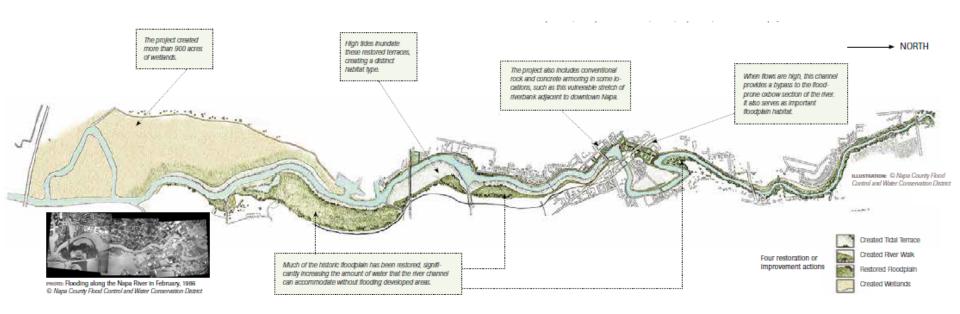
Applications of Blue Carbon

Stephen Crooks Ph.D. *Climate Change Program Manager* Environmental Science Associates

Mission-Aransas National Estuarine Research Reserve,

Port Aransas, November 5th, 2015


Ecosystem services of Coastal Blue Carbon ecosystems: mangroves, seagrass and marshes

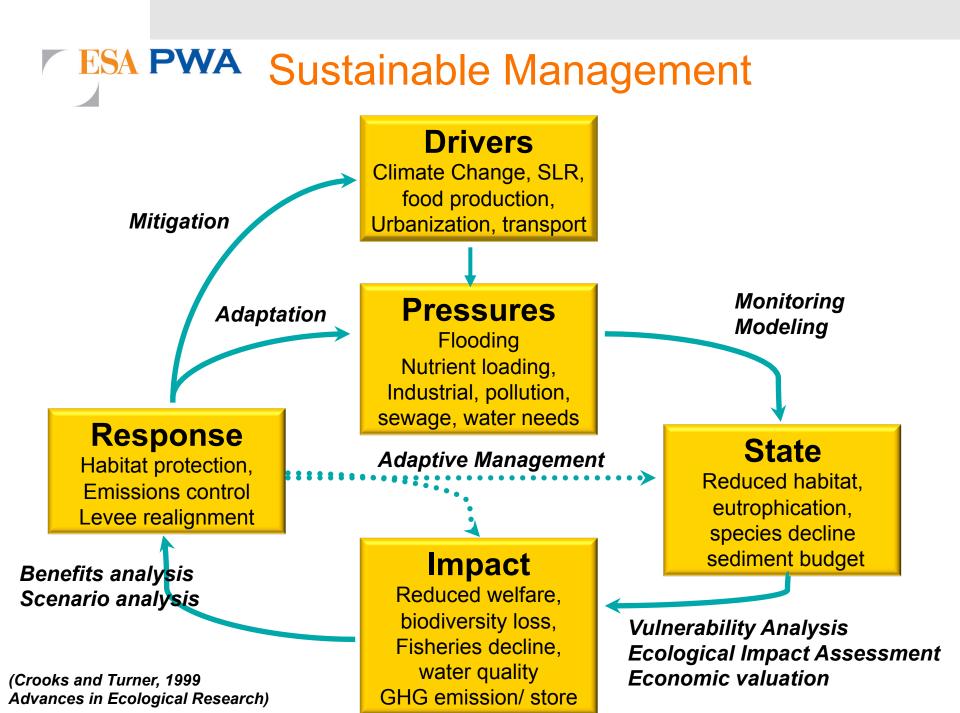
Biological diversity
Water quality
Flood and storm protection
Forest and non-timber forest products
Aesthetic and ecotourism values
Fish and Shellfish
Carbon Sinks

Linking Blue Carbon With Green - Grey Infrastructure – building natural and urban resilience

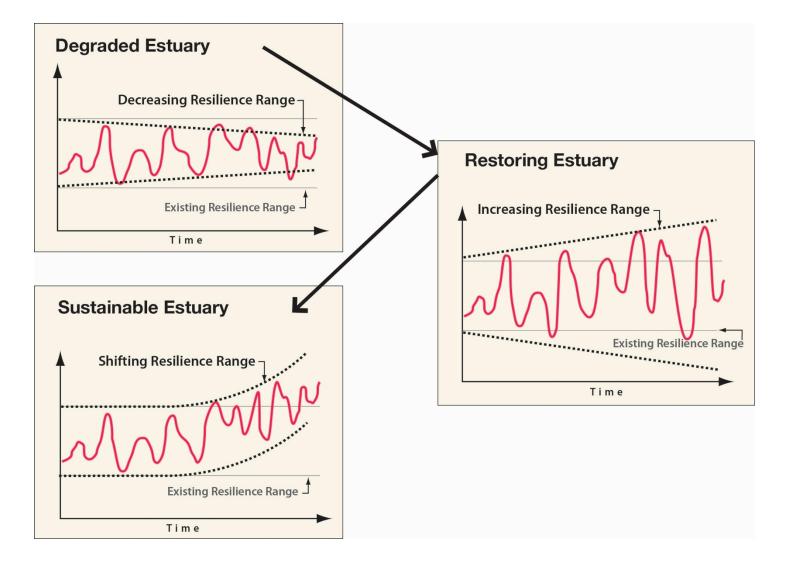
Benefits – reduced flood risk, improved river ecosystem

ESA PWA

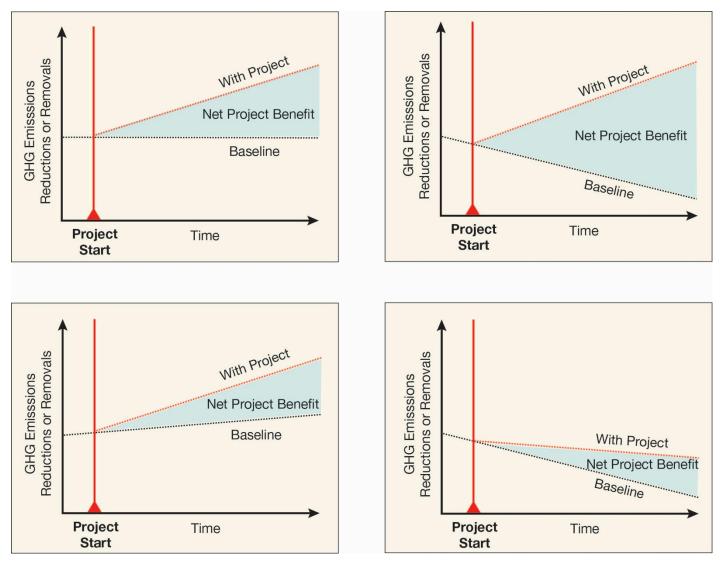
COASTAL BLUE CARBON


methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows

Contents

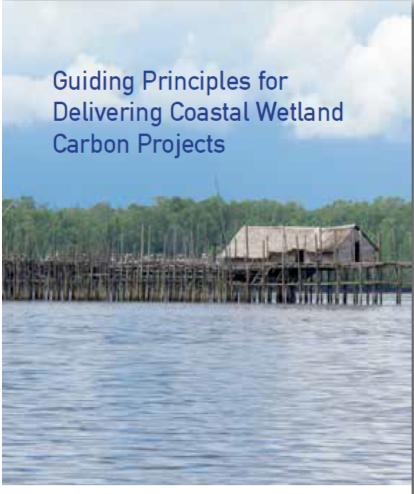

- Why measure C stocks?
- Field Campaign Planning
- Sampling Soils
- Sampling Vegetation
- Estimating Emissions
- Remote Sensing and Mapping
- Data Management

BlueCarbonInitiative.org



Goal of Restoration (Adaptation)

Goal of Carbon Management


Source: Forest Trends

Wetland Management Learning Curve

- 1. Recognize value of wetland management
- 2. Establish examples of good practice
- 3. Achieve multi-use functional landscape
- 4. Adaptation to climate change
- 5. Incorporate GHG fluxes and storage

Blue Carbon Interventions:

Policy adjustment Management actions Carbon finance projects

Stephen Crooks and Michelle Orr, ESA PWA Igino Emmer and Moritz von Unger, Silvestrum Ben Brown, Mangrove Action Project Daniel Murdiyarso, CIFOR

ESA PWA Cosystems in focus for climate change mitigation

Forest

Peatland

Mangroves

Tidal Marshes

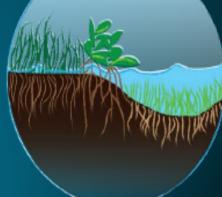
Seagrass

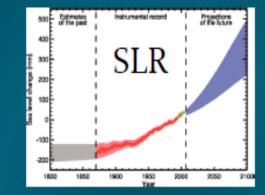
ESA PWA Long-term carbon sequestration and storage

Carbon from plants gather in soil and builds up over thousands of years

11

The state of blue carbon science: a short review of achievements and gaps


et al 2003


Chmura

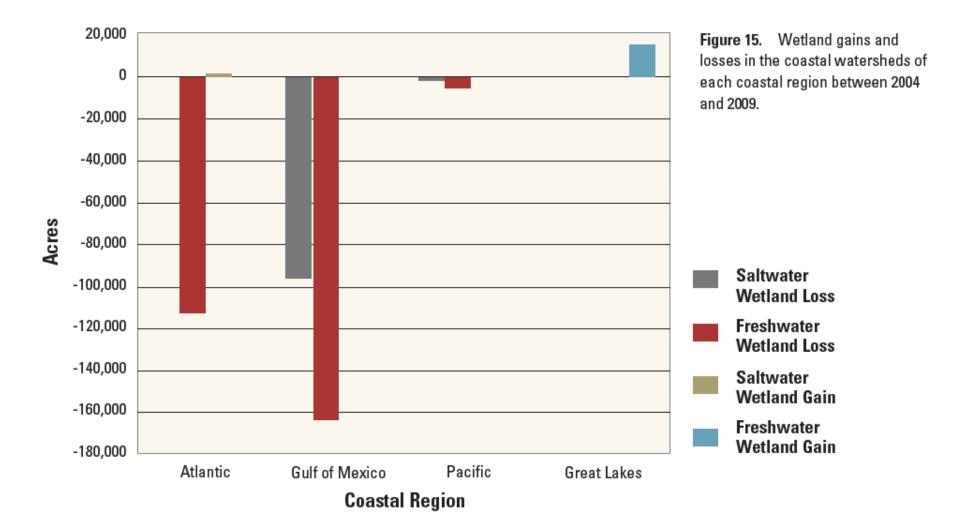
Currently coastal wetlands are being lost at around 1% per year.

