Adaptive changes in sexual signalling in response to urbanization

Wouter Halfwerk1,2*, Michiel Blaas1, Lars Kramer1, Nadia Hijner1, Paula A. Trillo2,3, Ximena E. Bernal2,4, Rachel A. Page2, Sandra Goutte5, Michael J. Ryan2,6 and Jacintha Ellers1

Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male túngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures.
urban-induced change in the sexual phenotype reflects an adaptive response by comparing the success of an individual to obtain mates versus the risk of predation in both urban and forest areas.

Results

Urban males display more elaborate mating calls. We recorded male túngara frog calls in 11 urban and 11 forest sites (Fig. 1a) and found that calling behaviour and signal design were different between the two habitat types. Forest males were quicker to cease calling compared to urban males when approached by a human observer (general linear mixed model (GLMM), \(n = 83, \chi^2 = 10.13, \text{d.f.} = 1, P < 0.001 \); Fig. 1b and Supplementary Table 1). Urban males were found to call at higher rates (GLMM, \(n = 93, \chi^2 = 5.69, \text{d.f.} = 1, P = 0.017 \)) and with greater call complexity (GLMM, \(n = 98, \chi^2 = 10.01, \text{d.f.} = 1, P = 0.002 \)) compared to forest males (Fig. 1c and Supplementary Table 1). Additionally, urban males were smaller in snout–vent length (GLMM, \(n = 260, \chi^2 = 14.42, \text{d.f.} = 1, P < 0.001 \)), but similar in mass (GLMM, \(\chi^2 = 0.43, \text{d.f.} = 1, P = 0.51 \)), compared to forest males (Supplementary Table 1). Urban sites were characterized by a distinctly different sensory environment, as noise and light levels were higher (GLMM, \(n = 98, \chi^2 = 44.25, \text{d.f.} = 1, P < 0.001 \) and \(\chi^2 = 30.91, \text{d.f.} = 1, P < 0.001 \), respectively), and canopy cover was lower (\(\chi^2 = 161.87, \text{d.f.} = 1, P < 0.001 \)) compared to forest sites (Fig. 1d and Supplementary Table 1). Differences in sensory environment were mainly due to presence of streetlights and low-frequency traffic noise in urban areas. These findings suggest that the altered sensory conditions may have caused urban males to adjust their calling behaviour directly and/or affected intended and unintended signal receivers, thereby causing a shift in sexual and natural selection pressures imposed on urban signallers.

Variation in mating displays is related to divergent selection pressures. We broadcast a standardized túngara frog call in our 11 urban and 11 forest sites on two different nights per site, monitored approaching females and bats with a video-surveillance setup and collected midges with a custom-built trapping system (see Methods). In urban sites, the calls attracted fewer females (GLMM, \(\chi^2 = 4.38, \text{d.f.} = 1, P = 0.038 \)), bats (GLMM, \(\chi^2 = 15.56, \text{d.f.} = 1, P < 0.001 \)), and urban-induced change in the sexual phenotype reflects an adaptive response by comparing the success of an individual to obtain mates versus the risk of predation in both urban and forest areas.

Methods. In urban sites, the calls attracted fewer females (GLMM, \(\chi^2 = 4.38, \text{d.f.} = 1, P = 0.038 \)), bats (GLMM, \(\chi^2 = 15.56, \text{d.f.} = 1, P < 0.001 \)), and midges (GLMM, \(\chi^2 = 8.68, \text{d.f.} = 1, P = 0.003 \)). The model results are reported in Supplementary Table 1. The data for these analyses were log-transformed and the models were fitted using the lme4 package (version 1.1-18) in R (version 3.2.5) with unstructured covariance matrices. The results are presented as averages and standard errors. The models were fitted using the lme4 package (version 1.1-18) in R (version 3.2.5) with unstructured covariance matrices. The results are presented as averages and standard errors.
P < 0.001) and midges (GLMM, $\chi^2 = 15.05$, d.f. = 1, $P < 0.001$) compared to forest sites (Fig. 1c and Supplementary Table 1). The chorus densities of males did not differ between urban and forest sites (GLMM, $n = 98$; $\chi^2 = 0.51$, d.f. = 1, $P = 0.32$; Fig. 1c). Thus, the lower number of females, bats and midges that responded per calling male suggests that sexual selection pressure was higher and natural selection pressures that were operating on the signal were lower in urban areas compared to forest areas.

