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Although dispersal limitation is a central feature of most 
quantitative models of island biogeography (Rosindell and 
Phillimore 2011, Carvalho et al. 2015, Triantis et al. 2015, 
Valente et al. 2015), these models generally do not incor-
porate variability in dispersal abilities among species in the 
community (but see Sukumaran et al. 2016). Furthermore, 
statistical approaches to island biogeography often focus on 
aggregate patterns such as species–area curves while losing 
information about individual species and their differences 
(Rosenzweig 1995, Kéry and Royle 2008, Triantis et al. 
2012). Similarly, multivariate methods in community 
ecology often operate on measures of aggregate commu-
nity dissimilarity thereby eliminating information about 
individual species (Legendre and Legendre 2012).

Here, we develop a novel statistical approach to modeling 
island biogeographic patterns that quantifies the effects of 
island area and spatial configuration (isolation) on commu-
nity patterns, but deconstructs the biotic pattern based on 
species differences in how they respond to area and isolation. 
This allows us to address a series of questions about the roles 
of dispersal limitation, dispersal heterogeneity, and dispersal 
functional traits in driving island biogeography of birds in 
northern Melanesia, a classic system in biogeography.
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A central goal of both community ecology and biogeography 
is to understand the processes determining species distribu-
tions and how they contribute to assemblage-level patterns 
(MacArthur and Wilson 1963, Cracraft 1986, Leibold et al. 
2004, Lomolino et al. 2010). Biologists have long recog-
nized that the spatial context of habitat patches (e.g. islands) 
interacts with dispersal ability to influence the number and 
distribution of resident species (MacArthur and Wilson 
1963, 1967). The role of patch area and isolation, in par-
ticular, is a theoretical cornerstone of island biogeography, 
metapopulation, and metacommunity ecology (MacArthur 
and Wilson 1967, Hanski 1994, Rosenzweig 1995, Leibold 
et al. 2004). Species interact with patch area and isolation, 
and broader landscape structures, through their abilities to 
colonize and persist in habitat patches. In turn, numerous 
studies have documented morphological and behavioral 
traits contributing to dispersal ability (Lockwood et al. 
1998, Dawideit et al. 2009), and it is well understood that 
species and higher taxa vary in their dispersal abilities with 
consequences for a wide range of ecological and evolution-
ary processes (Wilson 1961, Hanski 1994, Economo and 
Sarnat 2012, Jønsson et al. 2014, Weeks and Claramunt 
2014).
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Island systems have long played a central role in the development of ecology and evolutionary biology. However, while 
many empirical studies suggest species differ in vital biogeographic rates, such as dispersal abilities, quantitative methods 
have had difficulty incorporating such differences into analyses of whole-assemblages. In particular, differences in dispersal 
abilities among species can cause variation in the spatial clustering and localization of species distributions. Here, we 
develop a single, hierarchical Bayes, assemblage-wide model of 252 bird species distributions on the islands of northern 
Melanesia and use it to investigate a) whether dispersal limitation structures bird assemblages across the archipelago, b) 
whether species differ in dispersal ability, and c) test the hypothesis that wing aspect ratio, a trait linked to flight efficiency, 
predicts differences inferred by the model. Consistent with island biogeographic theory, we found that individual species 
were more likely to occur on islands with greater area, and on islands near to other islands where the species also occurred. 
However, species showed wide variation in the importance and spatial scale of these clustering effects. The importance 
of clustering in distributions was greater for species with low wing aspect ratios, and the spatial scale of clustering was 
also smaller for low aspect ratio species. These findings suggest that the spatial configuration of islands interacts with 
species dispersal ability to affect contemporary distributions, and that these species differences are detectable in occurrence 
patterns. More generally, our study demonstrates a quantitative, hierarchical approach that can be used to model the 
influence of dispersal heterogeneity in diverse assemblages and test hypotheses for how traits drive dispersal differences, 
providing a framework for deconstructing ecological assemblages and their drivers.
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Two quantitative approaches frame our development 
of a parametric, spatially-explicit multi-species model of 
island occurrences: 1) spatially-explicit auto-regressive mod-
els of occurrence (Hanski 1994, Gelfand et al. 2006) and 
2) multilevel statistical models (Clark 2005, Gelfand et al. 
2006, Condit et al. 2013). Like MacArthur and Wilson’s 
theory (1967), the spatially explicit metapopulation model 
of Hanski (1994) emphasizes patch size and isolation as 
determinants of occurrence, but incorporated more realistic 
spatial structures than possible in mainland-island models. 
Hanski (1994) models the stochastic process of colonization 
and extinction in patches. In this model, the probability of a 
species colonizing a focal patch is a function of its presence 
in surrounding patches, the distance of those patches to the 
focal patch (with distance negatively related to occurrence) 
and the area of those patches (with area positively related 
to occurrence, Hanski 1994). As focal patch area increases, 
extinction probability decreases. Hanski explicitly mod-
eled the influence of patch area via extinction. However, 
additional synergistic processes may operate: greater patch 
area can increase colonization rates due to larger target size 
(Lomolino 1990), greater immigration can reduce extinction 
rates (‘rescue effect’) (Brown and Kodric-Brown 1977), and 
larger patches or islands often contain a wider range of envi-
ronmental conditions, thus enhancing the chance of having 
habitat appropriate for a given species (Lack 1969).

