t))
t

corresponds to dip(¥(t)) = dp(X (7(1))) or (7(t), § (¢ 0 V)(1) = (V(1), dy iy X (4(2))).

9
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The condition on the first coordinate is satisfied trivially, so we can view this as a
ordinary differential equation (0 )(t) = X (y(t)) for X(p) = dpp X (p).

By the existence and uniqueness theorems for ordinary differential equations, for
each point p there is some interval for which an integral curve with initial condition
p exists and these depend smoothly on the choice of point p. This allows us to
generate dynamics on all of M at once, using the following definition.

Definition 2.12. Let M be a smooth manifold and X a vector field on M. The
flow of X is a map ¢;: (a,b) x M — M such that ¢.(p) is the integral curve of X
with initial condition p.

The existence and uniqueness for ordinary differential equations guarantees the
existence of a flow map and that this map will be a local diffeomorphism from M
to itself.

Mechanically, one can think of a vector field as defining the velocity of some flow
at every point in the manifold in a smooth manner. This will be the view point that
will be the most helpful as we continue.

2.3 Differential Forms

Now that we have developed some of the ideas behind vector fields and their flows,
we can begin with the theory of differential forms. Differential forms allow us to
generalize oriented areas and volumes to the manifold setting and provide the natural
setting for the generalized Stokes’ theorem.

Definition 2.13. Let V be a finite dimensional R-vector space. We denote V* =
{A:V — R|\is a linear map}. This is called the dual space of V. V* caries a
natural vector space structure given by (A + 7)(v) = A(v) + 7(v) and (a))(v) =
a(A(v)) for all \,7 € V*, a € R, v € V. One writes A\(v) = (\,v) for any \ €
V* v € V. We define the space of alternating k-linear maps on V, /\k V* to be the
space of k-linear maps p: Hle V' — R such that

[(Vg(1)s - -+ s Vo)) = sgn(o)p(vi, . . ., vk)
for all vq,...,v; € V and o € S,. We also define a /\OV =R.

We see that A¥ V* carries an R-vector space structure as a subspace of Hom(V*, R),
owing to the fact that

(1 + N (V1) -5 Vo)) = B(Va(1)s - - 5 Vo(k)) + AVs(1)s - - Vo (k)
= sgn(o)u(vi,...,vg) +sgn(o)A(vi, ..., vx)

If we want to talk about all alternating forms, we will refer to A\* V* := D, en N V*

10
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Theorem 2.14. Let V be a finite dimensional R-vector space. There is a bilinear
map A: NFVFx NLVF = NPTV such that a A B = (=DM B Ao and (o AB) Ay =
a A (BAY). That is A makes \*V* into a graded commutative algebra over R.

Proof. We begin by explicitly defining the wedge product. Given u € /\k V* and
A e N'V* define

k+1)!
(AN (01, vp) =Y ( k!l!) sgn () (Vo (1)s - - Vo (k) AN Vo (k+1)s - -+ Vo (k+1))

UESk+l

We must first show that this results in a an element of /\kH V*. We have

1
(AN @) - Or(ern) = D T8OV (1) -+ Vo (e () A Vo (r (k1)) - - - Vor (k)

UESk+l
1
= 2 eT)sen(oT) 1(V(o(r(1)): - - -+ Vo (r(6)) M Vo (r (k1)) - - Vor(r (k)
0ESk41 o
= sgn(7) msgn(ﬁ)ﬂ(%(l), .- ,Un(k)))\(vn(kﬂ)a e :Un(k+l))

and we see that puA X € /\kH V*. To approach associativity, we note that the wedge
product can be written as

1
PAX= mAkH(M@ A)

where Ag(k)(v1,...v5) = ZaeSkH sgn(0)K(Vg(1)s - -+ V() For a € N*V* B €
AP V*, v e A°V* We then have
1 1
(@NB) ANy = @WAG-HH-C(AIH-C(O‘ ® B) ®7).

We see that

Aa+b+c(Ab+c(a ® 6) ® '7) ('Ula s >va+b+c) = Z SgD(U)SgD(T)Oé(UT(U(l)), s UT(O’((I)))
O'ESa_H,
TESa+b+c

ﬁ(UT(U(CL-Fl))’ s UT(J(&—&-b)))V(“T(a—l—b—&—l)a oo avr(a+b+c))

1.-1

In permuting each term by 76~ 77" we have

Agibre(Apre(a® B) @) (v1, .-+, Vagbye) = (a+b)! Z sgn(T)oz(vT(l), cee UT(CL))
TGSCL«H)«H:
B(UT(a-i-l)? SRR UT(a+b))7(UT(a+b+1)7 s 7UT(a+b+c))
= (CL + b)!Aa+b+c(a QL& ’7) (7}17 cee 7va+b+c)

11
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Then (Ck /\/3> Ny = ﬁAa+b+c(a ® B ®7) and simﬂarly Aa+b+c(a ® (Achb(ﬁ ®’7)) =
(c+ b)) Agtpic(a®@B@y) and (¢ AB) Ay =a A (BAY). [

Through a simple argument, one finds that /\j (R™)* is given by dz' A ...dz%
where i1 < iy < ... <1i; and the da® are defined by

da® (e;) := 5%

Ezxample 2. To better understand what these represent, we consider an example
when V = R3. Take u,v,w € R? with

U1 U1 w1
U= |lUu |, v=|0V2]|,W=1]w2
u3 U3 w3

Since R? has a basis (e1, e, e3) we get a dual basis dz! , dz? , dz® with da® (ej) = 5;-“.
If we take w = da! A dz? A dz® we see that

w(u, v, w) = Az(de! ® da® @ dz®) (u, v, w)
= (dz! ® d2? ® dz® — dz! ® da® ® da?
+de? ® dz® @ dz' — dz? ® dz' ® dz?
+dz? @ do! ® d2? — d2® @ da? ® dzt) (u, v, w)

= ul(’l}gwg — Ug’u)g) — U2 (v1w3 — v3w1) + U3(1)1’w2 — ’Ugwl)

Which is is the oriented volume of the parallelpiped spanned by w,v and w. This
hints at the role of these k-forms as measuring oriented areas and volumes.

Definition 2.15. Let V and W be R vector spaces. Given a linear map T: V — W
we can induce a map T*: A" W* — AFV* by the formula

(T ) (wi, ...y wg) == pw(T(wy), T(w2), ..., T(wg))

Remark. The map T — T™ is a generalization of the matrix transpose in the follow-
ing sense. Given v € R" and an element A\ € R™ we have (\,v) = u'v for a unique
element u € R”.

Given a map T: R™ — R" we have

A\, Tw) = u'(Tw)
=u'Tw
= (T"u)'w

12
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If : R®™ — R" is the isomorphism taking A to u then

(T* M\, w) = (N, Tw)

= (o) (Tw)
= (T"o\)'w

In the identification between R™ and R™*, we see that T* has the same effect as T°.

Using the k-form vector spaces and the dual maps of the isomorphisms define
between T, M and R we can create a bundle version of the k-forms. For k € N we
begin by defining the kth exterior bundle as the disjoint union of the exterior spaces,
ie. NFTrM o= Upens AF T,M. Using the dual map we can construct natural
charts on A* T*M. Given a chart ¢: U — R™ define the chart dip: N T*U —

o(U) x A\FR™ by dio(up) == ((p), ((dp) 1)*up). The arguments for a topology
and smoothness coincide with the tangent bundle case so we easily get a vector

bundle structure on A 7% M.

Definition 2.16. We define Q¥(M) the space of k-forms on M as the sections of
the vector bundle : /\k T*M — M, i.e. smooth functions w: M — /\k T*M such
that mow = Idyy.

Given a smooth map f: M — N we can induce the pullback of forms using the
dual map.

Definition 2.17. Given f: M — N a smooth map between manifolds M and N,
define the map f*: QF(N) — QF(M) by (f*w)(p) = T, f*w.

This allows us to move forms around using smooth maps.

Definition 2.18. We may define the wedge product A: QF(M)x Q! (M) — QFL (M)
by (wAn)(p) = (w(p)) A(n(p)), since each fiber of A\*(T*M) carries a wedge product
as defined before. This makes Q*(M) := @, Q2 (M) into a graded commutative
algebra over R or a graded commutative ring over C*°(M).

Definition 2.19. Given a form w € QF(M) and a vector field X € X(M) we can
define the interior product txw by

txw(Xy, .. . Xpo1) =w(X, Xy, .00 Xk—1),

for X1,... X1 € X(M). The map tx is still a form since permutations of the
remaining slots give a sign that agrees with the definition.

13
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In coordinates, one can write any form w as

Z Wiy .., (D) dz AL A dat .
11 <...<ig
Given a function f: M — R we can define a one form df € Q' (M) by df (p)([y]) :=
% ‘ oS ©~. The form df (p) essentially measures how quickly f changes from the
point of view of a curve at p.

Proposition 2.20. The map f +— df is well defined, linear and a derivation.