Aquaculture

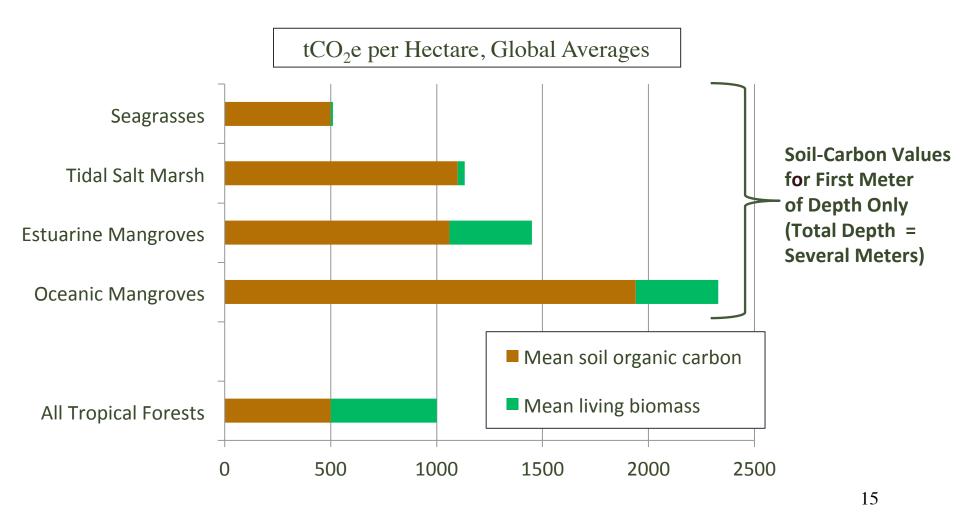
Upstream disruptions

Salt Ponds

Rice/Agriculture



Road development /hydrological disruptions


Coastal development

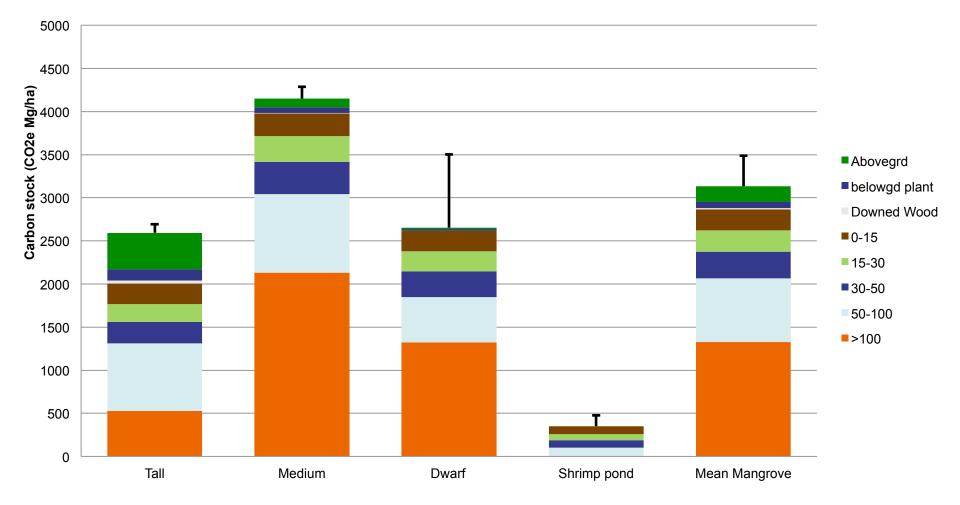
Changes in Wetlands of Coastal Watersheds, U.S.

T.E. Dahl and S.M. Stedman. 2013. Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009. U.S. Department of the Interior, Fish and Wildlife Service and National Oceanic and Atmospheric Administration, National Marine Fisheries Service. (46 p.)

Distribution of carbon in coastal ecosystems

Data summarized in Crooks et al., 2011; Murray et al., 2011, Donato et al., 2011, Fourqurean et al 2013

U.S. Regional Carbon Stocks


Soil C pool (tonnes CO2e ha⁻¹)

	SALT MARSH			
climate	C pool (tonnes CO2e/ha)	SE	range	n
temperate cold	1,285	101	859 - 2,017	11
temperate warm	1,147	59	134 - 2,210	77
mediterranean	1,093	65	699 - 1,760	21
subtropical - all	1,459	168	359 - 6,967	61
subtropical - LA only	1,623	264	359 - 6,967	37
subtropical - res	1,126	78	440 - 1,908	24
forested, subtropical	985	402	103 - 2497	6
	MANGROVE			
climate C poo	(tonnes CO2e/ha)	SE	range	n
subtropical	1,562	77	796 - 2,457	27
	SEAGRASS			
climate C	pool (tonnes CO2e/ha)	SE	range	n

climate	C pool (tonnes CO2e/ha)	SE	range	n
temperate warm	-	-	-	0
mediterranean	-	-	-	0
subtropical	525	88	133 - 786	8

Smithsonian Environmental Research Center – Analysis On Going

CARBON STOCKS OF NEOTROPICAL MANGROVES ARE AMONG THE LARGEST OF ALL TROPICAL FORESTS Ecosystem C stocks in CO₂e, Republica Dominicana 2012 Kauffman et al. 2013)

Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

Linwood Pendleton^{1®}, Daniel C. Donato²*[®], Brian C. Murray¹, Stephen Crooks³, W. Aaron Jenkins¹, Samantha Sifleet⁴, Christopher Craft⁵, James W. Fourqurean⁶, J. Boone Kauffman⁷, Núria Marbà⁸, Patrick Megonigal[®], Emily Pidgeon¹⁰, Dorothee Herr¹¹, David Gordon¹, Alexis Baldera¹²

	Inputs			Results	
Ecosystem	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment+biomass, Mg CO ₂ ha ⁻¹)	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)
Tidal Marsh	2.2-40 (5.1)	1.0-2.0 (1.5)	237-949 (593)	0.02-0.24 (0.06)	0.64-9.7 (2.6)
Mangroves	13.8-15.2 (14.5)	0.7-3.0 (1.9)	373-1492 (933)	0.09-0.45 (0.24)	3.6-18.5 (9.8)
Seagrass	17.7-60 (30)	0.4-2.6 (1.5)	131-522 (326)	0.05-0.33 (0.15)	1.9-13.7 (6.1)
Total	33.7-115.2 (48.9)			0.15-1.02 (0.45)	6.1-41.9 (18.5)
		Compare to	o national	\sim	
			from all sources	Poland J	apan

Table 1. Estimates of carbon released by land-use change in coastal ecosystems globally and associated economic impact.

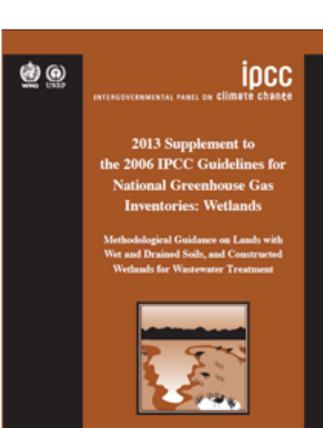
Blue Carbon: The Game Plan

- United Nations Framework Convention on Climate Change
 - Brief national climate change negotiators
 - Identify policy opportunities

the

itiative

- Engage IPCC and SBSTA
- Multi-national demonstration projects
- National Governments
 - Establish programs and science research
 - Recognize wetlands in national accounting
 - Agency awareness, action, funding
- Local Demonstration and Activities
 - Landscape level accounting
 - Establish carbon market opportunities
 - Look for synergistic conservation benefits
 - Demonstration projects and public awareness



Methodological Guidance for Coastal Wetlands in the 2013 SUPPLEMENT TO THE 2006 IPCC GUIDELINES FOR NATIONAL GREENHOUSE GAS INVENTORIES: WETLANDS

2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands

- 1. Introduction
- 2. Drained Inland Organic Soils
- 3. Rewetted Organic Soils
- 4. Coastal Wetlands
- 5. Inland Wetland Mineral Soils
- 6. Constructed Wetlands for Wastewater Treatment
- 7. Cross-cutting Issues and Reporting

Adopted by IPCC Oct 2013, Published Feb 2014 http://www.ipcc-nggip.iges.or.jp/

Task Force on National Greenhouse Gas Inventories

Chapter 4: Coastal Wetlands

This chapter updates guidance contained in the 2006 IPCC Guidelines to:

- Provide default data for estimation of C stock changes in mangroves living biomass and dead wood pools for coastal wetlands at Tier 1
- This chapter gives new:
 - Guidance for CO₂ emissions and removals from organic and mineral soils for the management activities of extraction (including construction of aquaculture and salt production), drainage and rewetting and revegetation
 - Default data for the estimation of anthropogenic CO₂ emissions and removals for soil in mangrove, tidal marsh and <u>seagrass</u> meadows.

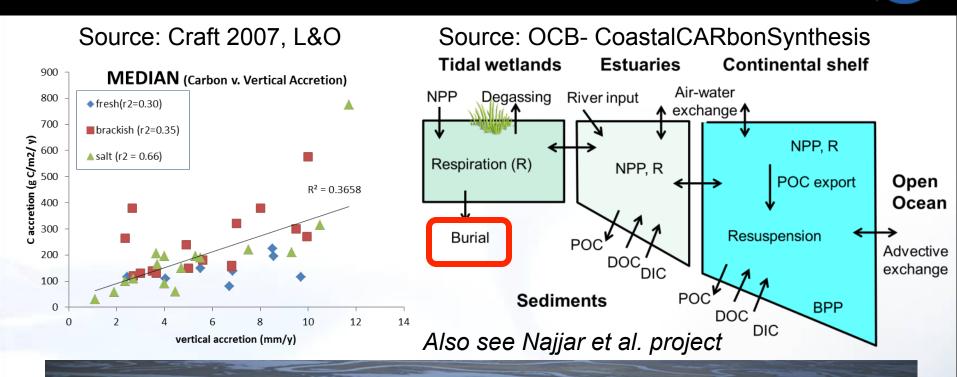
ERNMENTAL PANEL ON Climate chance

- Guidance for N₂O emissions during aquaculture use.
- Guidance for CH₄ emissions for rewetting and <u>revegetation</u> of mangroves and tidal marshes.

