Human versus climatic influences on late-Holocene fire regimes in southwestern Nicaragua

Shiri Avnery,1 Robert A. Dull2 and Timothy H. Keitt2

Abstract
Fire regimes in the lowland Neotropics are affected both by anthropogenic land use practices and natural climate variability. In Central America it is widely recognized that fire has been used as an agricultural tool for thousands of years, but the role of anthropogenic ignition as a determinant of past biomass burning frequency and magnitude has been debated. Little is known about the effects of short-term climate variability on fire regimes in this region of the world because of both the low temporal resolution of the available charcoal records and the obfuscating effects of anthropogenic burning throughout the late Holocene. Here we reconstruct 1400 years of fire history and environmental change on Ometepe Island, Lake Nicaragua, and perform statistical wavelet analysis on multiple proxy records to identify natural cycles of environmental variability possibly related to climate forcing. Our results indicate that extensive indigenous burning and landscape modification largely mask any climate signal in the paleo-fire record from ad 580 to 1400, with the exception of the period ad 775–1000 where high wavelet power exists at scales of 2–24 years. This time period coincides with a severe, two-century long regional drought that has been identified at other locations in Central America. High wavelet power at climate-relevant scales after ~ ad 1400 in the Ometepe fire record suggests that periodic drought possibly caused by the El Niño Southern Oscillation and/or high-frequency solar cycles may have played a significant role in influencing the post-contact fire regime – a role that is largely concealed in the pre-European strata because of the overriding effects of anthropogenic burning.

Keywords
biomass burning, late Holocene, Nicaragua, paleoecology, pre-Hispanic land use, wavelet analysis

Introduction
The relative influences of climatic versus human factors in shaping historical fire regimes have long been debated by researchers working on temperate forest systems (Vale, 2002; Veblen et al., 1999, 2000). High-resolution late-Quaternary macroscopic charcoal records from temperate North and South America show that fire frequency and magnitude throughout the Holocene have largely been determined by climate variability in these mid-latitude forests, and that human activities played a relatively minor role until the nineteenth century (Kitzberger et al., 2001; Veblen et al., 1999; Whitlock et al., 2007). The history of wildfires in Neotropical forests, however, is not as well understood (Carcailllet et al., 2002; Nevle and Bird, 2008). Efforts to characterize the Holocene history of tropical fire regimes have been hampered by a general lack of data density, both geographic and temporal. Nonetheless, several competing theses regarding the fundamental causes of Holocene fire patterns in the Neotropics have been proposed, ranging from climate change (Marlon et al., 2008) to land use history (Nevle and Bird, 2008) to anthropogenic–climatic synergisms (Bush et al., 2008; Mayle and Power, 2008).

The tropical dry forest (TDF) biome in Central America is particularly prone to wildfires today because of annual forest fuel load desiccation during the dry season, and because humans are a ubiquitous ignition source: over 79% of the inhabitants of Central America presently live in the TDF biome (Janzen, 1988). While human-set fires in TDFs are a common disturbance mechanism during the dry season today (Murphy and Lugo, 1986), it has been argued that the pre-human role of fire in the ecology and biogeography of the TDF biome was negligible (Janzen, 1988).

Bimodal (wet and dry) annual precipitation patterns in Central America are caused by the annual migration of the Intertropical Convergence Zone (ITCZ). Perturbations in ITCZ movement occur during the El Niño phase of the El Niño Southern Oscillation (ENSO), during which the ITCZ is deflected south toward unusually warm sea surface temperatures in the tropical Pacific. The lack of atmospheric moisture over Central America during El Niño summer months results in severe drought in many parts of the region (Glantz, 2001; Koonce and Caban-Gonzalez, 1990). Cyclical fluctuations in solar irradiance, which in turn affect sea surface temperatures and ITCZ migration, may also generate regional drought conditions at decadal and centennial scales (Haug et al., 2003; Hodell et al., 2001; Schimmelmann et al., 2003).