Proof. We start by showing well definedness. Take v,+" € [y] and (U, ¢) a chart

containing p. Then
d

dt

d

Jovy=—

5| e e o)

t=0

= D(foe o) S

t=0

= D(f o e S

t=0
d ,
dt °

t=0

We now prove linearity. For [y], [p] € T,M we have

df (] + [o]) = df ((dp) " (dppn] + dpielp])
=df (w‘l (w(p) T N E R p(t)>>
i)

dt |,y dt
d . d

= — tl — —
" tof(so <s0(p)+ (dt tzowowr "

_ D(fowl)(@(P))((i - t_OSOOp)

¢°’Y+a
. d
poy+D(foyp )(so(p))& pop
t=0

t=0
= D(f oo ) (p(p) %

dt
=df [y +dfipl

with scalar multiplication following verbatim.
We see that dfg = gdf + fdg as follows. Given [y] € T,M we have

t=0

dfglyl = % H(fg) oy
d d
=flp) t_o(g °7) +9(p) g t_o(f °7)

= f(p)dg (p)lv] + g(®)df (p)[v

14
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O]

Definition 2.21. Let d: QF(M) — QF+1(M) be the map that in local coordinates
has
d( Z Wiy iy dz' A .. .dmi’“) = Z dwiy .. i N dz™ .. A dxt*
Q1. 0) 01 0)
A form w is said to be closed if dw = 0 and is said to be exact if w = da for some
form «. The map d is called the exterior derivative.

Proposition 2.22. d: Q*(M) — Q*(M) is a graded derivation with d*> = 0, that
18:

d(wAn) =dwAn+ (=1)Fw Ady
with w and n taken to be k and l-forms respectively, and d(dw) = 0 for w € Q*(M).

Proof. We start by proving the graded derivation property:

dw An=d Z Wiy..ig dzt AL A dZ A Njy...5 Az AL A dat

’i‘1<-..<i'k
J1<...<J1

=d Z Wiy i, M1 i dz A Ada Ada?t AL LA da

’L"1<-..<7;')c
J1<...<J1

= Z Niy...jp AWiy iy, Azt AL Ada™ AdzT A LA da?

’i‘1<...<i'k
J1<...<)1

+ Z dnj, . j, Wiy ..ix dz®' Ao A da™ Adadt AL A datt

’L’}1<...<i‘k
1n<..<n

= Z dws, i, dz AL A dat* A Mjr...j) dz?' AL A dah

’L:1<...<Z"k
J1<..<Qt

+ (=1)k Z Wiy, Az AL A2t A dnj, j, N daz/t A ... A dat

i'1<...<i'k
n<..<ji

=dwAn+ (=DFwAdy

To show d? = 0 we start by seeing that
ddw=d > dwj i da’ AL Ada'

11 <...<i

= Y dwipi da AL A ) dwi, g, d(da AL A da)

11 <...<ig

15
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So it suffices to show that each of these terms vanishes. We can write d(dz A ...dz%) =
d(1)Adz" A.. . Adz®*. We see that d(1) = 0 since d(1) ([7]) = & |t:010'y =4 ‘tzol =
0 for all [y] € T, M. From this we conclude that our second term vanishes.

For the first term to vanish, it suffices to show that d2f = 0 for any f € C*°(M).
Our previous proof leads us to the equality df [y] = D(f o go_l)((p(p))% |t:0<p('y(t))
for a chart ¢. We see that D(f o p™!) is the matrix of partial derivatives of fop~!
and % ’tzogp(v(t)) = dpp[y]. If we write [y] =) vl% then the v; are the coefficients
of dpp and df ([7]) = X ag;f v; meaning that df (p) = 3. 2L 5;_1 da?. This means
that

P(fop™) 5
2f =302 ) gpi n g
= 0xI 0x
Z P(fop™) P(fop™), . ;
B j<i( dxidri  Oxidxi Jda? Ade
=0

O]

Given a smooth map f: M — N we have an induced map T, f: Ty)M — Ty, N
meaning that there is a dual map f,;: A* Ty N — A°® T, M This allows us to define

amap f*: Q*(N) = Q*(M) by (f*u)(p) = fyu(f(p)) for p € QF(N).

Given a vector field X with flow ¢;, we can pull a form w back to another form
pjw on M. We can then see how w changes along the flow of X, motivating the
definition:

Definition 2.23. Given w € QF(M) and ¢; the flow of a vector field X, define the
Lie derivative of w with respect to X to be

L = — ¥
xw at t:O(th

This definition gives no indication as to how to calculate a Lie derivative, so the
following proposition is quite helpful.

Proposition 2.24. (Cartan’s Magic Formula) Let X be a vector field on a smooth
manifold M with @; the corresponding flow. Given w € QF(M) we have

Lxw=dixw+ tx dw

Proof. We start by calculating the pullback of a general map f: M — N in coordi-
nates. Take w € QF(M) and ¢, charts containing p € M and n € N respectively.

16
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We have f*w = f*> wi, i, dz' AL A da* = S(wiy iy o f)dfiA...Adf%. In the
case where f = ¢; we then have

. d
Prw = (Z a
d i %

t=0
= Z vx dwi, i, Azt AL A dat*

d
dt

(Wiy..ij, © gpt)) dz AL A dat

t=0 t=0

d i A
+ D Wi t_o(dfl AL dfi)

Seeing that % ’t:O df* = dX? we then have

d

| piw=xdet > wipg (1) dXTdal AL Adad AL A dat

t=0 1.0k

= 1x dw + dexw

3 Symplectic Geometry

Definition 3.1. Let 8 € Q%(M). 3 is said to be non-degenerate if given X € T,M,
B(X,Y) =0 for all Y € T, M implies that X = 0.

This means that 3 establishes a musical isomorphism b: T, M — T,M* given by
b(X) = txB. This key property will allow us to relate a function on M, typically
the energy of the system, to some vector field which will generate the time evolution
of the system through the exterior derivative d.

Definition 3.2. A symplectic manifold (M,w) is a manifold M, equipped with a
closed, non-degenerate two-form w, the so called symplectic form. Later, we will see
that taking dw = 0 will ensure that the Poisson bracket induced by w satisfies that
Jacobi identity.

One can think of w as a way to measure oriented parallelograms in 7, M. This
is computed by taking w(u,v) where u, v are the vectors describing the vertices of
the parallelogram. The nondegeneracy of w means that w” = wAwA--- Aw is a
non-zero 2n form, meaning that we have a canonical way to measure volumes in
phase space. This allows one to prove one of the non-trivial facts of Hamiltonian
mechanics, the Liouville theorem.

17
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Definition 3.3. Let (M,w) be a symplectic manifold and H: M — R a smooth
function on M. The Hamiltonian vector field Xz € T'(T'M) of H is the vector field
such that tx,w = dH. In other words Xy = #(dH), where §: QY(M) — ['(TM)
is the inverse of b defined previously. In coordinates, we must have #(b(X)) =
wik(w;; X1 = X' In other words, w;jw/* = oF.

Given a Hamiltionian H, the dynamics of a the system corresponding to this
Hamiltionian are given by flowing along the Hamiltonian vector field Xz. In order
to find the state of a system after some time ¢, we apply the diffeomorphism ¢y, the
flow of the vector field Xy, to our initial condition p € M.

To see the comparisons between symplectic mechanics and classical mechanics
we use the following theorem

Theorem 3.4. (Darbouz) Let (M,w) be a symplectic manifold. Given p € M there
exists a coordinate neighborhood U of p such that in local coordinates w =Y., da' A
dz" or if we take coordinates (¢*, q", ..., q", p",p%,...p") then w = di<n dq* Adp'.

This extremely deep theorem tells us that locally, all symplectic manifolds of the
same dimension look the same.

We will now calculate what the equations of motion given by a symplectic form
are in a chart of the form above. Given H: M — R we have dH = Y. 28 dq' +

zgn 6q"
gﬁ dp’. If we assume our vector field Xy = Zz‘gn X; 8(?11' + X[i) 8?;1' then
o o OH .. OH . .
LXHWZZX;dPZ*X;qu: - dq' + — dp’
i<n i<n 8ql 8]9@
SO
. OH - OH
Xg=—55 and X)=-———
apz p aqj

Since the flow is described by ¢* = X é and p' = Xzi we then have the equations

_OH . OH
= o

-1

q

and p = —qu

Meaning that locally, the dynamics of any symplectic manifold satisfy Hamilton’s
equations.

Proposition 3.5. Let (M,w) be a symplectic manifold and H: M — R a smooth
function on M. The dynamics generated by Xy, the Hamiltonian vector field of H
preserve w, that is:

Yrw = w, (3.0.1)

where @ is the flow of Xp.

18
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Proof. To show this, it suffices to demonstrate that

d

Gi|,_ (i) = Lxy =0

By Cartan’s magic formula, we have:

Lxy(w) =dix,w+ ix,dw
=d(dH)+0 (Definition of Xp)
=0 O

A diffeomorphism ¢: M — N, where M and N are symplectic, for which
P wN = wy

is said to be symplectic or canonical. So we have shown that the flow of the Hamil-
tonian vector field is canonical.