Second, the approach of incorporating multiple spe-
cies into multilevel models allows one to share information 
across species and constrain parameter estimates for species 
for which few data exist (Gelfand et al. 2006, Rüger et al. 
2012, Condit et al. 2013, Lasky et al. 2013). Models of 
occupancy are underpowered when variance in occurrence 
is low (i.e. when a species is nearly always present or always 
absent, Hanski 1994). Additionally, multi-species models 
permit inferences of differences among islands (via random 
effects) caused by processes not captured by measured cova-
riates, inference that would not be possible for single species 
models. Here we develop a hierarchical Bayes approach to 
jointly model the occurrence of all species in an assemblage. 
We assume that species-specific parameters for response to 
island area and isolation arise from hyperdistributions of 
parameters for all species.

If species distributions are limited by dispersal, then 
we expect that the clustering of species occurrences will be 
related to interspecific differences in dispersal ability (Nekola 
and White 1999, Levine and Murrell 2003). For birds, dis-
persal is a complex process influenced by behavior, physiol-
ogy and morphology. In particular, wing morphology is a key 
determinant of the efficiency of long distance flight; wing 
aspect ratio has been correlated to dispersal distance and the 
length of migration (Lockwood et al. 1998, Dawideit et al. 
2009), and range size. Claramunt et al. (2012) demonstrated 
that aspect ratio can be approximated using a measure called 
the hand-wing index (HWI) (Kipp 1959, see similar met-
rics for bats in Norberg and Rayner 1987), which can be 
obtained by measuring museum study skins. High values of 
HWI indicate species with longer and more pointed wings, 
which are expected to improve flight efficiency, resulting in 
superior dispersal ability. Here, we tested whether interspe-
cific variation in HWI was associated with our estimates of 
interspecific variation in putative dispersal parameters.

We apply our model to the complete avifauna of the 
northern Melanesia archipelago, a system that has produced 
classic empirical studies of island biogeography (Diamond 
1973, 1977, Diamond and Marshall 1976, Diamond and 
Mayr 1976, Mayr and Diamond 1976, Filardi and Moyle 
2005). Historically, studies of the Melanesian avifauna have 
largely relied on estimating dispersal ability based on the 
relationship between species distributions and biogeographi-
cal breaks. These approaches require a priori knowledge of 
biogeographic breaks, which are poorly known in many sys-
tems. We ask what can be inferred about the role of dispersal 
limitation and dispersal heterogeneity using occurrence data 
for a whole assemblage.

Our analysis focuses on the following questions. First, 
we ask whether there is evidence of dispersal limitation in 
general (i.e. across the entire avifauna) structuring island 
occupancy. Second, we test the hypothesis that dispersal 
heterogeneity across species is important for driving island 
occupancy patterns, based on differences in the spatial dis-
tribution of each species, and in particular how each species 
distribution responds to the area and arrangement of patches. 
Third, we test the hypothesis that HWI is predictive of the 
species-specific dispersal parameters inferred by our model. 
This latter test provides a cross-validation of our modeling 
approach and a potential functional trait that determines 
bird dispersal.