U.S. Coastal Wetlands: Potential Emissions and Removal

- Drainage and excavation
- Human induced subsidence of wetlands (erosion)
 •(e.g. Mississippi Delta)
- Methane emissions from tidally disconnected /impounded waters
- Forestry Activities on Coastal Wetlands.
- Restoration of coastal wetlands and seagrasses
- Aquaculture (operations)

"Blue" Carbon Monitoring System

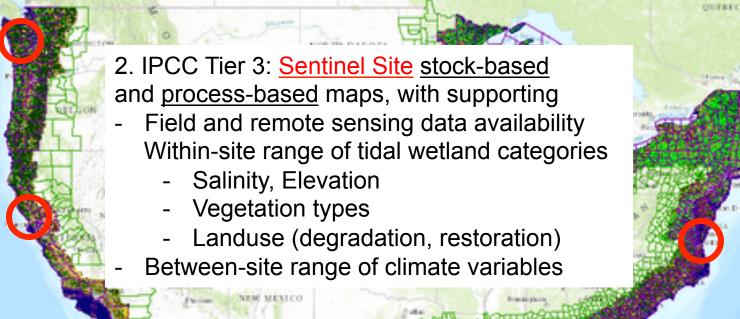

Linking soil and satellite data to reduce uncertainty in coastal wetland carbon burial: a policy-relevant, cross-disciplinary, national-scale approach

Lisamarie Windham-Myers

(18 Science PIs; October 2014-17)

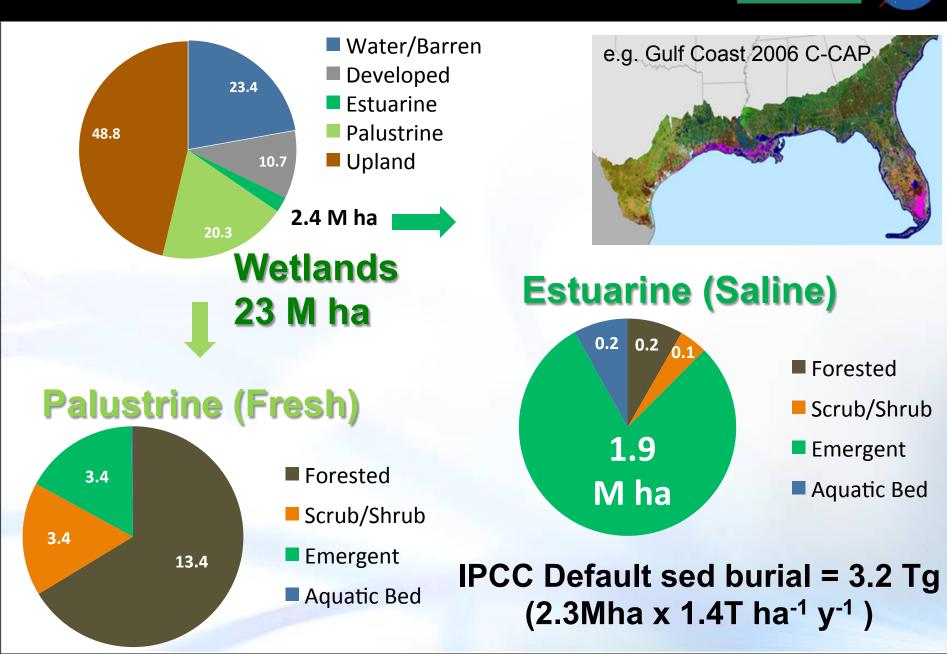
	5	(,
Federal		Non Federal	
USGS	Brian Bergamaschi Kristin Byrd Judith Drexler Kevin Kroeger John Takekawa Isa Woo oc: Meagan Gonneea	U. South Carolina U. Maryland/NOAA U. San Francisco Florida Intl. U. Texas A&M U. Independent	Jim Morris Ariana Sutton-Grier John Callaway Tiffany Troxler Rusty Feagin Stephen Crooks
NOAA-NERR	Matt Ferner		
Smithsonian	Pat Megonigal Don Weller		2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Methodological Guidance on Lands with Wet and Drained Soils, and Constructed Wetlands for Wartewater Treatment
	Lisa Schile		
Postdo	oc:James Holmquist		
NASA-JPL	Marc Simard		Task Forer on National Greenhouse Gas Inventories

"Blue" CMS Need – reduce uncertainty


Can LULC data be used for national GHG inventory? Validated IPCC Stock Difference (CCAP 1996-2010)

Can we reduce uncertainty by refining wetland categories? (vegetation type, biomass, elevation, salinity, sediment)

"Blue" CMS – Product Goals



1. IPCC Tier 2: <u>National Scale stock-based</u> 30m resolution C flux maps (1996-2010) via NOAA's C-CAP (with NWI) linked with regional SLR and SSURGO 0-1m soil data

3. Price of Precision Error Analysis (30m v 250m, Tier 1,2,3, Algorithms)

U.S. NOAA C-CAP 2010 – tidal wetlands

≊USGS

"Blue" CMS Approach – national data

burial flux

C m⁻² y⁻¹

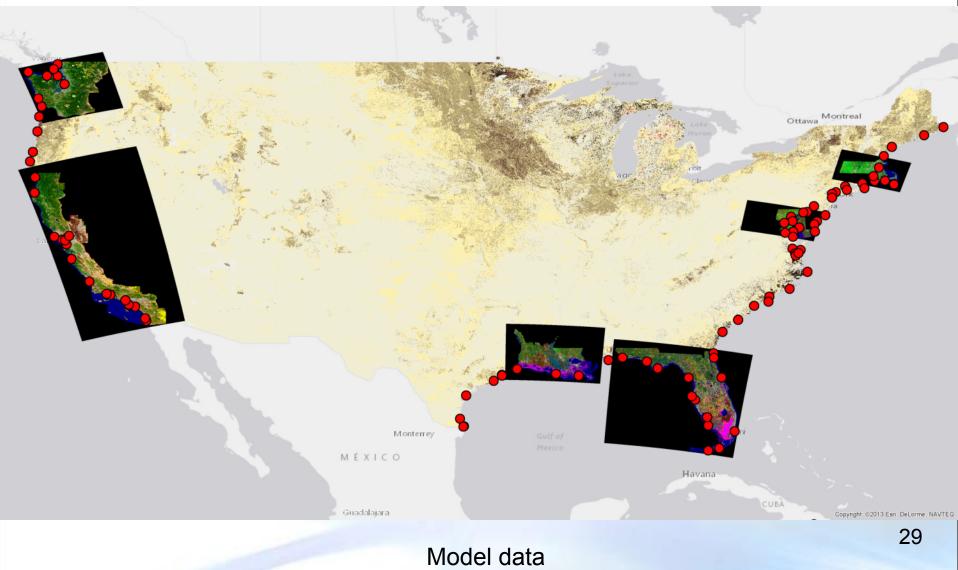
USDA SSURGO NOAA CCAP/FWS NWI NOAA tidegauges/LIDAR Land Use <u>Conversions</u>: No change (Wetland Remaining Wetland) Wetland categories (Palustrine EM to Estuarine EM) Wetland to Open Water

Agriculture (Cultivated) to Wetland Forest to Wetland Wetland to Developed

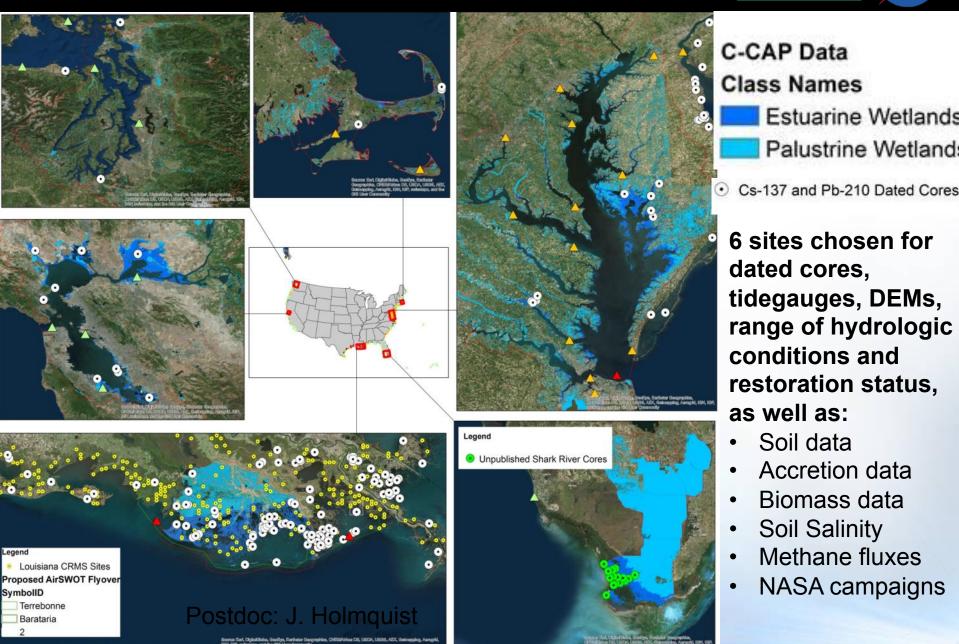
SIMPLE MATH

Soil C density (g C cm⁻³) x 10,000 cm⁻²/m⁻²

×	Elevation change		С
^	(cm y ⁻¹)	=	g


"Blue" CMS Approach – national data

USDA SSURGO


NOAA CCAP/LIDAR/tidegauge

USFWS NWI

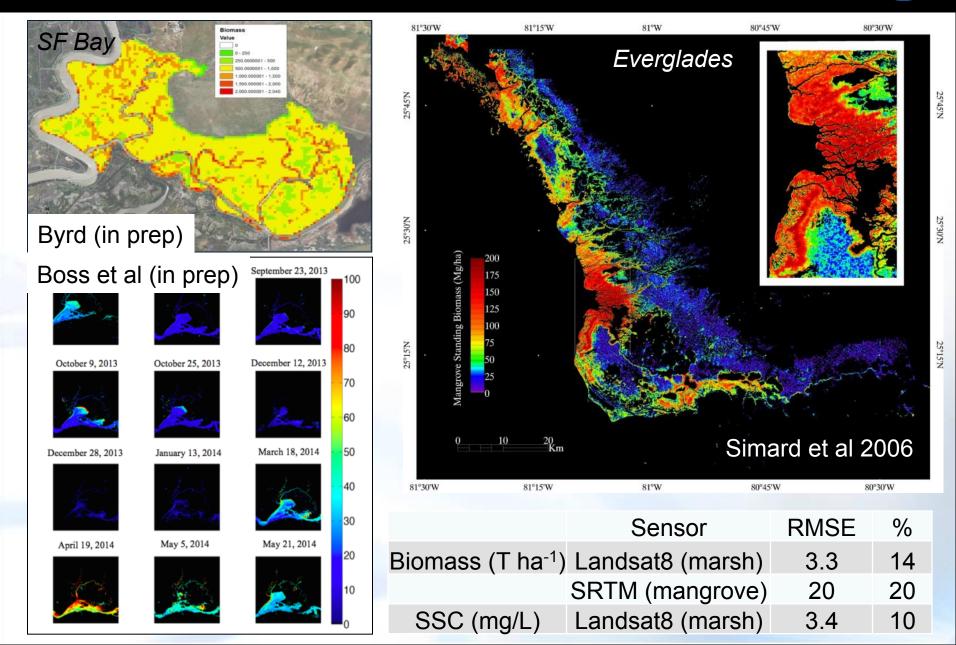
"Blue" CMS Approach – field validation

"Blue" CMS Approach – field validation (500+)

NATIONAL VALIDATION DATASET/ARCHIVE - please contribute!