Theorem 3.6. (Lioum’lle) Let N be a finite volume, open submanifold of the sym-
plectic 2n-manifold (M,w), i.e. [yw" = C < oo. Let H be a smooth function on
M and pi: M — M be the Hamzltoman flow corresponding to H. The volume of N
is preserved along the flow ¢, that is

/w”:/ w"
N wt(N)

Proof. From the previously proved properties, we immediately see:

/ w"—/gofw"—/w" O
pt(N) N N

Definition 3.7. Let M be a symplectic manifold with symplectic form w. The
Poisson bracket {-,-}: C*°(M) — C°°(M) is defined as follows: given f,g € C*(M),

{f,9} = w(Xy, Xy)
In coordinates, we see that

Of of Og of g
. . kzi k l]
{f, 9} = E Wijw (%k &Cl Z oxk ol Zw Oxd Ozt

1,9,k gkl l,j

One recognizes that this is Lx,[f] So:

{f,9} = Lx,[f]
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Proposition 3.8. The Poisson bracket is a bilinear, antisymmetric, derivation
which satisfies the Jacobi identity. i.e.: for all f,g,h € C°(M) and all \,n € R

{Af +ng,h} =M f, b} +n{g, h} (Lin.)
{f.9} =—{9g, 1} (Antisymm.)
{fg9.h} = flg, h} + g{f. h} (Deriv.)
{f. 9} h}+{{n, 1}, 9} + {{g,h}, f} = 0. (Jacobi.)

These properties make C*°(M) into a Lie algebra under the Poisson bracket.

Proof. The first two properties follow directly from the fact that Xy;yp, = #(Adf +
ndg) = X-#(df) + n - £(dg) and w is linear and skew-symmetric.
For the derivation property, one sees that

Xyg = (d(fg)) = t(gdf + fdg) = gi(df) + fi(dg)

by the Leibniz rule for the exterior derivative and linearity of §. Substituting into
our definition, one sees that

{fg,h} =w(gXy+ fXg, Xn)
= gw(Xfa Xh) + fw(Xga Xh)
=g{f,h} + f{g,h}

In proving the Jacobi Identity, we start by rewriting the Poisson brackets:

{fghht +{{n [} g}t + {{g. R}, f} =
=Lx,[{f. 9} + Lx,[{h, [} + Lx;[{g,h}]
= Lx,tx,ix,w+ Lx ix ix,w+ Lx,tx,tx,w

= LXgLXf»Cth + LXfLXh»CXgW + LXhLXg»CXfW'
Applying Cartan’s magic formula we see that
Lx X Lx,w = tx tx, (dix,w + ix,dw) = ix, ex,dex,w
Then our previous formula simplifies to the following:
LXgLdeLth + LXfLthLng + LXhLngLXfw
Linearity of « and d reduce this to:
LX 4 X+ X UX 4+ X+ X, X 4 X+ x,0 = 0

Since tyty = 0. ]
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The most important property of the Hamiltonian vector field is that its flow
preserves the Hamiltonian and hence, energy is conserved in the dynamics generated.

Proposition 3.9. Let (M,w) be a symplectic manifold and H: M — R a smooth
function. Then
oiH=H

where pr: M — M is the flow of the Hamiltonian vector field Xp.

Proof. Since the flow of a vector field preserves connected components of M, it
suffices to show that

4
dt

(prH) =0
t=0

By definition of the Lie Derivative, we see that:

d
— *H) = H
3|, (A = Loy ()
:{Hvﬂ}
=0 ]

This gives more testament to the fact that symplectic mechanics generalizes clas-
sical mechanics, since the key feature of time independent Hamiltonian mechanics
is that the energy is conserved.

4 Cotangent Bundles

The quintessential example of a symplectic manifold is the cotangent bundle, T*(@),
of a given smooth manifold, . Physically, () is the configuration space of a classi-
cal system, i.e. the manifold of allowable physical configurations. Elements of T%Q
correspond to the generalized coordinate positions and corresponding momenta of
the system. Given the second order equations of motion typically seen in classi-
cal mechanics, the specification of a initial position and momentum is enough to
determine the forward evolution of the given situation.

Example 3. Say we wanted to study the motion of a particle confined to a circle.
Since the set of positions the particle may take is that of a circle, we take Q = S!.
In order to specify the momentum of the particle, we must specify a point in 7*S™.

In order to apply the general theory of symplectic manifolds to cotangent bun-
dles, we must first define a symplectic form on T7Q.
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Definition 4.1. Let @) be a smooth manifold and 7: T*@Q — @Q be the cotangent
bundle of Q. The tautological one form is the unique one form © € QY(T*Q)
satisfying the property:

(0,0, = (ags Ty (1)

for all v € T, (T*Q) and ¢ € Q.
Since we defined © for all v € T(T*Q) it is the unique such one form.

Definition 4.2. The canonical 2-form on 7%*(Q) is defined as w = — d©.

Proposition 4.3. Let Q@ be a smooth manifold and 7: T*Q — @Q be the cotangent
bundle. Then (T*Q,w) is a symplectic manifold.

Proof. In order to see that w is closed and non-degenerate, we will begin by comput-
ing O in local coordinates. Let (U, ) be a chart containing ¢ € Q with coordinates
(¢"). This then induces natural coordinates on T*U as an open subset of T*Q. We
will label these coordinates (¢', p;). Given v € Ty, (T*U) we can decompose v into

6‘?11, + vj% for which T,m(v) = Ui@?f € 1T,Q.

its ¢ and p components, i.e. v = v°

Taking o, = ; dg’ we have

This means that © = p; dg'.

Taking the exterior derivative, we find that w = —d© = dg’ Adp;. This takes the
same form as the canonical two-form on R?", so w is nondegenerate. Since the form
is the sum of simple wedge products, we can also conclude that it is closed. O

Now that we have shown that T*(Q is a symplectic manifold, we will see how to
transform diffeomorphisms between manifolds into symplectic diffeomorphisms be-
tween cotangent bundles. This will allow us to more effectively study the symmetries
of phase space, T*(@Q), through the symmetries of Q.

Definition 4.4. Let () and R be smooth manifolds and F': Q — R be a diffeomor-
phism. The cotangent lift of F', T*F: T*R — T*() is the smooth map defined as
follows. Given v € T;,Q and o € Ty R,

(I"Fa,v) = (o, Tpp) F - v)
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In order to show that a diffeomorphism preserves the tautological one form if
and only if it is the cotangent lift of a diffeomorphism on the base space, we need
to prove the following proposition:

Proposition 4.5. Let F;: T*N — T* N be the time dependent diffeomorphism o —
exp(t)a and Xy be the vector field with flow Fy. Then

(ON, XN) =0, LxyOn=0n, ixywn=-0On
These facts mean that Xy is a Liouville vector field.

Proof. Since F; only translates along fibers, we can conclude that T'w - X = 0.
From this we see that

(On(an), Xn(an)) = (an, T - Xp(an)) =0

In proving our second equation, we start by applying Cartan’s magic formula.
This tells us:
/-:XN@N = dLXN@N + [,XNd@N.

The first equation of our claim tells us that the first term of this sum vanishes. All
that remains in proving the second equation is to prove the last.
In coordinates, F; takes the form Fy(q;,p') = (q;,e'p’). Differentiating with

respect to ¢t and taking ¢ = 0, we see that Xy = p’ 8‘;. Then:

- i 0 i i 0 i
ixywn = dg (piw)dp —dp (Pjaipj)dq
=0- 5gpjdqi
= —pidg’ = Oy m
Proposition 4.6. Let ¢: T*R — T*Q be a diffeomorphism. This diffeomorphism

preserves the tautological one form, i.e. Y*©g = OR, if and only if ¢ is the cotangent
lift of some diffeomorphism F: QQ — R.

Proof. Assume ¢: T*R — T™*Q be a diffeomorphism such that *©g = ©r. First
we will show that ¥, Xg = Xg. Since the Liouville vector field is uniquely deter-
mined by the properties in Proposition 4.5 it suffices to show the following:

<@Q, w*XR> = O, ‘Cw*XReQ = @Q, Ll/)*XRwQ = —@Q
For the first property, we see that:

(0, ¥:Xg) = (¢"0q@, Xg) = (Or, Xr) =0
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The second property is verified thusly:
Or =Lx,Or = Lx,0¥"0¢0 = V" Ly, x,00,

and we conclude that Ly, x,0¢9 = ©Oq.
We immediately obtain the third property through Cartan’s formula:

Ly.xp0q = diy. x0Q + Ly, xdOq
=0- L XpWQ-

By our second property, we can say iy, x,wQ = —0q.

