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propagation and catastrophic percolation. 

The persistent nucleation and growth of 

these microcracks create extrinsic plastic-

ity that compensates for the low ductility 

of the brittle phase and enables sustain-

able uniform deformation. Compared to the 

conventionally solidified alloy, the self-buff-

ering herringbone EHEA was three times 

more ductile, accompanied with extraordi-

nary damage tolerance and a simultaneous 

enhancement of strength and toughness.

Shi et al.’s engineering of hierarchical 

chemical and nanostructural heterogene-

ities heralds a new approach for developing 

high-performance alloys. Tuning local com-

positional fluctuations may energetically 

alter the nature of a material’s response to 

external stimuli like brittleness (9, 10). Cre-

ation of internal defects within individual 

nanostructures (see the figure) could acti-

vate multiple strengthening and toughen-

ing mechanisms (11). The heterogeneous 

microstructures could be programmed to 

trigger various intrinsic and extrinsic defor-

mation mechanisms (12). 

This design concept will require identi-

fying and quantifying which materials pa-

rameters endow specific properties to help 

unravel how these develop in hierarchical 

structures. An integrated computational and 

experimental protocol, in conjunction with 

data science, could accelerate the establish-

ment of a unified design principle and scien-

tific framework for future mechanistic alloy 

design. Another formidable conundrum is to 

precisely control and organize spatially lo-

cal chemical and structural heterogeneities. 

The advanced additive manufacturing tech-

niques could, through a dedicate multiscale 

processing control, unlock the full poten-

tial of this new alloy design concept to help 

tackle major economic, energy, and environ-

mental challenges. j
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T
he accelerating pace of global change 

is driving a biodiversity extinction 

crisis (1) and is outstripping our abil-

ity to track, monitor, and understand 

ecosystems, which is traditionally the 

job of ecologists. Ecological research 

is an intensive, field-based enterprise that 

relies on the skills of trained observers. 

This process is both time-consuming and 

expensive, thus limiting the resolution 

and extent of our knowledge of the natu-

ral world. Although technology will never 

replace the intuition and breadth of skills 

of the experienced naturalist (2), ecologists 

cannot ignore the potential 

to greatly expand the scale of 

our studies through automa-

tion. The capacity to automate 

biodiversity sampling is be-

ing driven by three ongoing 

technological developments: 

the commoditization of small, 

low-power computing devices; 

advances in wireless commu-

nications; and an explosion in 

automated data-recognition 

algorithms in the field of ma-

chine learning. Automated 

data collection and machine 

learning are set to revolu-

tionize in situ studies of natural systems.

Automation has swept across all human 

endeavors over recent decades, and science 

is no exception. The extent of ecological 

observation has traditionally been limited 

by the costs of manual data collection. We 

envision a future in which data from field 

studies are augmented with continuous, 

fine-scale, remotely sensed data recording 

the presence, behavior, and other proper-

ties of individual organisms. As automa-

tion drives down costs of these networks, 

there will not be a simple expansion of 

the quantity of data. Rather, the potential 

high resolution and broad extent of these 

data will lead to qualitatively new find-

ings and will result in new discoveries 

about the natural world that will enable 

ecologists to better predict and manage 

changing ecosystems (3). This will be es-

pecially true as different types of sensing 

networks, including mobile elements such 

as drones, are connected together to pro-

vide a rich, multidimensional view of na-

ture. Given the role that biodiversity plays 

in lending resilience to the ecosystems on 

which humans depend (4), monitoring 

the distribution and abundance of species 

along with climate and other variables is a 

critical need in developing ecological hy-

potheses and for adapting to emerging 

global challenges.

Ecosystems are alive with sound and mo-

tion that can be captured with audio and 

video sensors. Rapid advances in audio 

and video classification algorithms can al-

low the recognition of spe-

cies and labeling of complex 

traits and behaviors, which 

were traditionally the domain 

of manual species identifica-

tion by experts. The major 

advance has been the dis-

covery of deep convolutional 

neural networks (5). These al-

gorithms extract fundamental 

aspects of contrast and shape 

in a manner analogous to how 

we and other animals recog-

nize objects in our visual field. 

Applied to audio signals, these 

neural networks are highly ef-

fective at classifying natural and anthropo-

genic sounds (6). A canonical example is the 

classification of bird songs. Other acoustic 

examples include insects, amphibians, and 

disturbance indicators such as chainsaws. 