Useful C flux validation data

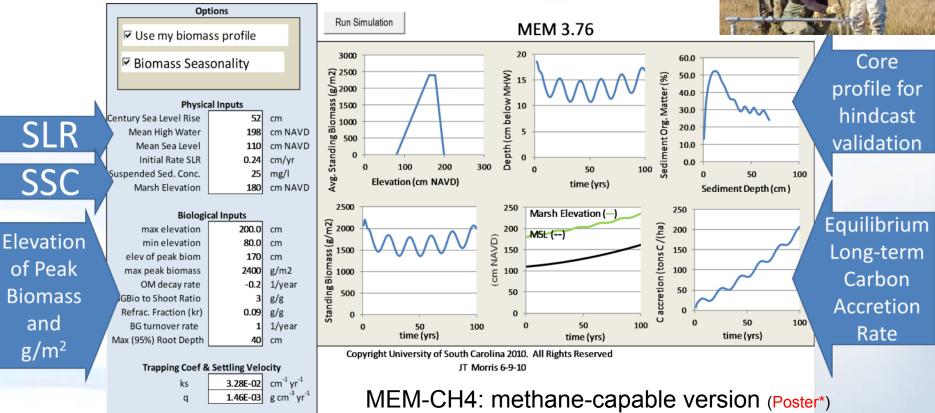
Useful C flux validation data	Suggested units	Range of data useful
Soil organic matter	% Loss on Ignition	0-100cm or more
Soil organic carbon	%C (excluding inorganic)	0-100cm or more
Bulk density	g cm ⁻³	0-100cm or more
Carbon density	g C cm ⁻³	0-100cm or more
Soil accretion or loss	cm y ⁻¹	10 y, 50 y or 100 y or more
C accretion or loss	g C m ⁻² y ⁻¹	10 y, 50 y or 100 y or more
Relative Sea Level Rise	cm y⁻¹	10 y, 50 y or 100 y or more
Plant biomass (aboveground)	g m- ²	Stock of live biomass and species
Plant biomass (belowground)	g m- ²	Stock of live biomass and species
Soil Salinity	Parts per thousand	Annual range
Methane fluxes	mg CH ₄ m ⁻² y ⁻¹	Any information is useful


Needed Metadata

Latitude (dd)	Longitude (dd)	Site status (any info)	Date(s) collected	Method used	Source of data	Data owner	Permission
4 decimals	4 decimals	Natural? Restored? Restoring?	Range is fine	Citation if possible	Citation	Name, contact info	Use/share/contact prior to distribution

If enough data exist, owners may request to serve as secondary sites

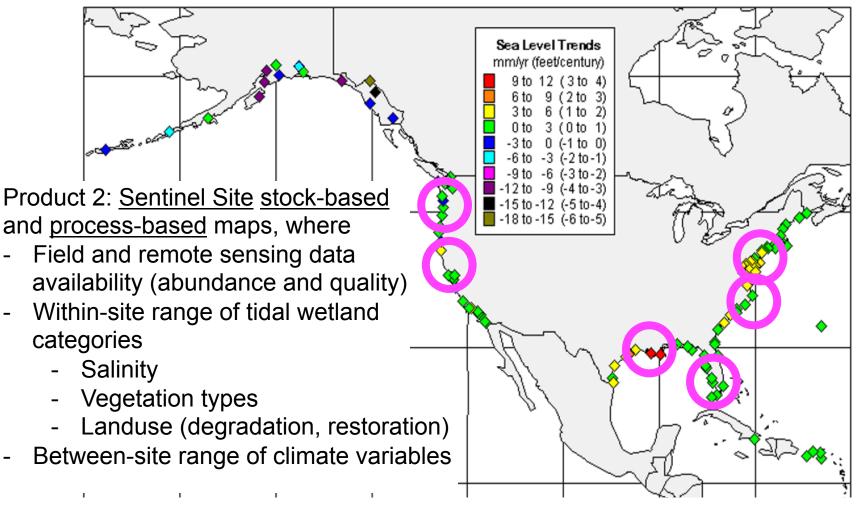
"Blue" CMS – Aqueous & Biomass Remote Sensing



"Blue" CMS – Process-based Model

From past and present, project future

Marsh Equilibrium Model (version 5.4): mechanistic, annual cohort, 1D accretion



Once calibrated, relative elevation is used to estimate cumulative accretion, water depth, flooding frequency, aboveground and belowground biomass, and carbon stored.

"Blue" Carbon Monitoring System

Product 1: <u>National Scale stock-based</u> 30m resolution C pool maps (1992-2011) via NOAA's C-CAP (NLCD) linked with regional SLR and SSURGO 1m soil data

Product 3: Price of Precision Error Analysis (30m v 250m, Tier 1,2,3, Algorithms)

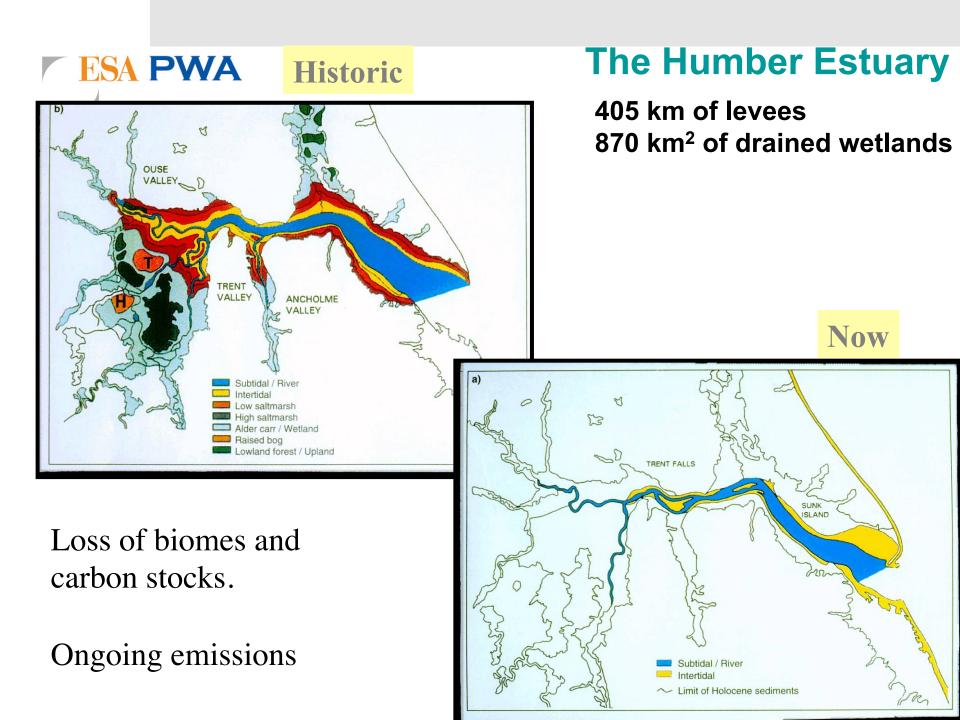
Greenhouse gases

<u>Gas</u>	<u>Current (1998)</u> <u>Amount by</u> <u>volume</u>	<u>Global</u> <u>warming</u> Potential	<u>Percent</u> <u>increase</u> <u>since 1750</u>	<u>Radiative forcing</u> (W/m²)
Carbon dioxide CO ₂	365 ppm	1	31%	1.46
Methane CH₄	1,745 ppb	21 (25, 34)	150%	0.48
Nitrous oxide N ₂ O	314 ppb	310	16%	0.15

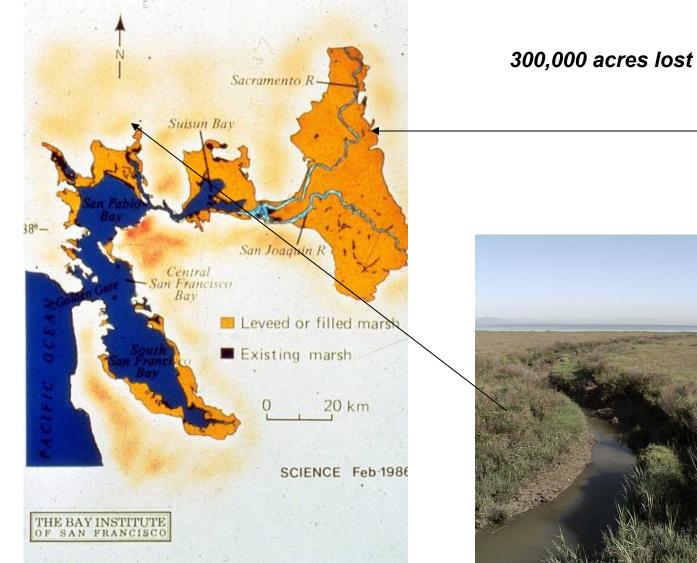
Net Carbon Sequestration Potential

Wetland Type	Carbon Sequestration Potential (tons CO ₂ e/acre/year)	Methane Production Potential (tons CO2e/acre/year)	Net balance
Mudflat (saline)	Low (< 0.74)	Low (< 0.2)	Low C sequestration
Salt Marsh (salinity >20ppt)	High (0.74 – 3.71)	Low (< 0.2)	High C sequestration
Mangrove	High (0.74 – 3.71)	Low – High	Depends on salinity
Brackish Tidal Marsh (salinity <20 ppt)	High (0.74 – 6.68)	High (0.51 – 10.12)	Unclear ^[1]
Freshwater Tidal Marsh (Managed)	Very High (8 - 25)	Very High (5 - 12)	Potential very high C sequestration
Freshwater Tidal Marsh	Very High (2.02+)	Medium to very high	Unclear – Net GHG emissions uncertain ^[2]
Estuarine Forest	High (1.49 – 3.71)	Low (< 1.01)	High C sequestration

^[1] Too few studies to draw firm conclusions. CH_4 emissions brackish wetlands may negate carbon sequestration within soils. Further research required. ^[2] Too few studies to draw firm conclusions. CH_4 emissions from freshwater tidal wetlands may partially or fully negate carbon sequestration within soils.

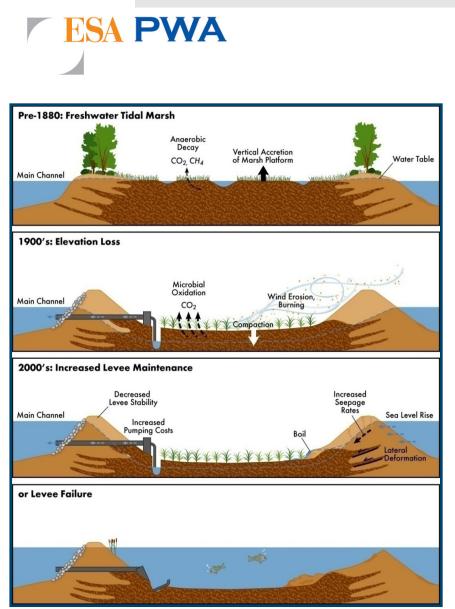

Example Project Activities

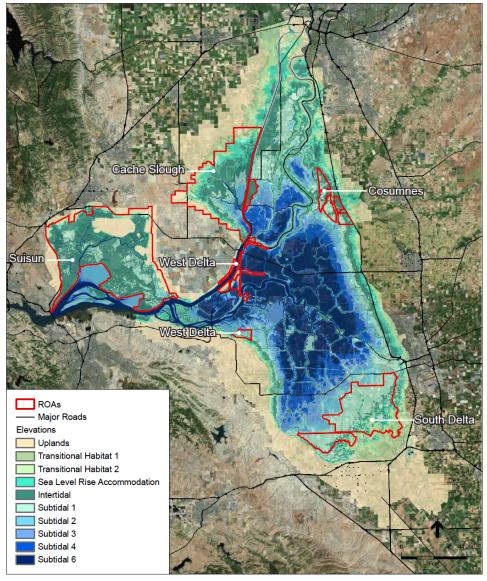
Conservation


- Protection of at risk wetlands
- Improved water management on drained wetlands
- Sediment recharge to coastal wetlands
- Space for migrating wetlands