Since ¢, Xp = Xg, we can conclude that i (e'a) = ¢ o Fy(a) = e'9(«r). Taking
t — —oo one sees that 1(0) = 0. Taking ¢: Q@ — T*Q to be the inclusion of @ into
the zero section of T*Q (a diffeomorphism onto the image), we may now conclude
that ¢ = Trovor: Q — R is a diffeomorphism. To complete this argument we must
demonstrate that T*p = 1. We start by applying the definition of the cotangent

lift, the tautological one form, and the chain rule to arrive at the conclusion. Let v
be an element of 7;,Q and a € T, R

(T"p - o, v) = (a, Tgep - v)

= (a, Ty(mr 0 o) - v) = (&, Tyoy(q)Tr - Ty(P 0 t) - v)
= (Or(a), T ¢ - (Tge - v))

= (Y Or(W(a)), Tgt - v) = (Oq(¥()), Tyt - v)

= ((a), Tr(uq)Tq - (Tqr - v)) = (¥(a), Ty(mg 0 1) - v)
= (P(a), >

Now to prove the converse, assume that ¢: @ — R is a diffeomorphism and
Y =T"0: T*R — T"Q. Let ag be an element of T/Q) and v € Ty, )T R. We then
prove the identity by applying the definition of the pullback, the cotangent lift and
the product rule.

(T"¢) O, v) = (0q, (o) (T"¢) - v)
= (Y(ag); TaymQ(Typ(ay) (T ) - v)
= (Y(ag); Typ(ay) (TQ o T ¢) - v)

One can see that T"¢|,,: T'R — T;,l(T)Q So mg o T*p(a) = ¢~ 1(q). This
tells us that the following diagram commutes, i.e. mg oT™p = ¢ !lonmg (and that
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(o=, T*p) is a bundle map):

T*Q « % TR

T™Q TR

©

From this we conclude

(W(ag), Tp(ag) (mg 0 T p) - v) = (Y(ay), Ty(a,) (p—1 0 TR) - V)
= (ag, Ty(ay) (¢ 0@ omR) - v)
= <aq, T¢(aq)7TR . ’U> = <9Q, ’U> ]

Given T*p: T* R — T™*(Q we can see that such a map is canonical, i.e. it preserves
the symplectic form. Since the exterior derivative commutes with the pullback, we
have

(T"p)'wq = —=(T"¢)"dOq = = d((T"¢)"Oq) = —dOr = wk.

This gives us a convenient way to convert between the dynamics occurring on dif-
feomorphic configuration spaces. By taking the cotangent lift of the dynamics on
T* R we obtain “the same” dynamics on T*@). The method applied in the preceding
proof were inspired by the approach in [5].

5 Lie Groups and Group actions

Now that we have described the common method for generating the dynamics of
a system using symplectic geometry, we will now look at a systematic way to in-
vestigate the symmetries of a system. In order to describe smooth symmetries of
manifolds we must first describe what a set of smooth symmetries aught to look like.
In describing general symmetries, we use the language of group theory. This allows
us to speak abstractly about the most important properties a set of symmetries has,
i.e. the law of composition, the existence of the identity and inverses. Since we are
focusing on smooth manifolds, our set of symmetries should be smooth, motivating
the following definition.

Definition 5.1. A Lie group G is a smooth manifold with a smooth group structure.
That is pu: G x G — G, (g,h) — g-h and i: G — G,g — g~! are smooth maps.
This effectively defines a smooth set of symmetries.
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Definition 5.2. By the definition of x4, we can define an action of G on itself, by
taking Ly: G — G, h — gh. Similarly, we define a right action R, by h — hg.

Now that we have restricted ourselves to smooth symmetries, we gain a new tool
for describing these symmetries, the tangent space and vector fields.

Definition 5.3. A vector field X € I'(T'G) is said to be left invariant if L, X = X.
These are vector fields that are unchanged by the left action of G on itself and are
a powerful way to study the properties of a Lie group.

Proposition 5.4. Let G be a Lie group and I'q(T'G) the set of left invariant vector
fields. Ta(TG) has a natural vector space structure on it, inherited from I'(TG).
Then T'q(TG) is isomorphic as a vector space to TG = g, the tangent space to the
identity.

Proof. Given ¢ € g, we define a vector field at every g € G by X¢(g) = TeLy(€)(g).
We see that X¢ is left invariant, since T,Lj,(X¢(g)) = TyLp - TeLg(§) = Te(Lp ©
Ly)(&) = TeLpg(&) = Xe(hg). We can see that such a map assigns a unique smooth
vector field for every & € g.

Now, assume that Y is a left invariant vector field on G. If n = Y (e) € g, then
given h € G, Y(h) = TeLp(Y(e)) = T.Ly(n) = X,(h), this means that the map
n — X, is a surjection from g to L so we can conclude that g = I'q(TG). O

One property that distinguishes g from the tangent space of a generic manifold
is that we can imbue it with a Lie algebra structure by way of the left invariant
vector fields. To do so, we must first prove the following proposition:

Proposition 5.5. Let G be a Lie group. T'¢(TG) is a Lie subalgebra of T'(T'G).

Proof. Since I'¢(T'G) is already a vector subspace of I'(T'G), it suffices to show that
I'¢(TG) is closed under the Jacobi-Lie bracket. Take X,Y € I'¢(T'G). Since the
pushforward commutes with the Jacobi-Lie bracket, we have

Ly [X,Y] =Ly, X,Ly,Y] = [X,Y]
hence [X,Y] € I'¢(TG) and I'¢(T'G) is a Lie subalgebra of I'(T'G). O

We can give the Lie algebra structure on I'¢(T'G) to g by evaluation at the
identity.

Definition 5.6. Let G be a Lie group and g = T.G. We say (g, [,]) is the Lie
algebra of G where [+, -] is defined as follows. Given &, € g,

(€, 0] = [Xe, Xn(e)-

One easily checks that this bracket gives g a Lie algebra structure.
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Using the left invariant vector fields, we can define the following map from g into

G.
Definition 5.7. We define the exponential map exp: g — G as the solution to the
equation
d
2| (g-exp(tg)) = Xe(g)
t=0

meaning that exp(t§) is the flow of the left invariant vector field X¢.

The theory of ordinary differential equations guarantees the existence of exp(t§)
for ¢ small enough and one can prove existence for all ¢ by left multiplication.

Ezample 4. The most prevalent examples of Lie groups in physics and mathematics
are the matrix Lie groups. Our first example is the the simplest, representing the
group of automorphisms on a vector space. Let K € {R,C} and Mat,,(K) be the
set of n x m matrices. The general linear group is defined to be GL,(K) = {4 €
Mat,,(K)| det(A) # 0}, the set of invertible linear transformations from K™ to itself.
One can see that GL,(K) is a smooth manifold, owing the the fact that det™!(0)
is a closed subset of K™*" implies that GL,(K) = K™*™\ det™'(0) is open and
hence a submanifold of K™*™. This carries a group structure from regular matrix
multiplication. Non-zero determinant means that each element has an inverse, the
identity has determinant 1, and the set is closed under multiplication since given
A, B € GL,(K) we have det(AB) = det(A) det(B) # 0. Since matrix multiplication
is a polynomial in the entries of multiplicants it is a smooth map, from this we can
conclude that GL,,(K) is a Lie group. Because GL,,(K) is an open subset of K™*™
then gl,(K) = T.GL,(K) = K™*". Examining our definition for the exponential
map at the identity, we see that it satisfies % ‘ -0 exp(t€) = £ so the exponential
map coincides with the matrix exponential for matrix Lie groups.

Since GL,,(K) is the largest set of invertible matrices in Mat,, (X'), one can think
of it as the group of symmetries of a generic n-dimensional vector space with no
additional structure. Since we often imbue our vector spaces with extra structures,
e.g. inner products, volume forms, symplectic forms, and the like, we often restrict
ourselves to Lie subgroups of GL,,(K) that preserve these structures.

Orthogonal group. If we want to look at the symmetries of an inner product
space, which we will take to be R™ with the standard dot product, we need to
describe all of the linear maps that preserve the dot product. Given u,v € R", we can
write u-v = uTv. Then a linear map A € Mat,,(R) will preserve the dot product if for
all u,v € R™ we have (Au)-(Av) = u-v. This implies that (Au)T (Av) = uT AT Av =
uTv. Since this must hold for every u,v € R™, as a bilinear form AT A = I,,. Taking
the determinant of this equation and applying the fact that det AT = det A, we
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see that all such matrices must satisfy (det A)> = 1 and are therefore invertible.
We then define the Orthogonal group as O(n) = {A € Mat, (R)|ATA = I,,}. This
inherits the multiplication from GL,(R). We can see that this set forms a subgroup
of GL,(R) as follows. Given the fact that (AB)T = BT AT we then see that if
A, B € O(n) we have (AB)T(AB) = BTATAB = I,,. Therefore AB € O(n). Since
these maps preserve the inner product, they preserve the length of all vectors. These
form the group of rotations and reflections of R™. We typically restrict further to the
group of proper rotations SO(n) = {A € O(n)| det A = 1}, the connected component
containing I,.

Since the restriction from O(n) to SO(n) corresponds to choosing the connected
component of the identity, we can conclude that so(n) = T,.SO(n) = T.O(n) = o(n).
To calculate the form of so(n), we start by assuming A = exp(t§) for A € SO(n) and
some & € so(n). If we differentiate the expression: I, = ATA = exp(t&)” exp(t€)
with respect to ¢ we arrive at 0 = (€ exp(t€))L exp(t€) + exp(t&)” (€ exp(t€)) by the
Leibniz rule. Letting t = 0 we have ¢ + ¢ = 0. This means that so(n) is the set of
skew symmetric matrices of dimension n.