1Princeton University, USA
2University of Texas at Austin, USA

Received 28 February 2010; revised manuscript accepted 15 September 2010

Corresponding author:
Shiri Avnery, Woodrow Wilson School of Public and International Affairs, Program in Science, Technology, and Environmental Policy, Princeton University, Princeton NJ 08544, USA.
Email: savnery@princeton.edu
Although the largest expanse of Central American tropical dry forest stretches across Nicaragua’s southern Pacific coast (Sabogal, 1992), few investigations of historic fire regimes in this region of the world exist, particularly at temporal resolutions that foster analyses of interannual- to interdecadal-scale changes in fire frequencies and their relation to short-term climate variability (i.e. Suman, 1991). Here we present a high-resolution record of biomass burning and local erosion patterns reconstructed from a lake sediment core in Laguna Charco Verde, located on Ometepe Island (11°0’24″N, 85°0’30″W) within Lake Nicaragua (Figure 1). This record is unique
in both location (the first published paleoenvironmnetal record from Lake Nicaragua) and resolution (subdecadal sampling interval). Ometepe Island was inhabited by indigenous populations who employed typical Mesoamerican agricultural strategies – including the use of fire as a land management tool – for at least three millennia prior to Spanish arrival (Haberland, 1986). Because of the introduction of epidemic diseases and forced slavery, western Nicaragua suffered a 75%/+ population decline over the three decades that followed the arrival of the Spanish in 1524 (exceeding 90% at the nadir point in the early seventeenth century) (Newson, 1987).

We use wavelet transform analysis to identify both natural (including paleo-El Niño events and/or cyclical variations in solar irradiance) and anthropogenic sources of biomass burning over the past 1400 years. Because proxy dynamics can be driven by both anthropogenic and climatic factors, wavelet transforms are a powerful means of analysis due to their ability to localize in time the different spectral signatures likely associated with human land use dynamics verses those of many periodic climate mechanisms (e.g. Dauviches, 1992; Jevrejeva et al., 2003; Keitt, 2008; Maltat, 1999; Soon, 2005; Torrence and Compo, 1998; Wang and Wang, 1996; Zhang et al., 2007). While wavelets have been utilized in a variety of geophysical applications over the last few decades, to our knowledge they have not been employed to isolate natural signals in paleoproxy records that may otherwise be obfuscated by anthropogenic activity. The macroscopic charcoal record, a proxy for biomass burning, is one such indicator in which natural and human sources of change are greatly intertwined. We additionally conduct wavelet analysis on two other paleoenvironmental proxies – loss on ignition and magnetic susceptibility – in order to examine potential correlations between fire, fuel load, and erosion at different temporal scales. Results from this analysis, combined with our knowledge of general population trends on Ometepe Island, afford a rare assessment of anthropogenic versus natural (i.e. climate) forcing of biomass burning and associated environmental change in the tropical dry forest biome.

Methods

We present macroscopic (>150 μm) charcoal (MC), loss on ignition (LOI), and magnetic susceptibility (MS) proxies at 2 cm resolution to reconstruct fire and related land-use regimes before and after the European arrival. For charcoal analysis, 1.2 cc (1/2 tsp) of lake sediment was extracted from each sampled core level and placed into a 250 ml beaker. Samples were soaked overnight in a 5% solution of sodium hexametaphosphate, and then rinsed through a 150 μm sieve with distilled water. The sieved residue was removed to a petri dish and suspended in water. Charcoal particles were counted with a dissecting microscope at 20 × magnification and converted to charcoal concentrations per cc, as well as charcoal accumulation rates (CHAR) in order to account for variations in the core’s sedimentation rate (Whitlock and Larsen, 2001).

Organic matter was determined by the loss on ignition technique, where dried samples were subjected to 550°C in a Barnstead muffle furnace for 2 h (Heiri et al., 2001). Magnetic susceptibility readings were taken using a Barrington MS2 magnetic susceptibility meter and an MS2B sensor. The average of three magnetic susceptibility readings is reported as volume magnetic susceptibility (k).

Six radiocarbon (14C) dates were obtained from terrestrial plant macrofossils in the 6.38 m Charco Verde core from the WM Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory at the University of California at Irvine. Dates were calibrated using the Calib program version 5.0 (Stuiver and Reimer, 1993) and the INTCAL04 calibration data set (Reimer et al., 2004). All materials dated consisted of terrestrial plant macrofossils.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (cm)</th>
<th>UCIAMS* Number</th>
<th>Age – median probability ± error (14C years BP)</th>
<th>Lower – upper 1σ range (years AD)</th>
<th>Lower – upper 2σ range (years AD)</th>
<th>Calibrated age – median probability (years AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charco Verde 314</td>
<td>314</td>
<td>32318</td>
<td>705 ± 25</td>
<td>1274–1292</td>
<td>1264–1301</td>
<td>1284</td>
</tr>
<tr>
<td>Charco Verde 372</td>
<td>372</td>
<td>11792</td>
<td>865 ± 25</td>
<td>1163–1212</td>
<td>1151–1225</td>
<td>1183</td>
</tr>
<tr>
<td>Charco Verde 421</td>
<td>421</td>
<td>32319</td>
<td>1010 ± 15</td>
<td>1013–1027</td>
<td>993–1030</td>
<td>1018</td>
</tr>
<tr>
<td>Charco Verde 498</td>
<td>498</td>
<td>11793</td>
<td>1190 ± 20</td>
<td>811–848</td>
<td>777–888</td>
<td>835</td>
</tr>
<tr>
<td>Charco Verde 586</td>
<td>586</td>
<td>11794</td>
<td>1230 ± 20</td>
<td>788–819</td>
<td>765–876</td>
<td>789</td>
</tr>
<tr>
<td>Charco Verde 622</td>
<td>622</td>
<td>32320</td>
<td>1420 ± 15</td>
<td>622–648</td>
<td>606–653</td>
<td>633</td>
</tr>
</tbody>
</table>