Methods

Species distributional data

We obtained distributional data from a recent monograph 
that included a compilation of bird species distributions 
across 75 islands in northern Melanesia plus Australia and 
New Guinea (Mayr and Diamond 2001). There were 252 
total species and 3347 total species-island occurrences, with 
the median species occurring on 5 islands and the median 
island containing 41 species. For many of these species, 
Mayr and Diamond (2001) also delineated multiple sub-
species. However, recent molecular work suggests that this 
classification underestimates the diversity of the system, 
some subspecies represent more significant evolutionary 
units (Moyle et al. 2005, Reddy and Moyle 2011, Andersen 
et al. 2013), and there is extensive paraphyly within species 
(Andersen et al. 2015). Thus we conducted two analyses: 
one in which we treated taxa with multiple subspecies as a 
single species (n  252), and a second in which each subspe-
cies was treated as a distinct species (n  524). If subspecies 
delineated by Mayr and Diamond (2001) are younger lin-
eages than species, there may have been less time for range 
expansion following lineage birth, limiting the amount of 
influence dispersal would have on distributions (de Moraes 
Weber et al. 2014). Thus we expect to find weaker evidence 
for dispersal limitation of subspecies.

Geographic data

We used the GSHHG shoreline database (Wessel and Smith 
1996) distributed by NOAA (< www.noaa.gov >) to find the 
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areas and minimum distances between islands. These com-
putations were performed in MATLAB.

Wing data

HWI was calculated using museum study skins at the 
American Museum of Natural History. We include HWI 
for all landbird species in the Solomon Archipelago, and 
for an additional set of taxa from outside of the Solomon 
Archipelago but within northern Melanesia. In total we 
included 501 specimens representing 166 species. Following 
Claramunt et al. (2012), HWI was calculated for each 
specimen as:
HWI WL SL WL= × −100 ( )/  (1)

where WL is the standard measure of wing length, and SL 
is the distance from the carpal joint to the first secondary 
feather. For each species, 3 adult male specimens were 
measured – when available – and an average value for each 
species was used.

Statistical model

We developed a hierarchical Bayes model of island biogeog-
raphy that accounts for the effects of island area, the influ-
ence of mainland and surrounding islands and interspecific 
variation in the effects of these factors. The model makes 
use of information in the spatial distributions of species 
across the archipelago to infer aspects of area and distance 
dependency, which in turn should reflect species biology and 
landscape structure.

We modeled the probability pki that species k occurs on 
island i, given the area of the island and the presence or 
absence of species k on nearby islands. The latter is modeled 
as an auto-covariate such that the model is auto-regressive. 
We modeled all species simultaneously and estimated hyper-
parameters that describe the distribution of covariate effects 
across species (Gelfand et al. 2006, Rüger et al. 2012, Condit 
et al. 2013, Lasky et al. 2013).

The probability pik species k occurs on island i was 
calculated via a link function

p
eik ik

=
+ −

1
1 λ  (2)

where error in occurrence data yik follows a Bernoulli 
distribution, and lik is given by

λ β β βik k i area k i ikA M= + + +, log( )  (3)

The parameters bk and bi reflect random effects for species 
and island, respectively, the barea,k controls the strength of the 
area dependency, Ai is the area of the ith island, and Mik is 
the auto-covariate function reflecting the influence of disper-
sal. Focal patch area is considered by Hanski (1994) via an 
explicit model of extinction. Here we chose a more phenom-
enological formulation for area effects due to the multiple 
mechanisms that can link area and occurrence.

For Mik, we drew upon the incidence auto-covariate 
function from the spatially explicit metapopulation model 
of Hanski (1994). This term, for Mik of species k into focal 
island i, is

M y A eik M k jkj i

J
j

dij k=
≠

−∑β α
,

/  (4)

where j indexes over the J islands, yjk is a binary variable 
reflecting the occupancy of species k on island j (1 if present, 
0 if absent), Aj is the area of the jth island, and spatial separa-
tion between islands i and j is given by dij. The species-specific 
parameter ak determines the distance decay in occupancy 
probability and thus should be informative about the scale 
of the distance effects, while bM,k reflects the importance of 
the distance effects overall in predicting the occupancy pat-
tern. The influence of proximity to Australia and the island 
of New Guinea was included in the same manner as other 
neighboring islands. However, because it is unclear whether 
the scaling of area effects (Aj in Eq. 4) on colonization would 
be constant across such a wide range of island sizes from ∼ 
1 km2 to New Guinea at ∼ 786 000 km2, the area effects 
of Australia and New Guinea were estimated as separate 
parameters.