Restoration / creation

- Lowering of water levels on impounded wetlands
- Raising soil surfaces with dredged material
- Increasing sediment supply by removing dams
- Restoring salinity conditions
- Improving water quality
- Revegetation
- Combinations of the above




ESA PWA Examples from San Francisco Estuary

200,000 acres lost

DWR 2007 LIDAR; ESA-PWA 2012

SOURCE:

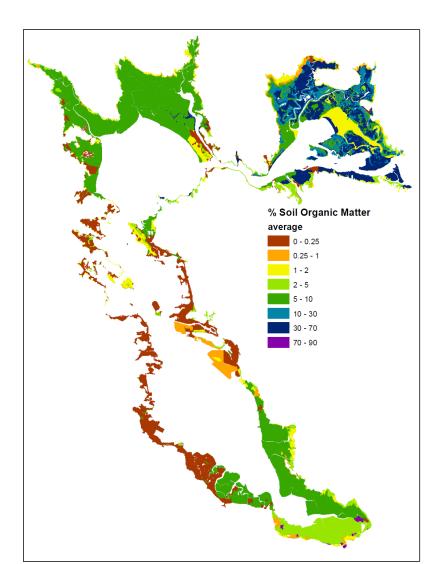
Bay Delta Science Conference. Figure 1 Elevations and ROAs of Delta-Suisun Marsh Planning Area

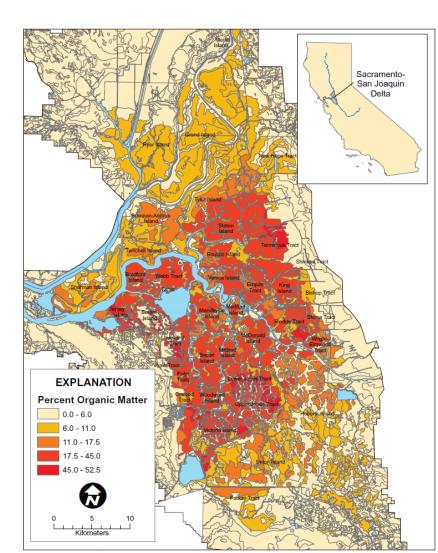
ESA PWA

Emissions from One Drained Wetland: Sacramento-San Joaquin Delta

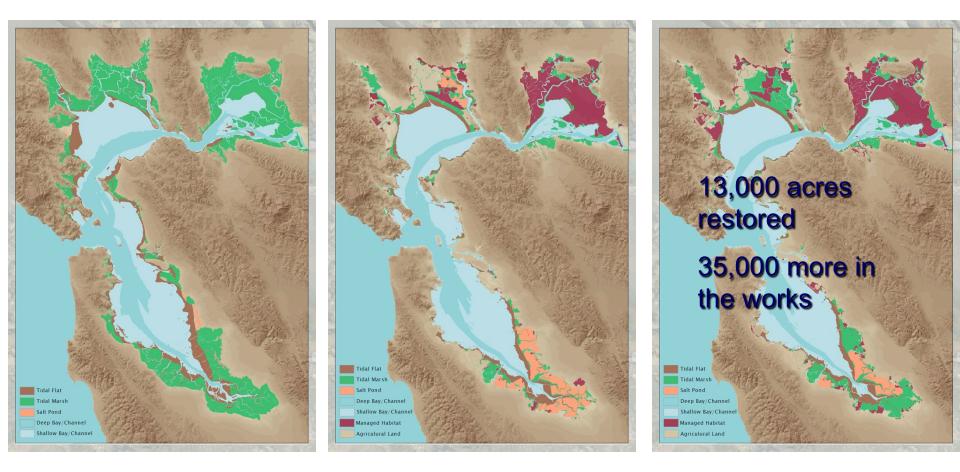
Area under agriculture**180,000 ha**

Rate of subsidence (in) 1 inch


3 million tCO_2/yr released from Delta


1 GtCO₂ release in c.150 years 4000 years of carbon emitted Equiv. carbon held in 25% of California's forests

Accommodation space: 3 billion m³

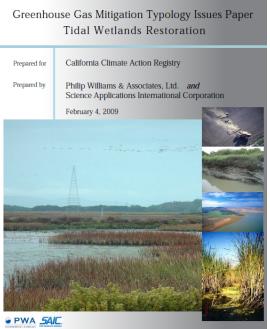


Baseline emissions

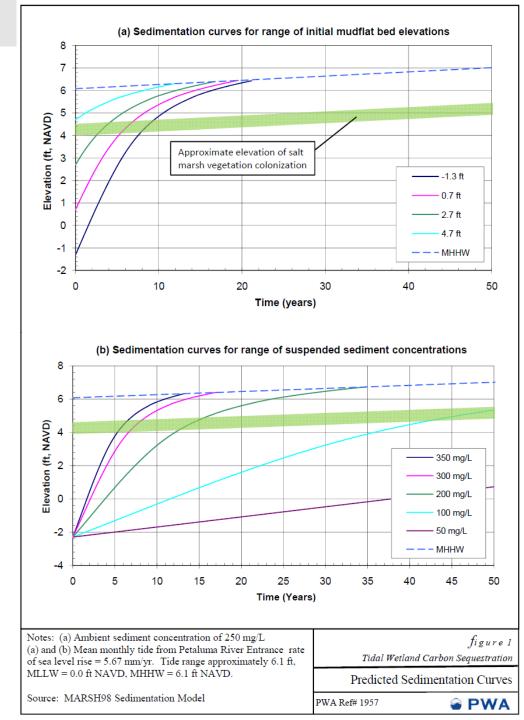
Vetland Loss and Restoration

Past (~1850) Present (~2000) Future (~2030)

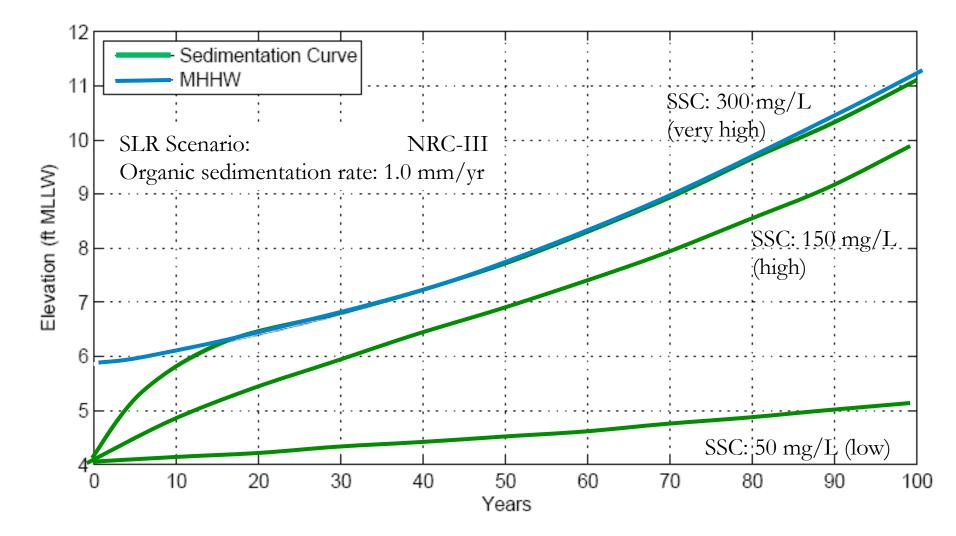
Todays Landscape


Future Landscape

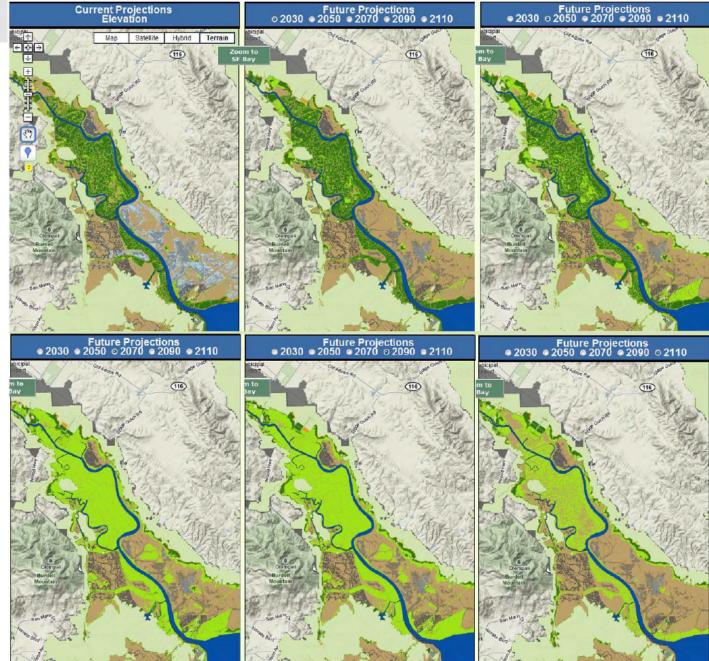
Deposition


Erosion

ESA PWA


Restoration projects take time to reinitiate carbon sequestration. Lost stocks may not be rebuilt.

lip Williams & Associates, Ltd. | 550 Kearny Street, Suite 900 | San Francisco, CA 94108 | t: 415.262.2300 f: 415.262.2303 | www.pwa-ltd.c



ESA PWA Develop With Project Scenario

Modeled with Marsh98

Stralsburg et al. 2011

ESA PWA The Sacramento – San Joaquin Delta

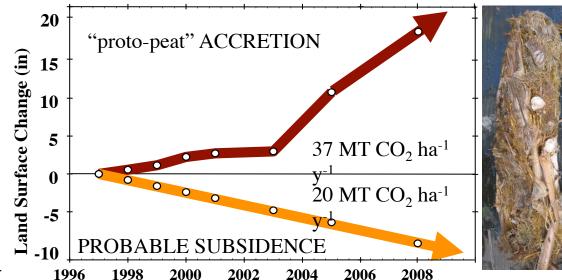
High organic sedimentation Low mineral sedimentation

Once established marshplain is insensitive to mineral sedimentation

Former natural morphology reflected processes set in motion 6000 years

Carbon Capture Wetland Farm Bio-Sequestration

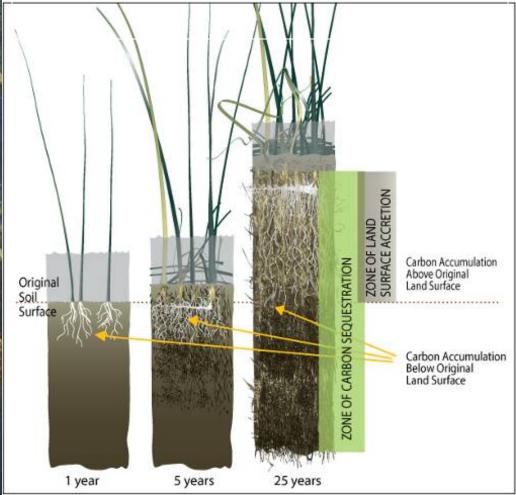
Stops peat oxidation and accretes "proto-peat" rapidly