*University of California at Irvine Accelerator Mass Spectrometry Facility.

Dates were calibrated using the Calib program version 5.0 (Stuiver and Reimer, 1993) and the INTCAL04 calibration data set (Reimer et al., 2004). All materials dated consisted of terrestrial plant macrofossils.
with sustained values through ~AD 1150. LOI subsequently declines and remains relatively stable (~10–20%) until AD 1750, after which organic content rapidly fluctuates through a 100 yr period (up to 58% organic content) before returning to reduced levels around AD 1850 (Figure 2c).

Figure 3 illustrates wavelet power spectrum (WPS) for each time series record. The MC and CHAR WPS (Figure 3a,b) exhibit similar spectral patterns with small differences in the timing and periodicities of significant wavelet power peaks. The MC WPS (Figure 3a) displays high power after ~AD 1400 at scales of 2–8 and 10–28 years. Particularly noteworthy is the prevalence of power at ~7-, 11-, and 22-yr periodicities (dashed lines) corresponding with ENSO variability and two important and related solar cycles (the Schwabe and Hale cycles, respectively), suggesting a possible relationship between short-term climate forcing and fire regimes. Peak power at a scale of ~15 years may be due to variability within or the interference between these climate forcing mechanisms. Additionally significant peaks occur at AD 850–1000 at a scale of 8–24 years, AD 775–850 at 2–8 years, and AD 600–750 at 21–32 years. The most notable difference between the MC and CHAR WPS is that significant power patches are present at slightly lower periodicities in the CHAR record, with peak power at ~11 years after AD 1400 (Figure 3b). In addition, significant peaks are absent after ~AD 1850 in the CHAR WPS, whereas patches of power exist through the end of the MC record.

The LOI WPS demonstrates periods of significant wavelet power at similar, climate-relevant scales (Figure 3c): AD 1750–1850 at scales of 16–22 years and AD 850–1000 at scales of 20–32 years. The MS WPS (Figure 3d) additionally exhibits periods of significant wavelet power from AD 1600 to 1800 at scales of 8–12 and 20–32 years, AD 850 to 1000 at 11–16 and 22–32 years, and AD 775 to 850 at 2–11 years. The vertically elongated regions of wavelet power in the MS and LOI WPS (i.e. between AD 775 and 850 in the LOI WPS and AD 1300 and 1450 in the MS WPS, Figure 3c, d) must be interpreted cautiously, as they imply high variability but not necessarily periodicity (a segment of high variability white noise embedded in a signal will show up as a vertical stripe of significant values). Although the MS and LOI WPS have fewer wavelet power peaks, the most significant features of these records include: (1) the coeval incidence of power at scales suggestive of climate forcing between AD 775–1000, and (2) the greater presence of peak power at climate-relevant scales after ~AD 1400 as compared with the period AD 1000–1400, similar to the MC and CHAR WPS.

Discussion

When the charcoal time series data are considered with the MC and CHAR WPS results, where significant power is notably absent between ~AD 1000 and 1400 (the period of greatest fire activity according to the charcoal record (Figure 2a)), our results appear to suggest three phases of different degrees of natural versus anthropogenic dominance of fire regimes on Ometepe Island: a period of combined anthropogenic and climatic influence from AD 850 becomes dominated by anthropogenic activity at AD 1000, which finally transitions to a naturally forced record at ~AD 1400. These dates roughly correspond with the cultural history of Ometepe Island. The pinnacle of cultural development is believed to have occurred by the year AD 950 (Haberland, 1986), which is reflected in the paleoecological record by high charcoal concentrations, low sediment organic content, and high magnetic
susceptibility values suggesting that the Ometepe population actively burned their landscape for agricultural and other purposes, decreasing natural vegetation abundance and increasing watershed erosion rates.