Special Linear Group. When a volume form on a vector space is an object
of importance, the special linear group is the relevant Lie group to keep in mind.
One recalls that a volume form on an oriented vector space, take it to be R" for
definiteness, is a non-zero n-form on that space. Taking the standard basis e; for R,
we have the standard volume form constructed by wedging the dual basis vectors
dz® in order. This gives the volume form g = dzt Adz? A --- Adz™, this means that
the oriented volume of the unit n-cube is 1. We might reasonably define a volume

preserving symmetry as a linear map A € Mat, (R) such that p(Avy,---, Av,) =
p(vi, -+, vy) for all ordered sets of vectors (v;). Using the fact that p(vi, - ,v,) =
det ( [vl Vg e vn} ) , one sees that our previous equation implies that det(AV) =

det(V) for all V' € Mat,(R). This means that A must satisfy det A = 1 in order
to preserve pu. We then define the special orthogonal group as SL,(R) = {A €
Mat,, (R)|det A = 1}. We can easily show that SL,(R) forms a Lie subgroup of
GL,(R) as follows. Let (A,) be a convergent sequence of matrices with det A, =1
for all n € N. Continuity of the determinant implies that A = lim A,, must also
satisfy det A = 1 and hence A € SL,(R). The closed-subgroup theorem then implies
that SL, (R) forms a Lie subgroup of GL,(R).

Symplectic Group. Since much of the exposition seen previously relates to
the properties of a symplectic form, i.e. a non-degenerate, closed, two-form, it is
natural to ask what kinds of symmetries such a form has. As before, we will look
at the symmetries of a vector space with the extra structure of a symplectic form.
We define a symplectic vector space as follows.
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Definition 5.8. Let V be a vector space and w: V x V — R an alternating bilinear
form. (V,w) is said to be a symplectic vector space if w is nondegenerate.

The non-degenerative condition requires that V be even dimensional, since it is
equivalent to wd™V/2 being a volume form. One can prove that symplectic vector
spaces of the same dimension are isomorphic so we can restrict ourselves to the case
V = R?™ w = € A ¢ where € is the dual basis element for e,i < n and ¢; is the
dual basis element for e;, without loss of generality. Since any bilinear form can be
represented as v'Wu for some W € Matg, (R), the relevant symmetry group will be
that for which A‘WA = W where W represents w as a bilinear form. To find W,
we start by letting v = v'e; + vie! and w = w'e; + w;e’, then

w(v,w) = € (v'e; +vie)ej(w'e; + wie') — € (w'e; + wie)ej(vie; +vie')  (5.0.1)
= vi(sgwié; — wiégvi(s} (5.0.2)

= vlw; —wlv; 5.0.3
j] j]

One can see that this corresponds to the block matrix

We define Sp(2n,R) = {4 € Maty,(R)|ATWA = W}.

In order to talk about the symmetries of mechanical systems, we must establish
a concrete way of talking about how symmetries manifest themselves on smooth
manifolds. This is done through the language of group actions.

Definition 5.9. Let G be a Lie group and M a smooth manifold. A map ¥: G x
M — M, mw— ¥,(m) is said to be a left Lie group action if it is smooth, U.(m) =m
for all m € M and ¥y o ¥, = W, for all h,g € G. ¥ is said to be a right Lie group
action if it is smooth, W.(m) = m and ¥y o W, = W,p,. The criteria ¥j, o Uy = Uy,

-1

means that all group actions must be diffeomorphisms, since (¥,)~" is explicitly

given as W 1.

We can define a left action on a Lie group G by itself using conjugation. Define
Ad: G x G — G by Ady(h) := ghg~!. This is called the adjoint action. Taking
h = exp(t§) for £ € g we can define an action of G on g as follows: Ady(§) :=
S gy exp(t&)g™

One of the common threads of differential geometry is studying smooth objects
by linear approximation, i.e. studying the tangent maps. Given a group action
U: G x M — M, we can induce a map from g to I'(T'M) by mapping £ € g to the
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vector field whose flow corresponds to Weyp,4¢), we will call this vector field {ps. This
can be defined formally as:

d
S = & tZO\I]exp(tg)'

We will now prove an important proposition regarding the vector fields generated
by a group action, also know as infinitesimal symmetries.

Proposition 5.10. Let G be a Lie group with a left Lie group action on a smooth
manifold M. The induced map g — T(TM) by & — &y is a Lie algebra anti-
homomorphism, i.e.

[5777]1\/[ = _[fMﬂ?M]
forall&,m € g.

To prove this, we must first prove a lemma regarding how the adjoint action of
G on g interacts with the Lie group action on M.

Lemma 5.11. Given £ € g and g € G, the following identity holds:

(Ady€)ar = W1&ar.

Proof. We start our proof from the definition of (Ady&)as.

d
(Adgé)m = (ds LO\Pexp(ddt ]t_ogexp(tf)gl)>

d
= ds SZO(‘I’gexp(tf)g‘l)
d
=1 s:o(\Ilg 0 Wexp(te) © Wy-1)
Ty, V(W)
=V 1lm

O]

Proof. One then sees the proof of our original proposition by taking g = exp(tn)
and differentiating with respect to t.

d

el = (5 -

Adexp(tn)§> u ~ar ‘I’pr(ftr,)ﬁM = —[&amr, ]

t=0

t=0
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If we think of a Lie group action as a Lie group homomorphism G — Diff (M) =
{¢: M — M|y is a diffeomorphism} then this induces a Lie algebra (anti)homomorphism
g — [(T'M) where T'(T M) is viewed as the Lie algebra of Diff (M), in the case where
M is compact.

At this point, we can begin applying group actions to our previously mentioned
symplectic manifolds. This will lead us towards the topic of moment maps, a gener-
alized version of the Hamiltonian, and eventually to the ideas of Noether’s theorem
and Marsden-Weinstein reduction.

Definition 5.12. Let (M,w) be a symplectic manifold and G be a Lie group that
acts on M on the left by W. The action ¥ is said to be symplectic if for each g € G,
the diffeomorphism W, : M — M is symplectic. That is

Vow=uw.
Taking g = exp(t€) for £ € g and differentiating with respect to ¢ yields
Lepyw=0.
By Cartan’s magic formula,
Leyw = digy,w + te,, dw = digy,w

This means that locally £y = Xy for f € C°°(U) with U C M open. One can view
such an H as the generalized energy corresponding to the infinitesimal symmetry
§. By the definition of Xy, f will be preserved along the flow of {); where defined.
We will soon specialize to the case where H is globally defined, this motivates the
so called momentum map.

Definition 5.13. Let g be a Lie algebra with a left action £ — £)s on a symplectic
manifold M. A Moment mapping corresponding to the left action of g is a map
J : M — g* such that &y = X (), this of course means that t¢,,w = dJ(§).

Just as regular linear momentum is the dual of the velocities, which generate
translations when exponentiated, moment maps are the dual of Lie algebra elements,
which generate general symmetries based on the specific group action. Of course, we
can simply be given a moment map J: M — g* and a group action ¥V: GX M — M,
and we might like to know if these are compatible in some sense. This motivates
the following definition.

Definition 5.14. Let (M,w) be a symplectic manifold, and ¥: G x M — M a
symplectic G-action. A moment map J: M — g* is said to be G-equivariant if for
each g € G,

viJ = Ad;-lJ
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that is J(¥4(x))(€) = (J(x),Ady€). This means that the following diagram com-
mutes:

M-_—7 g

v, AdY_,

M — g*

In the cotangent bundle case, one immediately has such a moment map. One
can take J(§) = te,. o© where O is the canonical one form mentioned previously.

Now that we have formulated the ideas of continuous symmetries and moment
maps, we can now state Noether’s theorem for symplectic mechanics.

Theorem 5.15. (Noether) Let M be a symplectic manifold,G a Lie group with a
left action ¥ : G x M — M and a corresponding moment map J : M — g*. Assume
H e C>®(M). If Le,,(H) =0 then Lx,(J(§)) =0.

This means that if £,/ is an infinitesimal symmetry of H, then J(&) is conserved
along the flow generated by H.

Proof. By the definition of J, we know that X ;) = &, then
0="Le, (H) = Lx,,(H)={H,J(&)}=—-{J(&),H} = —Lx,(J(§) O

At this point, a physicist may be contented in calling J a conserved quantity, and
"spending” this symmetry to reduce the degrees of freedom of the problem. This
will lead to difficulty if care is not taken. In order to apply a reduction procedure
and spend our symmetry, we must first show, under the proper assumptions, that
identifying points under symmetry leaves us with a smooth manifold. To do so, we
will state the quotient manifold theorem, which is instrumental in reduction.

Theorem 5.16. (Quotient Manifold Theorem) Let M be a manifold and G be a
compact lie group with a left action ¥ : G x M — M that is proper and free; i.e.
GxM—MxM, (g,x) = (Ygx,x) is a proper map and Y,z = Yz implies that
g=h. Then

M/G={z]|x e M, x~y if Vgx =y for some g € G}
is a smooth manifold and m: M — M/G, x — [x] is a smooth submsersion.