Urban males are more attractive to females. To assess whether the urban phenotype is adaptive in terms of mate attraction, we carried out a phonotaxis experiment with females collected from an urban and a forest location. We tested these females for their preference to approach one of two speakers that broadcasted calls of an urban or forest male from opposite sides of a sound-attenuating chamber. We captured 20 males at five different urban and five different forest sites (Fig. 1a) and recorded their calls in the laboratory under controlled light and sound conditions. The calls were broadcasted antiphonally (thus adjusting to the same call rates to avoid overlap between the calls) while keeping naturally recorded variation in amplitude profile and call complexity (see Methods). Stimuli from urban males that were recorded under common garden conditions had an average complexity of 1.7 ± 0.68 (mean ± s.d.), whereas forest male stimuli had an average complexity of 0.9 ± 0.74. Furthermore, urban stimuli had, on average, chucks that were similar in amplitude to that of the whine (0.1 dB ± 6.4 (mean ± s.d.) relative difference in peak amplitude), whereas forest stimuli had, on average, chucks that were lower in amplitude than the whine (−1.5 dB ± 8.3).

Females were only tested once and strongly preferred the urban over forest males in either a forest or an urban environment (Fig. 3a). The mesocosms densities of males did not differ between urban and forest sites (GLMM, $n = 156$; $\chi^2 = 0.21$, d.f. = 1, $P = 0.65$; Fig. 3a). However, males in the urban environment had a higher maximum number of chucks compared to forest males. These results show that urban frogs are better able to adjust their signalling to ecological conditions, probably using abiotic cues such as differences in sound and light environment. This higher level of signalling flexibility allows urban males to display the phenotype that best matches the balance between multiple selection pressures in both urban and forest environments.

Urban males display a broader range of sexual phenotypes. To test whether males can flexibly alter their signalling depending on environmental conditions, we conducted a translocation experiment. We collected 112 males from five different forest and five different urban populations (Fig. 1a). We transferred the frogs for at least four consecutive nights to one of four mesocosms that were located in either a forest or an urban environment (Fig. 1a). The mesocosms were located away from major roads, or other major sources of anthropogenic noise, so that abiotic conditions mainly differed in the amount of canopy cover and light pollution. The mesocosms were covered in mosquito mesh to keep frogs inside, and to prevent bat predation and midge parasitism. The translocation environment had a strong effect on male call rate (GLMM, $n = 16$ mesocosms; 6–8 males per mesocosm; four recording nights; measured at the start of call bout: $\chi^2 = 20.78$, d.f. = 1, $P < 0.001$; Fig. 3b) as well as on male call complexity (GLMM, $\chi^2 = 10.45$, d.f. = 1, $P = 0.001$; Fig. 3c). Overall, males called at higher rates and with more complex calls in urban compared to forest mesocosms. The population of origin had no overall effect on the calling behaviour of males (GLMM, call rate: $\chi^2 = 0.68$, d.f. = 1, $P = 0.41$; mean call complexity: $\chi^2 = 1.30$, d.f. = 1, $P = 0.25$), but its effect depended on the translocation environment (GLMM, interaction effect on call rate: $\chi^2 = 3.85$, d.f. = 1, $P = 0.049$; interaction effect on call complexity: $\chi^2 = 7.28$, d.f. = 1, $P = 0.007$). Urban males placed in a forest environment decreased call complexity compared to urban males placed in an urban environment (post hoc independent contrast: $z = -4.33$, $P < 0.001$; Fig. 3c), whereas a forest male placed in an urban environment did not change call complexity compared to a forest male placed in a forest environment ($z = 0.94$, $P = 0.34$; Fig. 3c). In the urban environment, urban males had, on average, more complex calls at the start of a call bout as well as during the peak of chorus activity and had a higher maximum number of chucks compared to forest males. These results show that urban frogs are better able to adjust their signalling to ecological conditions, probably using abiotic cues such as differences in sound and light environment. This higher level of signalling flexibility allows urban males to display the phenotype that best matches the balance between multiple selection pressures in both urban and forest environments.

Discussion

We found that male túngara frogs from urban areas call at a higher rate and with more complexity than males from forest areas. Differences in signalling were related to differences in the selection pressures imposed on the signallers in both environments; urban males experienced more competition for mates, but had a lower risk of predation and parasitism compared to forest males. These changes in biotic selection pressures between urban and forest areas could reflect differences in either receiver abundances or signal detection. Notably, when we recorded males under the same noise and light conditions, the urban calls were more attractive to females than the forest calls. These results suggest that the change in signalling associated with the urban phenotype was selectively favoured through increased benefits from female attraction and decreased costs of unwanted eavesdroppers. Furthermore, translocating males to urban and forest environments revealed that urban males can rapidly change their call rates and complexity, which in turn matches the risk of predation and parasitism, but that forest males do not adjust their call complexity in an urban environment. Thus, urban and forest males may differ in their response to changes in habitat (that is, differ in their reaction norm as shown by the significant interaction terms), suggesting that forest males may be outcompeted by urban males in the urban environment, but not the other way around.