Species intercept (bk), species area (barea,k), and island 
intercept (bi) parameters were drawn from separate normal 
hyperdistributions with means of bm, barea, and 0, respectively. 
Thus bm determined the grand mean of species occurrences 
and barea determined the average species response to area. 
Species dispersal (bM,k) and scale parameters (ak) were drawn 
from separate gamma hyperdistributions, which constrained 
the effect of occurrence on neighboring islands j to have a 
positive effect on occurrence on island i and constrained this 
effect to decay with distance, respectively.

Parameters were estimated using Bayesian inference 
where parameters had proper and diffuse priors (see 
Supplementary material Appendix 1 for analysis and model 
code). Markov Chain Monte Carlo sampling of posterior dis-
tributions was conducted using JAGS 3.3 (< http://mcmc-
jags.sourceforge.net/ >) and R statistical software (CRAN 
Core Development Team). We assessed convergence using 
the potential scale reduction factor, ensuring that all hyper-
parameters had values  1.1 (Gelman and Rubin 1992). To 
assess the ability of our model to capture patterns in the 
data (as opposed to fitting patterns due to model bias) we 
sampled parameters when ignoring data (i.e. sampling from 
priors) and when modeling permuted data (Supplementary 
material Appendix 1, Gotelli and Entsminger 2001).

Comparison of dispersal parameters with species 
traits

We compared the two species-specific parameters deter-
mining dispersal effects, bM,k and ak, to HWI using non-
parametric rank correlations. Mayr and Diamond (2001) 
also estimated species local abundance (categorized by Mayr 
and Diamond along a scale of 1–5), which may be related 
to the importance of dispersal on distributions, e.g. via mass 
effects (Shmida and Wilson 1985). We compared species 
abundance categories with the species-specific parameters 
determining putative dispersal effects and island area effects. 
Posterior uncertainty in species parameters was propagated 
to correlations with HWI and abundance via repeated  
re-calculation of correlation from each posterior sample.

Because bM,k and HWI exhibited a triangular-shaped 
relationship, we tested quantile regression between HWI and 
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species with the highest bM,k was Myzomela pammelaena and 
was restricted to the western islands. Examples of species dis-
tributions varying in bM,k are presented in Fig. 2. Sampling 
from the prior distribution and posterior sampling using 
permuted data both gave very low estimates of bM,k, with 
little interspecific variation, indicating that our inferences on 
the real data were not driven simply by model constraint 
(Supplementary material Appendix 1).

Species also differed extensively in the distance decay 
of putative dispersal effects, estimated by the ak parameter  
(Fig. 1). The mode of the hyperdistribution was zero 
although the variance was 0.228 (gamma hyperdistribu-
tion mean  0.444, shape  0.865, 95% CI  0.652, 1.167; 
rate  1.946, 95% CI  1.244, 2.950, Fig. 1). The effect of 
the distance decay parameter is partly conditional on the 
importance of dispersal (bM,k). The species with the lowest 
distance decay (highest ak) with at least moderate impor-
tance of dispersal (i.e.  0.25, approximately the top quintile 
of species) was a trivial case, the omnipresent Egretta sacra. 
The next highest were Chalcopsitta cardinalis, which is largely 
restricted to the Solomon Islands despite large intervening 
distances between occupied islands, Myzomela pammelaena, 
which was completely restricted to the northwestern 
islands despite large distances among them, and Monarcha 
cinerascens, which is moderately clustered across northwest-
ern and eastern islands with relatively large distances between 
them (Fig. 2). Examples of species distributions varying in 
ak are presented in Fig. 3.

Relationship between traits and putative dispersal 
effects on occurrence

The importance of putative dispersal (bM,k) for a species 
occurrence was weakly related to HWI (median of Spearman’s 

the 90th percentile of log-transformed bM,k, although results 
were consistent for other upper quantiles (Supplementary 
material Appendix 1). We also compared subspecies-specific 
parameters estimated from a model where subspecies were 
treated as a unique species, using the same HWI for each 
subspecies of a species.

Data available from the Dryad Digital Repository: 
< http://dx.doi.org/10.5061/dryad.p46hk > (Lasky et al. 
2016).

Results

Relationship between island area and occurrence

Island area had a significantly positive effect on occur-
rence for the distribution across species (Fig. 1, all follow-
ing parameter point estimates are medians of posterior 
samples, barea  0.641, 95% CI  0.534, 0.750). Only three 
species showed a significantly negative effect of island area 
on occurrence, Monarcha cinerascens (barea,k  –0.550, 95% 
CI  –0.795, –0.302), Ducula pacifica (barea,k  –0.365, 95% 
CI  –0.594, –0.105), and Aplonis feadensis (barea,k  –0.317, 
95% CI  –0.522, –0.109).