The proof of this result can be found in Abraham and Marsden [6]. This gives a
concrete way to tell when the process of identifying points under symmetry gives a
smooth manifold. Before we can describe how to reduce symmetries, we must state
the following definition.
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Definition 5.17. Let G be a Lie group with a group on a set X. Given z € X, we
define the isotropy subgroup G, as follows:

Gy :={g € Glgzr = =}

This is instrumental in proving the following theorem, which tells us how to
reduce a symplectic manifold under the action of a symmetry.

Theorem 5.18. (Marsden- Weinstein Reduction Theorem) Let (M,w) be a sym-
plectic manifold, equipped with a G-action ¥ and an equivariant moment map J
such that n € g* is a reqular value of J, i.e. T,J has full rank for all p € J1(n).
Take

w5 I m) > TN ) /Gy

to be the natural projection p — [p]. If Gy, acts properly and freely on J~1(n), there
exists a symplectic form wreq € Q?(M,eq) such that

Cw = 1 wWyeq.

In simple terms, J~!(n) is the submanifold of M with moment map value 7. This
is the set of all phase points p such that J(p) = 7. We require that n is a regular
value of J to guarantee that J~!(n) is a regular submanifold of M. We then identify
all points in the orbits under the action of G, since G is a set of symmetries of M
and hence J~1(n), this means we are removing the redundant degrees of freedom
associated to these symmetries. A proof of this theorem can be found in [4].

Given a G-invariant Hamiltonian H € C*°(M), i.e. Yy H = H, we get a Hamil-
tonian on the reduced space H,.q € C°°(M,eq) with H ‘J‘l(n) = H,cqom. We then
generate the dynamics on the reduced space as before, using the vector field Xg

red

such that ¢ Xy, Wred = dH,cq.

6 The Classical Kepler Problem

We now will examine reduction of the classical two-body problem. Our configuration
space will be Q = R®\{q; = q2}. Q is the set of positions of the two bodies in
question, where they are not permitted to collide. Then the phase space of the
system is 7*Q = R® x Q since Q is an open subset of RS. The Hamiltonian of this
system is

< =Y

C2my 2ma lar — qal|’

This is the sum of the kinetic energies of the bodies plus the potential energy between
them.

H
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6.1 First Reduction

We begin with a symmetry that will correspond to the conservation of total linear
momentum. One notes that if we map (q1,q2,p1,p2) to (q1 + x,d2 + X, p1, P2),
the Hamiltonian remains unchanged. We will take this map to be a left R? action

on T*@Q. Differentiating the action tells us that the infinitesimal symmetry of this
0
8¢t
identified with R? itself.

The moment map arising from this action must satisfy d(J(n)) = tx,w. We see

that

action is X, = n'-% + nja%j for n belonging to the Lie algebra of R canonically
1

| @- . R
1x,W = (dg§ A dpil + quZ A\ dp?) <?’]k + TIZT )

_ .k 7 1 l 7 2
=n d —_— di+nd — | dp=
q1 (aq{g> p. QQ (aqé) p]

= "o} dp} +116] dp? = ' dp! + 1 dp?

9J(m) _ i 9J(n)
Then o 7', 947
and J = p; + p2, where we implicitly identify R3" with R?. We can immediately

= 0 so we can conclude that J(n) = n'p} +77ij2- =1n-(P1+P2)

see that this moment map is equivariant because R? is an abelian group.

To start the reduction process, we look at the preimage of 0 € R3 under the
moment map. We see that J71(0) = {(ai,a2,p1,P2) € T*Q | p1 + p2 = 0}.
This is precisely the set where the total linear momentum of the system is zero.
Now when we take the quotient by the group action, we make the identification
(q1,92,P1,P2) ~ (q1 + x,q2 + x, p1, p2). To know that the result of the quotient is
still a smooth manifold, we must show that our action is free and proper. We start
by assuming that there is some (q,p) € T*Q for which x-(q,p) = y-(q, p) for some
x,y € R3. This implies that q + x = q +y and hence x = y, therefore our action
is free. To show that this group action is proper it suffices to show that the action
R3 x R3 — R? by (q,%) — q + X is a proper map.

Let K be a compact subset of R? then for x + K to have non-trivial intersection
with K, ||z|| < diam(K) since the bounding balls of K and z+ K must intersect for K
and z+K to intersect. this means that {x € R3|(z+K)NK # 0} is bounded and thus
has compact closure. We can then conclude that our action is proper and J~1(0)/R?
is a smooth manifold. Since J~1(0) has ps = —p1 and (qi +2) — (q2 +7) = q1 — q2
we can take our coordinates on M,.q = J71(0)/R3 = T*(R3\{0}) = (R3\{0}) x R3
to be

(@,p) = (a1 —q2,p1 — P2) = (41 — 92, P1 + P1),

with q # 0. Our Hamiltonian is invariant under the R? action since ||q; + = — (q2 + z)|| =
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|ld1 — g2 and it descends to a Hamiltonian on the reduced space. Our new Hamil-
tonian is

"y ||p|r2<m1+m2> E_ el
red — 10— o m_n
2 \mima ) Tl T 2l

6.2 Second Reduction

Now that we have reduced the phase space of the system to half the dimension, we
can now examine the rotational invariance of the system. If we take the standard
SO(3) action on R3\{0} by ¥4(q) = Aq we can then take the cotangent lift of this
action. We start by noticing that TW4(v) = Av, then (T*¥ p,v) = p? A~ lv =
p ATy = (Ap)Tv and hence T*V 4(q,p) = (Aq, Ap). Since SO(3) does not affect
the norm of q or p we see that H,..q4 is invariant under this action.

In order to find the moment map corresponding to the SO(3) action we have to
find the vector field corresponding to & € so(3). Taking A = exp(t{) we have

d

X€ = & T*\I/exp(tﬁ) (q7 p)
t=0

=3 tzo(exp(%)% exp(t§)p)
= (£q,¢p)

= ¢’¢

8 0
lapk;'

9 [

Now,

LX W = dg™ A dpm (Xe¢)
= /&6 dp,, — p'&f o da,,
= /& dp; — p'¢f dgy,

This implies that 8g—]()f) = qjgj and we can conclude that p(¢) = §§qj pi = p - (£q).
Identifying so(3) with R? by

0 & & &
& 0 =& —=E= &
& &0 &3
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and noting that

(0 —& & [a
da=1& 0 =& |e
& & 0 | |as

(203 — €302 )
= &g —&is| =€ Xq
&192 — Loqn

Then p- (£q) =p- (5 X q) = ¢ (q x p). We then conclude that J = q x p under
our identification, this is the angular momentum of the system.
Now we will show that the moment map is equivariant. We have

(oT"W4(q,p),&) =

= (A1 (u(q,p)),§)

Since we have shown that we have an equivariant moment map arising from a
symplectic SO(3) action, we can begin with the reduction procedure.

Instead of taking ;~1(0) to be the manifold we will quotient, we now take
p=t(L),where L € s0(3)* = s50(3) is the angular momentum of the system, this
means that every point in our reduced phase space will satisfy q x p = L # 0. We
must first examine the form of SO(3);. We can imediately observe that SO(3) =
SO(2), since every rotation that fixes L corresponds to a rotation of the plane per-
pendicular two L. Now we must show a few properties of the group action in order
to fulfill the assumptions of the Marsden-Weinstein Reduction theorem.

We automatically know that our SO(3) action is proper since SO(3) is compact.
Therefore, to show that p='(L)/SO(3); is a smooth manifold, we only need to
demonstrate that our action is free. Because q X p # 0, q and p are linearly
independent and neither is parallel to L. We then see that there is no trans-
formation that fixes both p and q. This tells us the chosen action is free and
Myeq = p~1(L)/SO(3) =2 T*RT =2 R* x R is a smooth manifold.

We will now choose coordinates on M,.q, our first coordinate being r = ||q]|.
Since q X p is constant, p is uniquely determined by its component parallel to q.
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Letting p = p* + pll, we then have L = q x (p*~ + pl) = q x p* and

lpl* _ (e +p)- (p* +pl)

2m 21
1 S - X
o PP T
2 2
I
2u 2u

Letting q = 70 and p = pt where then we have L = rp (¢ x @) = L This means
2
that 72(pt)? = ||L||* and hence HpLH2 = ”TL—QH We now induce the coordinate

pr being the momentum associated to r which corresponds to j:Hp” , this can be

written as p, = ﬁ.
Our previous reduced Hamiltonian now gives:
2 2
1L, pr K

Hred’ =

2ur?  2u 1

koL Pr
AH, g = <r2 ~ d’r—i—;dp“

We see that

Let X = X, 2 + Xma%, then

tx,,w=X,dp— X, dr.