Fig. 2 | Females prefer urban over forest males. The setup and outcome of a mate-choice experiment in which females from urban and forest locations were given a choice to approach a speaker that broadcasted the call of either a forest (left spectrogram, see Supplementary Data 1 for audio file) or urban male (right spectrogram, see Supplementary Data 2 for audio file; note differences in chucks between the calls). Females were kept under a funnel and released after 2 min playback of a stimulus set that broadcasted alternating urban and forest calls. In total, 30 out of 40 tested females approached the speaker that broadcasted the urban call, which had on average 0.8 more chucks.
There are several underlying mechanisms, which are not mutually exclusive, that may be responsible for the divergence in sexual signalling. Experimental evidence has demonstrated that túngara males can flexibly adjust call rate, amplitude and complexity in response to changes in their social44, dietary45 or sensory environment46, and that some of these responses can be mediated by changes in circulating hormone levels47. Urban and forest males could thus differ in their hormone physiology, as a result of developmental or heritable differences48,49. Physiological differences would also explain the observed pattern in vigilance behaviour; urban males were less vigilant than forest males, presumably because of decreased predation risk or increased levels of human disturbance49,50. The level of vigilance is thought to be under strong control of circulating hormone levels and is often traded against other activities, including communication51. Alternatively, the morphological structures, such as lung capacity51, vocal sac size51,52 and the size of the fibrous mass attached to the vocal cords53 may differ between urban and forest frogs, although this seems to be less likely, because urban males would also have to compensate for their, on average, smaller size.

We argue that urban signallers have a more flexible phenotype that may have important eco-evolutionary consequences. Urban males in our study produce a more elaborate and attractive mating display, which does not seem to come at an increased cost imposed by eavesdroppers, as urban males are able to quickly adjust their display to match the ecological requirements of the forest. Urban individuals may also be more flexible or show better adaptation of other behavioural, non-communicative traits45,51—that is, risk-taking or problem-solving behaviours—compared to forest individuals. Notably, high behavioural flexibility across different species has been linked to successful colonization of urban areas in comparative studies46,54. The urban environment thus seems to select for individuals that are more flexible45, less risk averse46 and more attractive than their rural counterparts. Our data suggest that these urban phenotypes have a reproductive advantage over the forest phenotypes in urban areas, whereas in forest areas none of the phenotypes has an advantage in terms of mate attraction, or predator and parasite avoidance. The most important driver of this selective advantage seems to be the absence of predators. Predators tend to be the first species that disappear from polluted40 or fragmented sites41, which would suggest that urban males also outcompete forest males in degraded forest habitats. The fact that urban phenotypes seem to have a higher-than-average flexibility at no apparent additional costs may even result in the complete replacement of the forest male phenotype, depending on specific ecological factors, such as population sizes and dispersal rates.

In conclusion, we show that on the one hand, urban males experience an increase in the strength of sexual selection and a decrease in the strength of natural selection on the other hand. Increased signal conspicuousness through more complex calls thus provides a selective benefit to urban males in terms of mate attraction, without incurring the cost of increased predation or parasitism. Previous studies of urban-associated conditions have argued that changes in sexual signalling can either be adaptive or maladaptive37,38. Our results provide evidence that urban males can display an adaptive phenotype that may have resulted either as a direct response to changes in the environment or as an indirect response to changes in the sexual and natural selection pressures that operate on the phenotype. Human-dominated landscapes, such as cities, typically alter a whole suite of environmental selection pressures and our study demonstrates that species can adaptively respond to these changes, which has important eco-evolutionary consequences for population structure and community composition.

Methods

Study sites and species. We focused on the túngara frog (P. pustulosus), a species that is common in both urban and forest habitats. In the rainy season (May–December), males of this species gather at night and call to attract females34. Males can be found in a wide variety of water bodies, such as puddles on the forest floor, ditches next to roads or drainage systems in urban areas. The call of a male always starts with a down-sweeping harmonic element known as whistle after which a male can add up to seven amplitude-modulated elements known as chucks35. The production of these chucks makes the call more complex and is known to be under control of circulating hormone levels and is often traded against other activities, including communication51. Alternatively, the morphological structures, such as lung capacity51, vocal sac size51,52 and the size of the fibrous mass attached to the vocal cords53 may differ between urban and forest frogs, although this seems to be less likely, because urban males would also have to compensate for their, on average, smaller size.