Naturally, these algorithms also lend them-

selves to species identification from images 

and videos. In cases of animals displaying 

complex color patterns, individuals may be 

distinguished, allowing minimally invasive 

mark recapture, an important tool in popu-

lation studies and conservation (7). Beyond 

sight and sound, sensors can target a wide 

range of physical, chemical, and biological 

phenomena. Particularly intriguing is the 

possibility for widespread environmental 

sensing of biomolecular compounds that 

could, for example, allow quantification of 

“DNA-scapes” by means of laboratory-on-a-

chip–type sensors (8).

Several technological trends are shap-

ing the emergence of large-scale sensor 

networks. One is the ongoing miniaturiza-
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tion of technology, allowing deployment of 

extended arrays of low-power sensor de-

vices across landscapes [for example, (9)]. 

In many cases, these can be solar-powered 

in remote locations. The widespread avail-

ability of computer-on-a-chip devices 

along with various attached sensors is en-

abling the construction of large distributed 

sensing networks at price points that were 

formerly unattainable. Similarly, the ubiq-

uitous availability of cloud-based comput-

ing and storage for back-end processing is 

facilitating large-scale deployments.

Another trend is advancements in wire-

less communications. For example, the 

emerging internet of things (10) enables 

low-power devices to establish ad hoc mesh 

networks that can pass information from 

node to node, eventually reaching points of 

aggregation and analysis. The same tech-

nology used to connect smart doorbells and 

lightbulbs can be leveraged to move data 

across sensor networks distributed across 

a landscape. These protocols are designed 

for low power consumption but may not 

have sufficient bandwidth for all applica-

tions. An alternative, although more power 

hungry, is cellular technology, which has 

increasing coverage globally. In remote 

locations, where commercial cellular data 

services may not be available, researchers 

can consider a private cellular network 

for on-site telemetry and satellite uplinks 

for internet streaming. However, in the 

near term, telecommunications costs and 

per-device power requirements may none-

theless prove prohibitive in certain high-

bandwidth applications, such as video and 

audio streaming. An alternative for sites 

where communications bandwidth is lim-

ited by cost, isolation, or power constraints 

is edge computing (11). In this design, com-

putation is moved to the sensing devices 

themselves, which then transmit filtered 

or classified results for analysis, greatly re-

ducing transmission requirements. 

One more trend is the advancement of 

machine-learning methods (12) that can 

classify and extract patterns from data 

streams. Much of this technology has been 

commoditized through intensive develop-

ment efforts in the technology sector that 

have resulted in widely available software 

libraries usable by nonexperts. The afore-

mentioned convolutional neural networks 

can be coded both to segment data into 

units and to label these units with appro-

priate classes. The major bottleneck is in 

training classifiers because initial train-

ing inputs must be labeled manually by 

experts. Although labeled training sets 

exist in some domains—most notably, im-

age recognition—future analysts may be 

able to skip much of the training step as 

large collections of pretrained networks 

become available. These pretrained net-

works can be combined and modified for 

specific tasks without the requirement of 

comprehensive training sets. Of particular 

interest from the standpoint of automation 

are new developments in continual learn-

ing (13), in which networks adjust in re-

sponse to changing inputs. This holds the 

promise of automating model adaptation 

for detecting emerging phenomena, such 

as species shifting their ranges in response 

to climate change or other shifts in ecosys-

tem properties.

Ecologists could leverage these develop-

ments to create automated sensing net-

works at scales previously unimaginable. As 

an example, consider the North American 

Breeding Bird Survey, a highly successful 

citizen-science initiative running since the 

late 1960s with continental-scale coverage. 

Expert observers conduct point counts of 

birds along routes, generating data that 

have proved invaluable in tracking trends 

in songbird populations (14). Although we 

hope to see such efforts continue, imagine 

what could be learned if, instead of sam-

pling these communities once per year, a 

long-term, continental-scale songbird ob-

servatory could be constructed to record 

and classify bird vocalizations in near–real 

time along with environmental covariates. 

Similar networks could use camera traps or 

video streams to reveal details of diurnal 

and seasonal variation across diverse floras 

and faunas. As with all sampling methods, 

sensing networks will not be without biases 

in sensitivity and discrimination, yet they 

hold the extraordinary promise of regional 

sampling of biodiversity at the organismal 

scale, something that has proven difficult, 

for example, by using traditional satellite-

based remote sensing. These efforts would 

complement ongoing development of con-

tinental-scale observatories in ecology [for 

example, (15)] by increasing the spatial and 

temporal resolution of sampling. j
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Small, ruggedized sensors, such as this passive acoustic recorder, enable remote monitoring of biodiversity. 

New technologies are enabling such devices to process data and transmit information via wireless networks.
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