Island populations are believed to have risen after ~ AD 950, with high charcoal concentrations suggesting greater indigenous burning activities until the arrival of the Spanish in ~ AD 1524, at which time indigenous populations began to plummet. Strong wavelet power at scales of 2–32 years after ~ AD 1400 in the paleoproxy records (and particularly the MC and CHAR records) may therefore be indicative of a natural fire regime on Ometepe Island forced by short-term climate variability, which becomes manifest in the charcoal record once the anthropogenic burning signal is diminished. The approximate 100-year discrepancy between the arrival of the Europeans and the onset of significant wavelet power (Figure 3a,b) as well as the decline in biomass burning (Figure 2a,b) may be due to uncertainties arising from radiocarbon dating and the constructed age–depth model, but is also consistent with the progressive nature of the post-contact native population collapse which took about a century to reach its nadir point (Newson, 1987).

Although charcoal concentrations steadily decline in the Charco Verde record from AD 580 to 900 and might be interpreted as a period of increased precipitation and curtailed fire frequencies on Ometepe Island, wet conditions are not consistent with the other Charco Verde proxies (i.e. high erosion rates combined with extremely low sediment organic content). Rather than a consequence of a higher precipitation, declining charcoal concentrations during this period may have been in part caused by reduced non-agricultural plant fuel loads (i.e. the scrubby secondary vegetation that was presumably burned to make way for new plantings) and overall reduced farming activities connected to...
persistent drought conditions during the ninth and tenth centuries AD. Hodell and co-authors (1995, 2001, 2005) have shown that the period from AD 800 to 1000 was the driest of the late Holocene in the Peten and Yucatan Peninsula, a drought that they have connected to the Classic Period Mayan ‘collapse’ and to centennial-scale solar forcing. These drought periods have also been identified in the Cariaco Basin, Venezuela record (Haug et al., 2003) and in ice cores from the Peruvian Andes (Thompson et al., 1985). Evidence of concomitant climate forcing in each of the Charco Verde proxies is demonstrated by wavelet power at scales of 2–32 years between AD 775 and 1000 (Figure 3). Declining charcoal concentrations and charcoal accumulation rates (after a short period of extremely high values between AD 775 and 850) during this time together with high erosion rates and the lowest organic content values of the record (Figure 2) provide additional evidence of changing land use practices and/or agricultural activity on Ometepe Island during this time, potentially related to widespread drought conditions.
Conclusions

The charcoal record indicates that contemporary burning on Ometepe Island is almost an order of magnitude lower than peak pre-European anthropogenic burning. Paleoecological analyses of sediments from Guatemala, Costa Rica, El Salvador, the Amazon, and the Eastern Pacific off the coast of Nicaragua document similar environmental histories, with the highest concentrations of charcoal and disturbance pollen species occurring from AD 200 to 900 and reduced biomass burning and environmental disturbance after European contact (Anchukaitis and Horn, 2005; Brenner et al., 1990; Bush et al., 2008; Dull, 2004, 2007; Neve and Bird, 2008; Suman, 1991; Tsukada and Deevey, 1967). The post-industrial anthropogenic fire increase found in many places throughout the world (Marlon et al., 2008) is not present in the Charco Verde record. Wavelet analysis of the Charco Verde proxies further suggest that fire regimes on Ometepe Island may respond to cycles of drought possibly induced by severe ENSO events and/or the 11- and 22-year solar cycles, a signal that is largely concealed by anthropogenic burning prior the arrival of the Spanish. The only significant evidence of climate forcing of fire regimes evident in the pre-European strata at Charco Verde occurs during a period of widespread and persistent drought in the ninth and tenth centuries AD.

Acknowledgements

We would like to thank Mark Abbott, Nathan Stansell, and Manu- ell Roman Lacayo for their assistance in carrying out the fieldwork, Devin Buchorn for making the map (Figure 1), and Rachel Isaacs and Gabriela Domínguez for providing preliminary core data. Funding for fieldwork was provided by the Mellon Founda- tion and the Teresa Lozano Long Institute for Latin American Studies at the University of Texas. Funding for 14C dating was provided by a Graduate Research Fellowship granted to Shiri Avnery by the University of Texas College of Liberal Arts.

References

V (2000) Scale invariance and universality: Organizing principles in