Taking dH),; = tx,,w we have X, = % and X, = Hﬁf - T% We then obtain the
equations of motion:
S
[ prd v

7 Deformation Quantization

7.1 DMotivation

In doing typical quantum mechanics, we begin with some classical phase space,
typically M = R™ x R™ with coordinates (¢’,p;), and a Hamiltonian, a smooth
function H: R?™ — R which is a low degree polynomial in p’ with coefficients in
C>(R™). From here, we take our complex Hilbert space (#, (-,-)) = L?(R"), which
describes the set of complex probability density functions on R™ with the usual
inner product of functions, and we would like to find a representation of a suitable
subspace of C°°(M) containing H on our Hilbert space. To do this, we make a
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guess. We map p’ to the operator —ih 21- and map ¢’ to the operator ¢ — ¢* - 1.

We call the operator form of H, H.
At this point, our guess appears to have little to do with the classical case. We

make reference to a classical system, but apparently no reference to the geometry
of phase space. This is not quite true, there is a hidden reference to the classical
symplectic geometry outlined in the first half of this thesis. When we look at the
commutation relations between the ¢*’s and pj’s we see a glimpse of the classical
regime shining through. Let v € D(¢*) N D(p’), then:

[wa:4m9f+«—{W)

Oqi
o 0y 5¢ i
—ihq'—— g7 +thﬁ+zh5¢

= ihdkip

Since functions commute with functions and derivatives commute by the Schwartz
theorem, we have the following set of commutation relations:

[¢,p;] =ins%,  [¢,¢'] =0, [Pips] =0

Now, using the canonical Poisson bracket on R™ x R™* we come to the following
similar result:

ip} =3 0 0pi 04" O,
taps) zk: Oqw O, Opr, O

= 6,07 =6}
and:

{qi,qj}_Z%%_%%:gz.o_o.gizo

One similarly confirms that {p;, p;} = 0. Comparing these equations to the previous
ones, we recognize that the quantum commutation relations are exactly ¢h times the
Poisson commutation relations. If we wanted to generalize this scheme, we might
like to take the Poisson algebra of observables and find a new associative product
on it that satisfies ¢h times the Poisson commutation relations. It turns out that
enforcing the commutation relations for all observables is an impossible task, even
on a set of observables polynomial in ¢* and pj of bounded degree. This fact coming
from the Gronewold-van Hove no go theorems. Instead of strictly enforcing these
relations we will want our algebra to follow these relations “asymptotically”, a notion
which will be the basis for deformation quantization.
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7.2 Basic Definitions

Before we get to defining what a deformation is, we will describe the basic algebraic
structure used to describe the asymptotics of deformation quantization.

Definition 7.1. Let R be a unital ring, R[[A]] is the ring of formal power series in
A with coefficients in R, i.e. formal linear combinations r =2, ri At with 7 € R.
The ring structure is given by

r.-s= (Z ri/\i)(z sj)\j) = Z Tisj)\iﬂ
with addition defined as r + s = > (r; + s;) A%

Definition 7.2. Let R be a unital ring and M a left R-module. Then M][)\]] is the
left R[[A]] module of formal power series in A with coefficients in M. We define the
module structure analogously to the ring structure on R[[\]].

We commit an abuse of notation and identify R and M with Ry and My, the
subring/module of R[[A]] and M[[A]] of zeroth order. We then define a formal

deformation quantization as follows:

Definition 7.3. Let A be a Poisson algebra with bracket {-,-}, i.e. a commutative
algebra over C, (A4, -, +), where {-, -} satisfies the axioms from Proposition 3.8. The
bilinear map *: A[[A]] x A[[A]] = A[[\]] is said to be a star product if it satisfies the
following: assume f,g,h € A

fxg=7f-g+o(N), (7.2.1)
frg—gxf=iMf g} +0()?), (7.2.2)
(fxg)xh=fx(gxh). (7.2.3)

These can be extended billinearly to all of A[[A]]. Of the conditions, Equations 7.2.1
and 7.2.2 are the modified Dirac quantization conditions and Equation 7.2.3 ensures
that (A[[A]],*) is an associative algebra. We now see how to enforce the original
Dirac quantization rules asymptotically. We require the x-commutator to agree with
i, -} up to order A\2. As a matter of convention one can take A = h so that the
commutation relation matches with Dirac’s original condition. A is nothing more

than a formal parameter within the scope of deformation quantization.

Since the typical way we find said star products is through differential operators
on some domain, we define the following:
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Definition 7.4. Let A C C*°(U) a sub-algebra, where U is an open subset of some
smooth manifold M. We define Diff(A) to be the set of differential operators on A,
i.e. for each a € Diff(A) and x € U

= Z ag 0% f

Vi al<t

(af)

for some V' an open neighborhood of z, a, € C*(U).

7.3 Examples of Star Products

It is easy to map polynomials purely in p or ¢ into differential operators, since
[@',d] = [5",#'] = 0 we can map [1(¢)% to (§1)% o... 0 (§")* and [1(p;) to
(P1)Pr o... 0 (Pn)P* with no issues.

We will construct a prototypical example on C[g, p|, the space of complex poly-
nomials in ¢ and p, and then see how this might be extended to C[¢’, p;]. We will
begin by constructing a star product x that extends the typical quantization ¢ — ¢,
b s p > —ihg

Naively, one might map polynomials into the differential operators as follows:
Definition 7.5. We define the standard ordering representation as the map ps: Clg, p] —
Diff (C|q]) with:

d\"
q"p" = ps(d"p™) =q" <—Zhdq> :
This is an injective linear map.

Definition 7.6. To deform the associative algebra on C[q, p| we define

f *s g 1= pgl(ps(f) ° ps(g))'
Proposition 7.7. The preceding map *s is a star product on C[q, p]

Proof. We begin by computing *; using monomials and extending bilinearly. For
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m,n,j, k € N we have

. qr . dk
m,.n ky _ . m S\ s\ k
ps(q™p") o ps(¢’p”) = ¢ (—ih) a7 <(q])(—2ﬁ) qu>
_m n+k J
¢"(=ih) dgn (q dq’“)
n | dktn—r
— m i n—+k n J j—r
e z:(:)<r> G-t dgFrn
n! ]' B 3 drtn—r
— —iR)" jt+m—r B n+k—r
Z( i) (n—r)lr! (j—r)'q (=ih) dgktn—r
_ Z (=ih)"  j! Frmr ! (—ikyrHeT dktn-r
rl (-1 (n—r)! dgktn—r

If we convert back to ¢ and p and say f(q,p) = ¢™p", g(q,p) = ¢/p* this sum can
3 (=ih)"0"fd"g
rl Op” Oq"

which is a terminating sum for f,q € C|g, p], so we might define

be written as

o p0f 09 (SR O fO7g
frsg:=19 Zh@p8q+z rl Op” Oq"

(7.3.1)
r=2

We see that this satisfies the asymptotic Dirac condition:

of o 0g 0
(fogl,, = *sg—g*s [ = —maﬁaj - ha]g;a‘; +o(h?) = ih{f, g} + o(h?)
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We can show associativity by taking f, g, h € C|g, p], we have

0

(=it 0 (5 (iy 0rf g | o
k! opk rl Op" Oq" | OgF

B i (—iﬁ)k (—ih)T k 8r+nf ok—n 8Tg @

N k! 7! n/) Oprtn Opk—n \ dq" ) Ogk

k ar+nf£ 8k7ng o*h
8p'r+n 8qr

apk:—n 8qk

n<k
i (—ih)k (—ih)" > k! 8’"+”f8’"<8k”g>8kh

k,r—0 ! o (k —n)tn! 9pr+7 0g" \ OpF—" ) Og*
= i (imfr oy 1 o (0 on (0F A
At Oprt (k= n)nl g \ ot ) 9gn \ 0gF "

Let j = r +n, then n = j — r and our sum becomes

§ (it o L0 (0 g\ o (0"
o (= j+ 0l -t og \opF ) ogr T \ogt v
3 (—ih) (—in)=Hraif g1 or (akﬂrg) oi-r <aki+rh>

§U (k—j+r) 0pi rl(j —r)! Oq" \ Opk—i+r ) dgi—r \ Ogk—itr

Taking the new index | = (k — j + r) we have

S ()

o~ (h
dgi—" \ 0¢

—ih)7 83f o (—ih) 6lg o'h
= ST a7 = s s h O
- > S e (Z T oplag) = relaxh)
In a similar way, we can define x; on C>°(R?") as follows:
n rf 87"
[Hsg =
% Oy,

and readily sees that the Dirac-Poisson relation and associativity follow from the
preceding proof.

If we take ps(Clg,p]) to be operators on Cog(R)[[h]] € L*(R)[[R]] equipped with
its standard inner product, we soon see an issue with our naive guess. One recalls
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that ps(q) = ¢,ps(p) = p = —ihd% are self adjoint operators on Cg5(R) which is
an important property of observables, since one expects the expectation value of an
observable to correspond to a real number. We see that ps(gp)’ = ()" = ¢ mean-
ing that we have not assigned a self-adjoint operator to a real valued polynomial.
In remedying this, we might map monomials to their symmetrization, which we will

describe in the next definition:

Definition 7.8. We now define the so-called Weyl-Moyal representation, p,,: Clg, p] —
Diff(Clg]). as

1
m, n ~ ~oA N
P (m + TL)' ESZ U(q’ m times &P n times ’p)
g m4n
Where (a1, .., @Gmin) = Ao(1) - - - Co(mn)-

For example py,(qp) = 5(G0+ Hq). One verifies that p,(g™p™) is self-adjoint and
pw 18 injective.