Relationship between putative dispersal and 
occurrence

Species differed substantially in the effect of putative 
dispersal on occurrence (Fig. 1), which was constrained to be  
non-negative. The mode of the hyperdistribution was near 
zero (0.005) although the variance was 0.069 (gamma hyper-
distribution mean  0.264, shape  1.017, 95% CI  0.757 
1.371; rate  3.845, 95% CI  2.582, 5.701, Fig. 1). The 

Figure 1. Posterior distributions for species and island-specific parameters (gray lines). Each of these parameters was estimated as arising 
from a hyperdistribution across all islands or species. The black lines depict the estimated median hyperdistribution (i.e. the distribution 
given by the median of posterior samples of the hyperdistribution mean and variance).
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a triangular relationship between these variables (Fig. 4).  
Thus we tested the relationship between HWI and  
high bM,k, using quantile regression for the 90th percentile 

rank correlations, rmed, between HWI and bM,k, rmed   
–0.057, 95% CI  –0.169, 0.050; Fig. 4). However, there 
were no species with high HWI and high bM,k, indicating 

Figure 2. Species representing a variety of estimated importance of putative dispersal (bM,k). Ranks indicate species rank (out of 252 species)  
for bM,k. Circles are proportional in size to log(island area), and red circles indicate occupied islands. Ticks reflect degrees latitude and longitude.

Figure 3. Species representative of a variety of distance decay in dispersal effects (ak) among species having at least moderate importance of 
dispersal (bM,k). Ranks indicate species rank (out of 252 species) for ak and bM,k. Note that Myzomela pammelaena in Fig. 1 also has the 
highest bM,k and moderately high ak (rank 49 among species) Circles are proportional in size to log(island area), and red circles indicate 
occupied islands. Ticks reflect degrees latitude and longitude.
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dispersal parameter (posterior median of 90th percentile 
regression between HWI and log bM,k, bmed  0.001, 95% 
CI  –0.011, 0.014). The distance decay of putative dis-
persal effects was less when the subspecies ak parameter 
was high, which was significantly positively related to HWI 
(rmed  0.177, 95% CI  0.092, 0.256; Supplementary 
material Appendix 1, Fig. A1).

Discussion

Island systems provide important test cases for understand-
ing how ecological and evolutionary processes generate 
biodiversity patterns across spatially complex landscapes. 
We present a new quantitative approach to the analysis of 
island biota, encompassing both traditional theoretical ideas 
about the roles of area and isolation and new hierarchical 
approaches to modeling species and site differences. Our 
method provides a generalizable approach to understanding 
the roles of dispersal limitation and dispersal heterogeneity 
in driving biotic patterns, using the spatial occupancy pat-
tern of different species to infer dispersal parameters and 
responses to island area and isolation.

Our model used the distributions of 252 species dis-
tributed across 75 islands to infer the responses of species 
to area and isolation parameters. First, as expected based 
on island biogeography theory (MacArthur and Wilson 
1967) and the commonness of species–area relationships 
(Rosenzweig 1995, Triantis et al. 2012), we found a strong 
effect of island area on occupancy probability for most 
species. Most species were more likely to occur on large 
islands compared with small islands, even after accounting 
for spatial clustering effects. Higher probability of occur-
rence on larger islands may represent lower stochastic 
extinction due to larger population sizes (MacArthur and 
Wilson 1967, Hanski 1994), consistent with our finding 
that more abundant species exhibited weaker associations 
with island area. Additionally, larger islands may harbor 
more diverse environments and may have a greater chance 
of having habitat appropriate for a given species (Lack 
1969).

Variation in the area parameters are consistent with 
known biology of the species involved. For example, the 
presences of several montane specialists, such as Gymnophaps 
albertisii, Accipiter brachyurus, and Rhipidura dahlia, are 
among those species with the strongest estimated sensitiv-
ity to area (found only on two of the three largest islands). 
This suggests the presence of diverse environments is at least 
partly responsible for the area effect, as island area is strongly 
correlated with maximum elevation (Spearman’s r  0.78). 
In contrast, only three species (Monarcha cinerascens, Ducula 
pacifica, and Aplonis feadensis) exhibited a significantly nega-
tive relationship with area, indicating they are more likely to 
occur on small islands. All three of these species are classified 
as ‘supertramps’ by Diamond (1973) because they are widely 
distributed, but only occur on smaller islands, possibly 
owing to competition with species inhabiting larger islands, 
a preference for habitats associated with small islands, or 
idiosyncratic colonization–extinction history. However, we 
note that these species may occur on larger islands outside of 
the current study area (BirdLife International (2015) IUCN 