Continuously submerged about 1 ft

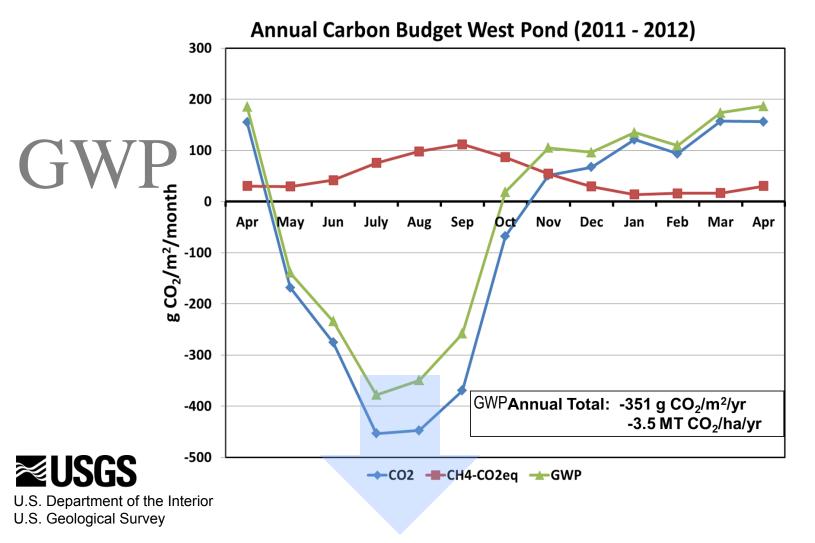
Low oxygen conditions

Balance between plant growth and reduced decomposition

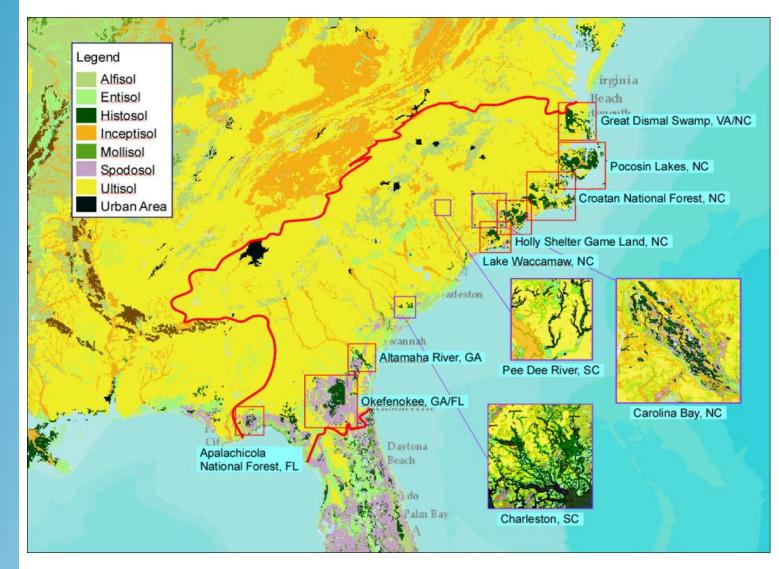
Average annual <u>soil sequestration</u>: 1 kg C m⁻² yr⁻¹ in soil


U.S. Department of the Interior U.S. Geological Survey

Miller et al. 2008, SFEWS


Carbon is being stored in "peat" at an average of 1kg m⁻² yr⁻¹ •1MT C in 1000 m⁻², or 4MT C acre ⁻¹ = 15 MT CO₂ + 10 MT CO₂ peat preservation

=25 MT CO_2 acre⁻¹

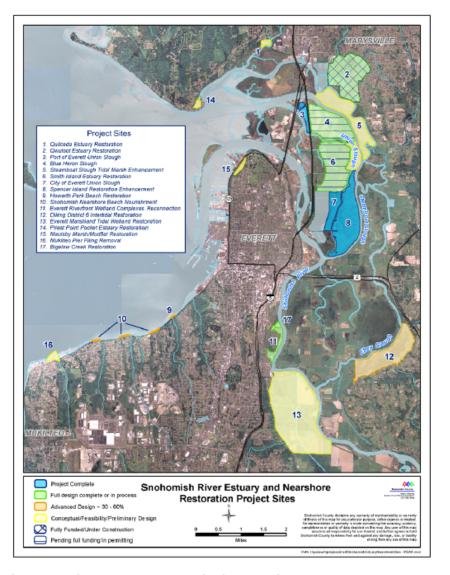


Net GWP Fluxes (from Eddy Covariance April 2011-2012)

2011 EC-based GWP for land use conversion: MT CO₂eq ha⁻¹ y⁻¹ = -10 + 6.5 + 0 - (25 + 2.5) = -31 CO₂ CH₄ N₂O CO₂ N₂O

Landscape Scale Look at Peatlands

Map Credit: C. Richardson


COASTAL BLUE CARBON OPPORTUNITY ASSESSMENT FOR THE SNOHOMISH ESTUARY

THE CLIMATE BENEFITS OF ESTUARY RESTORATION

- 4749 ha of drained wetlands
- 29% of wetland loss in Puget Sound
- 1353 ha of restoration planned.

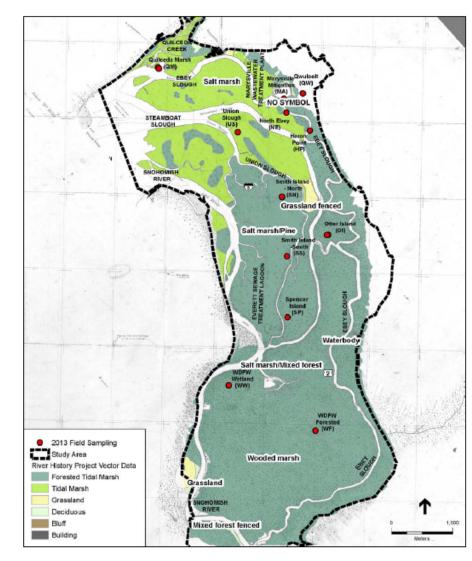


Figure 8 Historic habitats of the Lower Snohomish Estuary based on River History Project (Geomorphological Research Group, Quaternary Research Center, 2005) and Haas and Collins (2001) and 2013 soil core and vegetation plot locations.

NATURAL AREAS

Quilceda Marsh (QM)

Heron Point (HP)

Otter Island (OI)

Figure 3 Photos of natural areas where soil cores and vegetation plots were taken, June-July 2013. Photo Credit: D. Devier, with aerial support from LightHawk.

POTENTIAL RESTORATION AREAS

Qwulooit (QW)

WDFW Forest (WF)

Smith Island North (SN)

WDFW Wetland (WW)

Figure 5 Photos of areas to be restored where soil cores and vegetation plots were taken, June-July 2013. Photo Credit: D. Devier, with aerial support from LightHawk.

Field and Laboratory Analysis

Soil carbon stock quantification:

- 3 Natural sites
- 5 Restoring sites
- 4 Restoration potential sites

Accretion rates:

- 5 sites

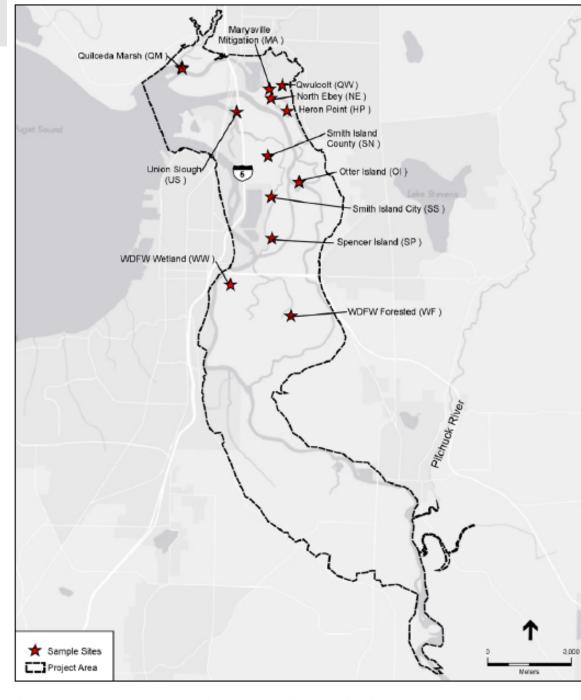


Figure 6 Study Area (dashed black line) and 2013 field sampling sites (red star).

ESA PWA Restoration and carbon sequestration potential

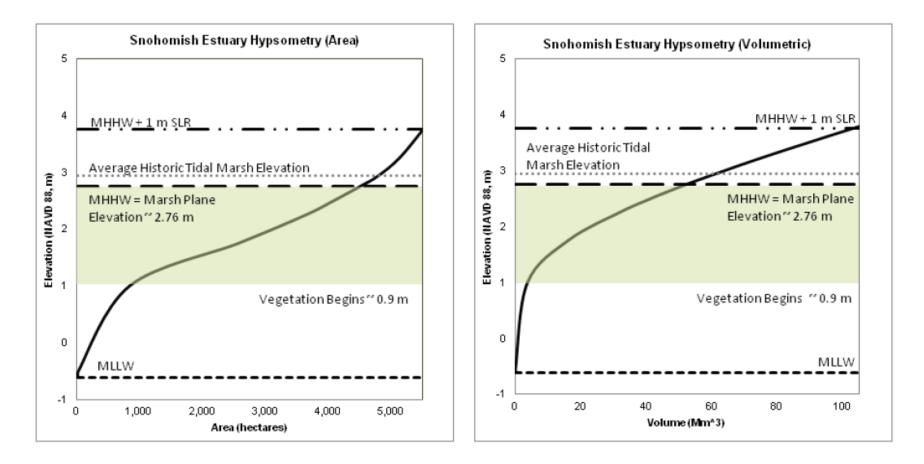
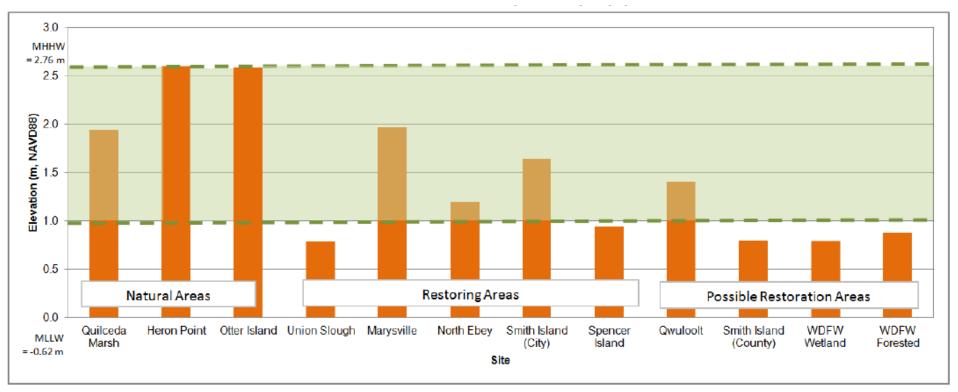


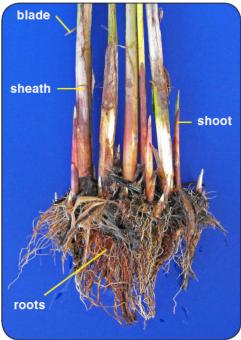
Figure 18 Hypsometric analysis of entire project area (ha).