In order to define the Weyl-Moyal product in a more convenient way, we will
define the next operation.

Definition 7.9. Let A be a commutative associative algebra over C. We define
n: A® A — A by bilinear extension of the following property:

w(u @ v) = uw
for all u,v € A.

Definition 7.10. Let (M,w) be a symplectic manifold. The Poisson tensor P €
A% TM is defined by

P(f,9) = w(Xf, Xy).

In canonical coordinates P(f,g) = > gfz gg — 8;5 gg so
7 3

F= Z 0192

We then define A: C°(M) @ C®°(M) — C*(M) @ C>*(M) by

Z L 09 of of

AMi®g): 3191' Opi ~ 0¢°

In non-canonical coordinates, we simply have

_ i Of _ 0Og
/\(J”@@g)—zl”(9 ® o
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Definition 7.11. When M = R?" and w = Y dg’ A dp; we define the Weyl-Moyal
Product as follows:

Frwg= Y W 0 g)).

Equivalently, we could define it as

(exp (Zm;”) f(z, px)g(y,py))

Peyf(2,p2)9(y, py) Z

T=Y=q,pz=py=p
Where

of dg
O z 7pz a 7, (?Japy) - %(%py)aiyz(y,py)

T

Proposition 7.12. The map %, : C®(R?*) x C®(R?*"*) — C*°(R?") defined above
s a star product.

Proof. By simple computation we immediately see:

ih ih .
Frug=g*uf=ra—af + 5{f .9} = 5 {9, f} +o(h*) = ih{f, g} + o(h?)
Now, let f,g,h € C*°(R?"). We then have the following
th Py,

(f *w g) s h = (exp > f*w g)<x7px)h(yapy)>
T=Y,Pz=Py

("
(ool (o (5 namena| i)

= (owp (M T B gt pont) )

T=Y,Px =Py

2

T=Y=Z2,px=Py=DPz

:f*w(g*wh) ]

and we conclude that this defines a star product on C*(R?")

8 The Hydrogen Atom

The classical hydrogen atom’s Hamiltonian takes the exact same form as the one

from the Kepler problem, where this time k = 42260, rather than the typical £ =
Gmimso. Though this detail is not mathematically important. The fact that the
hydrogen atom and the two body problem have functionally equivalent Hamiltoni-
ans comes from the inverse square force law, which tells us that point objects (or
spherical bodies) which have potential energy fields that obey A® = ap have force

laws of the form F' = kﬁ
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8.1 First Reduction

Throughout this section, we will take the typical star product x5 on T*(R%\A)
and find a natural star product on the reduced phase space T*RT. To find these
reductions, we will mirror the classical case, starting with the reduction of phase
space from T*(R%\A) to T*(R3\{0}).

The fashion in which we have created our projection 7: J~1(0) — J~(0)/R3 al-
lows us to extend this to m;: T*(R®\A) — T*(R3\{0}) by taking 7;(q1,qz, P1, P2) :=
(q1 — g2, p1 — p2). We see that m;: T*(RO\A) — T*(R3\{0}) has a right inverse.
Our right inverse is given by j: T*(R3\{0}) — T*(R%\A), (¢,p) — (q,0,p/2, —p/2).

We immediately see that (7 0 j)(q,p) = m(q,0,p/2, -p/2) = (q,p/2 — (-p/2)) =
(q,p). Then, to define our star product on C*(T*(R3\{0})) we take

f;1/2g =g (i f *1/2 U
for all f,g € C°°(T*(R3\{0})).
Proposition 8.1. The map
K12t C(T* (RO} [[V] x C=(T(R\{O))[[V]] — C=(T*(R\{0}))[[]]
as defined above is a star product.

Proof. We start with our zeroth order condition. Given f,g € C*(T*(R3\{0})) we
see

So %17 fulfills the zero order quantization condition.
We now move on to the first order condition. Taking f and g as before, we have:

[x129—9%2 [ =3°(m( f x172 7(g) =i (7}g %12 7 )
=j(mi f *1/2 TG — T *1/2 7 f)
= j* (i} f,mi g} + o(v?))
= ivj*{m; f,mig} + o(v?)
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From the preceding calculation, we know that in order to prove the first order

condition, we need to prove the following:
i fomigr ={f. 9}
We can do this by a simple coordinate calculation.

{7t f,mig} (a1, 2, P1,P2) = Vg, f(d1 —a2,P1 — P2) - Vp,9(a1 — q2,p1 —
V. f(a1 —q2,P1 — P2) - Vp,9(d1 — g2, P1 — P2

+ Vg f(a1 — 2, P1 — P2) - Vp,g(a1 — a2, P1 — P2

p2) -V
)

el
S 5
NS

— Vi, f(d1 —q2,P1 — P2 p29(d1 — d2,P1 —
= (VqfVpg— Vp[Vq9)(a1 — a2, P1 — P2)
+ (=1)(=1)(Vaf - Vpg — Vp [ Vqg)(a1 — a2, P1 — P2)
=m{f. g}
Then we have j*{=} f,n{g} = j*n{{f, g} = (m 0 j)*{f, 9} = {[. 9}.
We will now prove the associativity condition.
(f ;1/2 g) ;1/2 h = 3" (n{j"(m; f *1/2 T 9)) *1/2 T h)
((mi f *172 T2 g) *172 T h)
=j (m f *1/2 (mr 9 *1/2 mh))
J(m f *1/2 T i (7 g *1/2 Ty ‘h)
*1 1/2 (g% *1/2 h)
Since *; /o satisfies all three of the Dirac quanitization conditions, we conclude that
it defines a star algebra structure on C°(T*(R3\{0}))

8.2 Second Reduction

Using this same argument, we can see that A(7*(f®g)) = 7*A(f ® g) meaning that
*1/ coincides with %, defined on C*(R\{0}) O

Now that we have created a star algebra on the first reduced space, we would
like to do so in a similar fashion for the second reduced space. Without loss of
generality, we will take L = [2. We can then define an inclusion ¢: T*Rt — p (L)
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by (¢,p) = (¢,0,0,p, £,0). We sce that

(20 0)a.) = 7(0,0.0.0, .0
~ (VE Lt i+ i)
q q
= (¢,%) = (a.p)
q
We then define our new star product on C*°(T*R™") by

I ¥y g 1= 0@ Rys )

Proposition 8.2. The map ) ,: C°(T*RT)[[A]]x C>(T*R¥)[[A]] = C**(T"R¥)[[A]]

as defined above defines a star product on C>°(T*R™).

Proof. Our proof is almost verbatim to that of Proposition 5.0.1. We begin with
the zeroth order condition. Given f,g € C®(T*R™)[[A]] we have

*

f */1/2 g:=1(7"fF1279)

= (m"f -7 g +o(v))

— (n*f - 7g) + o)
=(mou)*f -*r"g+ o(v)
frg+ov)

We now consider the second order condition. Taking f and g as before, we see that

f */1/2 9—49 */1/2 =0 xpmig) — (T g x0T f)
=T fFp g =T gF )
= (i g} + o(?))
= v {7 f, 7" g} + o(v?)

Once again it suffices to show that m is a Poisson map. One sees that

. _ a-p

We can rewrite the Poisson bracket as

{n*f,m*g} =Vqn*f - Vpr'g—Vqr'g - Vpr*f
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The chain rule then gives Vqn* f = Vq(for) = V4(||ql) (%5 o 7r> +Vq<ﬁ) (% o 7r)
and Vpr*f =V (||q||)(8£ o). In the first case we have

q
Vllall =
4 lal
and
ap_ P 49prpdqa _p (a-pa
Vo = 70 — — = T
lall ol ql? H I llal i
The second case simply gives Vp(\(\qu) . Plugging these expressions into our

Poisson bracket equation then gives

ok = (||qr<af”>+<|1:1n_(7|éﬁ) )(aron) i (Ger)
(|qu< o)+ (e Gl )( ) rai(are)
uqu it G e (Tt =™ HqH =) (50) °
(e o (- it ) (o) o

= (5ea) om+0- (5e3p) om0

= {9}

From this we conclude that *{n*f,7*g} = *7*{f, g} = {f,9} and the first order
quantization condition is fulfilled. Because our definition takes the same form as in

Proposition 8.1 we omit the associativity argument. [

Due to the simplicity of the preceding arguments, it is easy to come up with the
following proposition:

Proposition 8.3. Let M be a symplectic manifold equipped with o G-equivariant
momentum map J: M — g* with p € g* a reqular value. Let /9 : C*°(M)[[] x
C®(M)[N] — C=®(M)[[N]] be a star product on M. If J-1(u) is a trivial G,
bundle with a section v: J1(n)/Gu — J~ () and there is a global projection
7: M — J~Y(u) which is Poisson then the following formla defines a star prod-
uct on J 1 (p)/Gp:

f*f/z g:=(r"f *1/2 T™g)

Proof. The proof follows in the same fashion as Propositions 8.3 and 8.2. O
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