(i.e. percentile among species) of log-transformed bM,k and 
found a decrease in bM,k with increasing HWI (posterior 
median of quantile regression coefficients between HWI 
and log bM,k, bmed  –0.035, 95% CI  –0.045, –0.019 
log units bM,k/unit HWI, other quantiles yielded similar 
results, Supplementary material Appendix 1). The distance 
decay of putative dispersal effects was less when the ak 
parameter was high, which was positively related to HWI 
(rmed  0.266, 95% CI  0.163, 0.365; Fig. 4). We also 
found that abundance categories (as estimated on a 1–5 scale 
by Mayr and Diamond 2001) were positively associated with 
bM,k (Supplementary material Appendix 1, Fig. A2, poste-
rior median of Spearman’s rank correlations, rmed  0.260, 
95% CI  0.167, 0.350) but were not associated with 
ak (rmed  –0.067, 95% CI  –0.160, 0.350). However, 
abundance was negatively related to HWI (Spearman’s  
r  – 0.41, p  10–8), with no species in the highest abun-
dance category having HWI  28.75 (33rd percentile).

Results were weaker when comparing HWI to param-
eters estimated when subspecies were the unit of analysis. 
The importance of putative dispersal (bM,k) for a subspecies 
occurrence was essentially unrelated to HWI (posterior 
median Spearman’s rank correlation between HWI and bM,k, 
rmedian  0.066, 95% CI  –0.007, 0.136; Supplementary 
material Appendix 1, Fig. A1). Similarly, quantile regression 
showed no relationship between HWI and the subspecies 

Figure 4. Declining importance of (a) putative dispersal (bM,k) and 
(b) decreasing scale of distance decay (i.e. increasing ak) on occur-
rence probability for the species with high HWI. Circle size is 
proportional to the variance in occurrence across islands, which 
affects power. The lines represent 0.9 quantile regressions of 
log(bM,k) on HWI, and linear regression of ak on HWI, respectively.
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However, our use of different levels of taxa (species vs sub-
species) provides an extreme test of the influence of species 
limits, and there have been an extremely limited number 
of range expansions and discoveries of new species during 
re-surveys of northern Melanesia since the Whitney South 
Sea expedition in the early 20th century. Although birds 
are one of the best sampled taxonomic groups, application 
of our method to more undersampled taxa, such as insects, 
would probably require formal consideration of the effect 
of undersampling or variation in sampling effort across the 
archipelago (Gelfand et al. 2006, Kéry and Royle 2008).

We modeled the potential inputs from neighboring 
islands as a function of neighbor area. However, populations 
and thus potential inputs of some species (e.g. coastal spe-
cies) might not respond closely to island area. An alternative 
formulation could use an additional parameter to modify the 
dispersal inputs of neighboring islands. We opted not do so 
here in favor of limiting model complexity, though such a 
model may be more realistic.

Finally, our model does not explicitly account for 
the effects of speciation and variation in spatial distribu-
tion driven by lineage age. For example, older species may 
have had more time to disperse and expand their range 
than younger species, even if dispersal abilities are similar 
(de Moraes Weber et al. 2014). We also found that puta-
tive dispersal limitation in our study system was weaker for 
subspecies delineated by Mayr and Diamond (2001), possibly 
because subspecies are younger lineages than species, leaving 
less time for range expansion and the accumulation of effects 
of dispersal limitation on contemporary distributions of 
assemblages. We emphasize that our model does not attempt 
to realistically capture all processes determining species dis-
tributions. Rather, our goal was to take initial steps toward 
assemblage-wide modeling of species-specific dispersal and 
area effects and cross-validate it with trait data.

Our study points to two main directions for further 
work. First, hierarchical modeling provides a route to dis-
aggregating community patterns and evaluating the role of 
individual species differences, while sharing statistical infor-
mation across the whole community (Condit et al. 2013, 
Lasky et al. 2013). In this way, species-specific responses 
to area and isolation can be characterized and hypotheses 
can be tested as to the causal morphological, physiological, 
or life history traits. In the example analysis presented, we 
had a priori expectations for the relationship between bird 
wing morphology and spatial distribution due to previous 
research on the topic. However, for other less-studied taxa, 
this modeling approach could be a tool for discovery and 
testing of novel ideas about what traits drive dispersal and 
area sensitivity.