ESA	PWA

		Sediment accretion rate	Carbon accumulation rate	Mineral accumulation rate
Site	Site Name	(cm yr ⁻¹)	(g C m ⁻² yr ⁻¹)	(g m ⁻² yr ⁻¹)
QM	Quilceda Marsh	0.43	110.2	2134
HP	Heron Point	0.18	58.0	484 -
01	Otter Island	0.58	173.1	2543
NE	North Ebey	1.61	352.1	7585
SP	Spencer Island	0.35	91.4	2148

Table 11. Rates of sediment accretion, carbon accumulation, and mineral accumulation for five sites. Accretion rates were determined from the distribution of excess ²¹⁰Pb activity with depth using one core from each site. Carbon and mineral accumulation rates were calculated from the accretion rates




Figure 19 Existing and approximate targeted restoration elevations by site as of 2013. Units are in meters (m), NAVD88.

		Total carbon mass in top 30 cm	Average carbon density in top 30 cm	Total mineral mass in top 30 cm	Average mineral density in top 30 cm
Site	Site Name	(kg C m ⁻²)	(g C cm ⁻³)	(kg m ⁻²)	(g cm⁻³)
Natural si	ites				
QM	Quilceda Marsh	7.17 (0.67)	0.024 (0.00)	148.02	0.493
HP	Heron Point	9.85 (0.07)	0.033 (0.00)	82.71	0.276
OI	Otter Island	7.81 (1.72)	0.026 (0.01)	132.66	0.442
Transition	nal restored sites				
NE	North Ebey	6.48 (0.12)	0.022 (0.00)	141.38	0.471
SP	Spencer Island	8.29 (0.73)	0.028 (0.00)	182.69	0.609
MA	Marysville Site	9.74 (0.09)	0.032 (0.00)	246.63	0.822
SS	Smith Is City	6.11 (2.17)	0.020 (0.01)	331.08	1.104
US	Union Slough	5.37 (0.15)	0.018 (0.00)	236.98	0.790
Future res	storation sites				
QW	Qwuloolt	11.31 (0.03)	0.038 (0.00)	188.45	0.725
SN	Smith Is County	18.52 (1.59)	0.062 (0.01)	163.15	0.544
WW	WDFW Wetland	23.36 (1.79)	0.078 (0.01)	87.34	0.291
WF	WDFW Forested	15.34 (0.29)	0.051 (0.00)	75.61	0.252

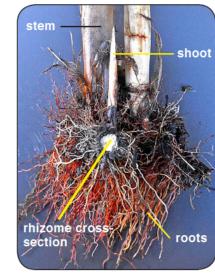
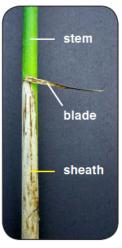
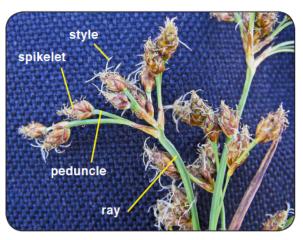
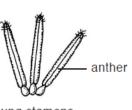

ESA PWA

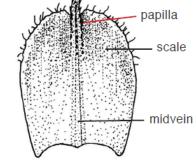
Table 10. Total carbon mass and average carbon density in the top 30 cm of cores, with averages (± standard deviation) reported for each site (n = 2). Mineral mass and mineral density were determined using one core from each site.




Great Bulrush stems, roots and new shoots in autumn


Cross-section of rhizome 7 mm thick with roots and new white shoot 5 cm tall

Lower stem 12 mm wide with leaf blade shorter than sheath



Inflorescence with green rays, peduncles and brown spikelets c. 8 mm long with exserted styles

Young stamens x10; each c. 2 mm long

1

awn

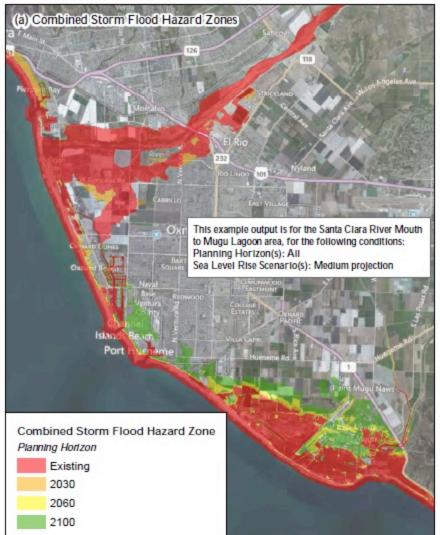
Fertile scale x15; dorsal side

			Soil Carbon	Forest Biomass Carbon Emissions	Total Emissions
Scenario	Elevation (m NAVD88)	Area (ha)		(t C)	(t C)
HS1: Historic Wetland Drainage	2.6-3.3	4,749	1,707,775	2,811,654	4,519,429
FS1: Planned and Existing Restoration, Restore to Current Tidal Wetland Elevation					
(2.76 m)	0.9-2.76	1,353	-320,570	-	-320,570
FS2: Planned and Existing Restoration, Restore to Future Tidal Wetland Elevation (3.76 m)	2.76-3.76	1,594	-375,319	-	-695,889
FS3: Restore Entire Estuary to Current Tidal Wetland Elevation (2.76 m)	0.9-2.76	4,393	-1,224,827	-	-1,224,827
FS4: Restore Entire Estuary to Future Tidal Wetland Elevation (3.76 m)	2.76-3.76	5,258	-1,222,037	-	-2,446,864

Notes: Conservative goal of restoration is to return estuary to emergent tidal wetland elevation. Emergent and scrub-shrub tidal wetland biomass was indeterminate. For these reasons, forest biomass carbon emissions were not calculated for future scenarios. Far right column shows cumulative emissions for different scenarios. Negative numbers reflect carbon sequestration, or net carbon uptake.

Table 13 Summary of carbon emissions due to subsidence by site and state of restoration. The historic scenario (HS1) is the only scenario that includes forested tidal wetland biomass losses. Future restoration scenarios conservatively estimate carbon emissions with recovery of emergent tidal wetlands only.

Key Results – Existing Projects


- 1. *Planned* restoration of 1,353 ha would yield 1,176,000 tons CO_2 sequestration at current sea level
- 2. Planned restoration would yield additional 1,377,000 tons CO_2 sequestration to future sea level
- 3. Total CO₂ sequestration of 2,553,000 tons
- 4. This is equivalent to the emissions from 500,000 cars in one year, or 5,000 cars/year for 100 years

Key Results – Expanded Restoration

- 1. *Full* restoration of 4,393 ha would yield 4,495,000 tons CO_2 sequestration at current sea level
- 2. Full restoration would yield additional 4,485,000 tons CO_2 sequestration to future sea level
- 3. Total CO₂ sequestration of 8,980,000 tons
- 4. This is equivalent to the emissions from 1.76 million cars in one year, or 17,600 cars/year for 100 years

ESA PWA Ventura Coastal Resilience Project

Expected outcomes:

Current and future SLR hazards and impacts mapped

Protecting nature. Preserving life."

figure 6

COASTAL

C 0 M M I 5 5 I 0

Ventura County Climate Change Vulnerability Study

Example of Combined Storm Flood Hazard Zones

ESA PWA Ref# D211452.00

F ESA PWA

11/12/15

Coastal Commission

		ta		

Freshwater Wetland with Trees (3)	—————————————————————————————————————
	Tidal We
Freshwater Marsh (5)	Dunes (2
Tidal Marsh (6)	Open Wa
Tidal Estuarine Wetland with Trees/Shrubs (7)	
Emergent Salt Marsh (8)	Develop
Estuarine Beach (10)	Develope
	Develope
Mudflat (11)	Develop
Coastal Strand (12)	Barren L
Rocky Intertidal (14)	Evergree
Open Water (15)	
Riverine Tidal (16)	Mixed Fo
Open Water Subtidal (17)	Shrub/So
	Grasslan
Tidal Channel (18)	Pasture/
Open Ocean (19)	Cultivate
	Surrate

Rarely Flooded Marsh/Salt Pans (20) Gravel/Shore (22) etland with Trees/Shrubs (23) 26) ater (NLCD11) ed, Open Space (NLCD21) ed, Low Intensity (NLCD22) ed, Medium Intensity (NLCD23) ed, High Intensity (NLCD24) and (Rock/Soil/Clay) (NLCD31) en Forest (NLCD42) orest (NLCD43) crub (NLCD52) nd/Herbaceous (NLCD71) Hay (NLCD81) ed Crops (NLCD82)

This layer combines the SLAMM wetland habitats map with upland habitats from the National Land Cover Database (2006).

N 0 0.5 1 Miles

Aggregat

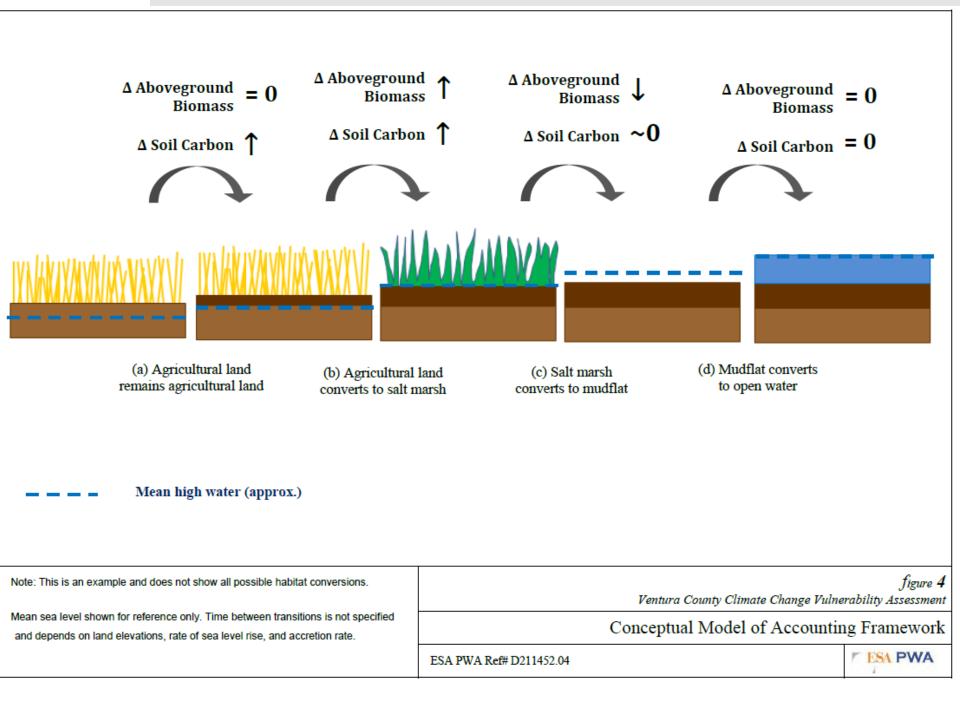
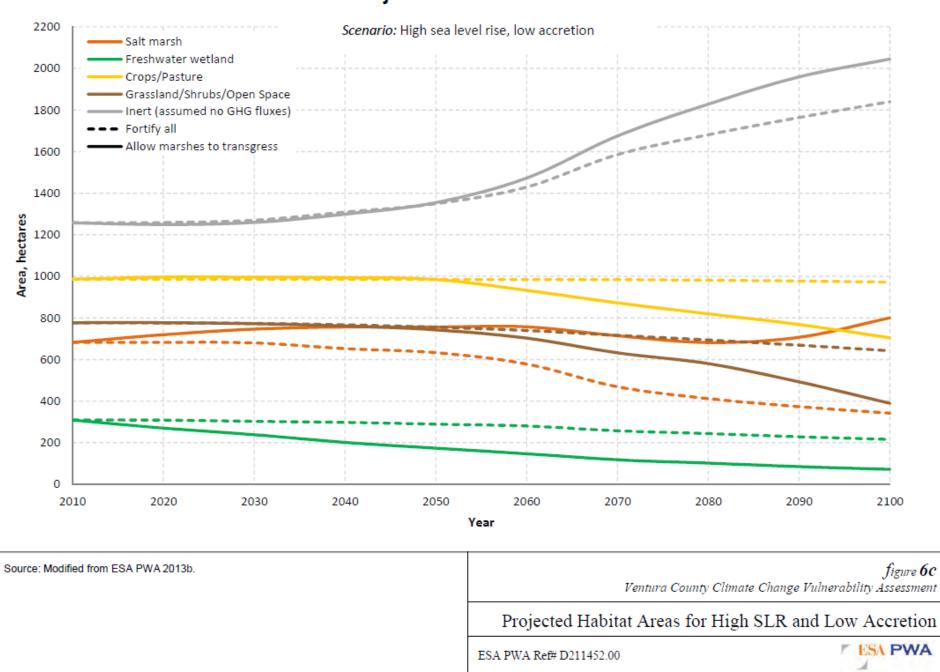
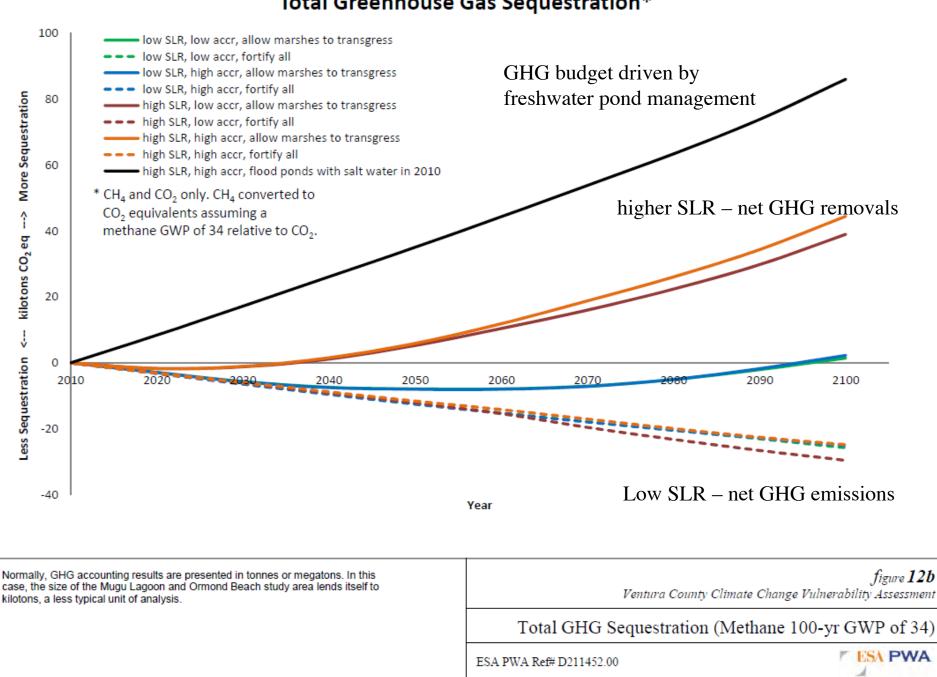

ESA PWA Ref# - D211452

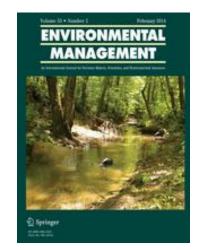
figure 5


Aggregated Land Cover Map

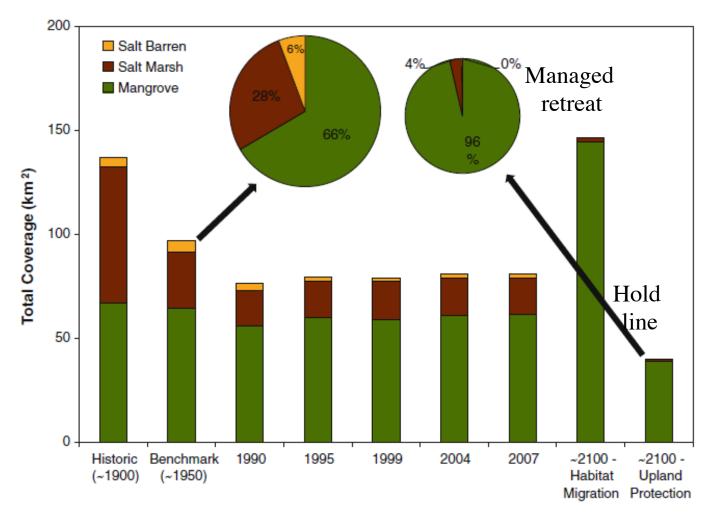
Ventura County Climate Change Vulnerability Study


F FSA PWA

Projected Habitat Areas



Total Greenhouse Gas Sequestration*


ESA Tampa Bay Blue Carbon Assessment

 Build on Potential Impacts and Management Implications of Climate Change on Tampa Bay Estuary Critical Coastal Habitats. E. Sherwood & H. Greening, 2014. Environmental Management 53(2): 401-415

- Enhance the existing Tampa Bay SLAMM model to address seagrass and coastal uplands
- Update land acquisition priorities to accommodate sea level rise

ESA Assessing the Blue Carbon Benefits of Habitat Restoration in Tampa Bay

From Sherwood and Greening, 2013

Characteristics of carbon projects

Economies of scale

- Typically forestry projects are 10,000 ha+ in size
- Some fixed costs irrespective of size but returns scale dependant
- Capacity to plan at landscape scale and allow for change
- Potential for aggregation of "like" smaller projects

- High relative net GHG benefits
 - Avoided emissions: C0₂, N₂O, CH₄
 - High C sequestration: e.g., forested tidal wetlands, subsidence reversal

Financial fitness

- Funding for planning, design and construction
- Stacking of credits?
 - Carbon
 - Nitrogen?
 - Conservation?
 - Water?
 - Flood?

- Low complexity/ low risk
 - Clear GHG reductions
 - High sea level resilience
 - Community support

- Improved adaptation
 - Plan for long-term landscape change
 - Avoid conflicting locations for mitigation projects

Workable timeline

- Near term results, or
- Capacity to wait for return.

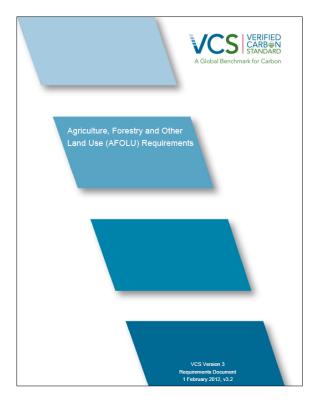
Project Planning Process

- 1. Project idea and preliminary assessment
- 2. Project design and planning
- 3. Develop a project design document
- 4. Review project activities and develop a project implementation strategy
- 5. Finalize financing and investment arrangements
- 6. Approvals, validation and registration
- 7. Implementation and monitoring
- 8. Verification and Issuance.

Stephen Crooks Climate Change Services Director ESA PWA +1 415 272 3916 <u>SCrooks@esassoc.com</u>

A Global Benchmark for Carbon

Wetlands Restoration and Conservation (WRC)


Adopted into Standard Oct 4, 2012

http://v-c-s.org/wetlands_restoration_conservation

Other Categories:

- •Afforestation, Reforestation, Revegetation (ARR)
- •Agricultural Land Management (ALM)
- •Improved Forest Management IFM)

•Reduced Emissions from Deforestation and Degradation (REDD)

ESA PWA Recent Activity

- IUCN and UNEP Reports on Blue Carbon (2009)
- Climate Action Reserve Tidal Wetlands Issues Paper (PWA and SAIC 2009)
- RAE Blue Ribbon Panel and Action Plan US focused 2010
- NCEAS Working Group tidal wetlands carbon model
- International Blue Carbon Working Groups (2011-onwards)
 - Science
 - Economics and Policy
- Reports (2011)
 - World Bank, IUCN, ESA PWA Global estimates and policy implications
 - Duke University Economic Potential
 - Climate Focus international Policy
- IPCC Wetlands Supplement for National GHG Accounting (2011-2013)
- Voluntary Carbon Standards
- Recognizes wetlands activities
- Methodology for Tidal Wetlands and Seagrass Restoration in review
- Working Groups
 - US Federal Agency Blue Carbon Group
 - World Bank Blue Carbon Working Group
 - National groups / programs Indonesia, Australia, Abu Dhabi, Costa Rica, Oregon,

• Guidelines for Coastal Wetland Carbon Projects – in progress

ESA PWA

40 years of restoration experience

1400 wetlands projects

Plans developed for most major Estuaries on west US coast

Implemented Coastal Wetland Restorations

Wetland Restoration Project	Year Constructed	Acres Restored
Hamilton Army Airfield Restoration	2013	500
Qwuloolt Estuary Restoration	2013	360
Sauvie Island Wetland Enhancement	2013	120
Colewort Creek Tidal Wetland Restoration	2012	50
Miami River Wetlands Enhancement (OR)	2011	55
Eden Landing Marsh Restoration Ponds 8 & 9	2011	730
South Bay Salt Ponds - Alviso Pond 6	2010	330
South Bay Salt Ponds - Alviso Ponds 5, 7 & 8	2010	1400
South Bay Salt Ponds – Pond SF2	2009	240
Crescent Bay Tidal Marsh Restoration	2009	300
Bahia Wetlands	2008	400
Bair Island Restoration	2007	900
Napa-Sonoma Marsh Restoration	2005	3000
Petaluma Marsh Expansion	2003	100
Cooley Landing Wetlands	2001	115
Charleston Slough	1996	120
Roberts Landing	1995	300
Sonoma Baylands	1993	320
TOTAL		9,340

ESA

Includes

- largest wetland
 restorations on the
 Pacific Coast
- Oyster reefs and eelgrass
- Learning curve