The second general direction would be to add realism to 
the model by incorporating additional predictor variables 
likely to affect species distributions. For example, environ-
mental, historical, and phylogenetic data may all provide 
information on the mechanisms driving species distribu-
tions (Leibold et al. 2010). Emerging approaches to model-
ing species co-occurrence allow direct modeling of species 
interaction effects on occurrence (Ovaskainen et al. 2010, 
Clark et al. 2014), though these approaches introduce many 
more free parameters and thus require larger numbers of sites 
than ours for the large number of species we studied (252).

Red List for birds. Downloaded from < www.birdlife.org > 
on 10 December 2015).

Second, we found strong overall support for the hypoth-
esis that dispersal limitation structures island bird biotas in 
northern Melanesia, with an overall community-wide effect 
for a distance-decay effect of occupancy probability. We 
inferred strong clustering effects for many species (Fig. 1), 
highlighting the non-random nature of species distributions, 
and furthermore there was evidence for a strong influence 
of dispersal heterogeneity across species. The negative rela-
tionship between the estimated importance of clustering on 
distributions and hand-wing index (HWI) suggests dispersal 
limitation is a major driver of this clustering. Furthermore, 
the spatial scale of clustering was positively related to HWI, 
suggesting that the parameters inferred by our model have a 
biological basis. This finding supports the proposition that 
dispersal traits are relevant to species distributions (Seidler 
and Plotkin 2006), and provides support for the use of 
HWI as an indicator of dispersal ability in birds. Although 
we found stronger clustering effects for species with greater 
local abundance, the cause of this relationship is unclear. 
Higher abundance was correlated with lower HWI, which 
may drive stronger clustering effects. Additionally, higher 
local abundances may be associated with greater numbers of 
emigrants, potentially increasing the importance of dispersal 
in distributions, e.g. via mass effects (Shmida and Wilson 
1985).

Our model represents an emerging approach to modeling 
island biogeography, and more generally, spatially structured 
biodiversity patterns. The accuracy of distribution models 
can be improved by incorporating dispersal components 
(Merow et al. 2011). A growing number of species distribu-
tion models employ hierarchical Bayesian spatial approaches 
(Gelfand et al. 2006). These approaches are flexible to allow 
accommodation of multiple sources of error (e.g. detection 
error, Kéry and Royle 2008, Dorazio 2014), prior ecologi-
cal knowledge (e.g. response to an environmental gradient, 
Keil et al. 2014, Golding and Purse 2016), and allow a fuller 
characterization of uncertainty via posterior sampling (con-
trasted with parameter point estimates, Latimer et al. 2006). 
This uncertainty can be propagated into model predictions 
(see O’Hara et al. 2002 for a metapopulation example). An 
additional feature is that multi-species, or joint, distribu-
tion models provide a more process-oriented approach to 
modeling inter-site variation in species richness (Gelfand 
et al. 2006, Kéry and Royle 2008), although caution is 
warranted to avoid over-prediction (Clark et al. 2014).

Our current formulation has several limitations. First, we 
did not explicitly include effects of environmental gradients 
(abiotic and biotic) to explain species distributions across 
islands (Gelfand et al. 2006, Condit et al. 2013, Clark et al. 
2014). While spatially-autocorrelated environmental factors 
likely influence species distributional clustering, our study 
system was chosen due to a lack of large-scale precipitation 
or temperature gradients that might cause major assemblage 
turnover. In systems with strong environmental gradients, 
such issues deserve greater consideration (Condit et al. 
2013).

Additionally, our model does not account for imperfect 
detection of species presence by Mayr and Diamond (2001), 
or potential taxonomic uncertainty in species delineation. 
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Conclusions

MacArthur and Wilson’s island biogeography theory is a 
foundational idea because it highlighted the roles of area and 
isolation and their effects on aggregate community patterns. 
Modern theory still gives prominence to area and isolation as 
drivers of biotic pattern, but countless empirical studies have 
highlighted the variation across species in dispersal ability 
and other factors important for the vital biogeographic 
rates of colonization, extinction, and speciation. Our study 
represents a statistical approach that assembles community 
patterns through variable and species-specific responses to 
area and isolation, providing a route to understanding how 
traits scale up to community patterns.
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