We collected data in the field from May to July 2016 and in May 2018 in the canal area of Panama. We sampled male frog behaviour and (a)biotic conditions in 22 different populations (11 urban and 11 forest) on both sides of the Panama Canal (Supplementary Table 2), as well as on both sides of the Chagres river. We used a paired design in which the distance between an adjacent forest and urban site was always smaller than between other sites of the same habitat type. Distances between paired sites were 0.6–7.0 km. Sites with various degrees of urban development, from small towns (Gamboa) to more developed areas in Panama City, were considered urban populations. Additionally, we brought male túngara frogs to Gamboa, Panama, for laboratory recordings as well as for a translocation experiment. In May 2017, we conducted phonotaxis experiments with females collected from Gamboa (urban site), as well as the nearby Soberanía National Park.
Articles NaTUre ecOlOgy & evOlUTiON

Articles

to a Plexiglas circular plate with a diameter of 20 cm, amplified using a 18 V Kemo 378 distance when males were calling from confined spaces from which they could not at which a male ceased calling when approached. We did not score vigilance distance when males were calling from confined spaces from which they could not observe us approaching. Males were recorded for several minutes after which we scored chorus size by counting the number of calling males in a radius of ~5 m. Additionally, we recorded noise and light levels and scored vegetation density and canopy cover at the position of calling frogs at all of our recording sites. Noise levels were measured with a sound pressure level (SPL) meter (Voltscraft SL-100, A-weighted, set to fast window, max intensity) pointing in four different directions. Light levels were obtained in a similar way with a lux meter (HT Instruments FT1039). The four measurements were averaged per call site. Vegetation density and canopy cover were estimated by taking a photograph and using the magic wand tool in Adobe Photoshop CS5. In 2018, we obtained pilot data on air, water temperature and humidity at 13 locations using a Speck Scientific environmental meter S50070 at calling sites in a subset of the study sites that we visited in 2016. Puddles with a minimum of three calling males were visited at night between 20:00 and 24:00. Water temperature was measured at the position of calling males using a type K thermocouple probe. For each puddle, the water temperature for three males was averaged. In order to compare temperature and humidity between urban and rural sites, we used a generalized mixed model with sites, date and time as random effects. These data revealed that air temperature, water temperature and humidity did not vary significantly between urban and forest puddles (n = 54, P = 0.56; n = 54, P = 0.19; and n = 41, P = 0.53, respectively; Supplementary Table 3).

Quantifying selection pressures in the field. We conducted field playback experiments at all of our sampling sites to assess mate attraction, as well as rates of parasitism and predation for a calling male frog. We broadcast a synthetic signal that consisted of a whistle plus one chuck at 82 dB (SPL reference to 20 µPa, measured at 1 m with the SPL meter using a 1 kHz reference tone with the same amplitude level as the signal) at 0.5 calls/s from two different locations per site. This synthetic signal reflects average measurements of a large set of acoustic parameters and is based on recordings from a large set of males collected from urban and forest locations in the vicinity of Gamboa. We used a custom-built playback setup (USB soundboard connected to a Visaton EX 605 shaker attached to a Plexiglas circular plate with a diameter of 20 cm, amplified using a 18 V Kemo amplifier and 18 V lithium battery) to broadcast calls for 1 h between 19:00 and 20:30. The speaker platform was covered in sticky foil (Tanglefoot Tangle-Trap Insect Trap System) to keep out scavenger insects. We monitored the presence of female frogs and frog-eating bats with two cameras (Panasonic HX-A1) using infrared light. One camera was positioned close (~0.5 m) to the setup to observe approaching females and one camera was farther away (~2 m) to observe bat attacks. Bat attacks were defined as an individual approaching the speaker and changing the course of its flight path within the video frame; a more detailed description of the criteria for approaching bats and female frogs has been published previously. The setup was replaced away from any calling male or chorus. After the experiment, we counted all midges on the foil and measured noise and light levels at the playback site. Up to 20 individual midges were collected per trap and stored in alcohol for later identification (data not shown).

Mate choice tests. We recorded 22 males from 5 urban and 5 forest populations in a sound-attenuating box (30 cm by 32 cm by 34 cm (height by width by length)) with either an uncalibrated microphone (Sennheiser ME66) or calibrated microphone (G.R.A.S. 1/2 inch 46AE) protruding through the top of the box. Males were placed in recording boxes in a plastic container filled with the rim with 3 cm of water and stimulated to call using chorus sounds that were played back at low amplitude through a speaker (Ensemble IV, Cambridge SoundWorks). From each of these recordings, we selected a single call that had the greatest number of chucks and the highest amplitude. We constructed 10 different stimulus pairs containing one urban and one forest male. We cued males in an alternating manner at 1 call every 2 s (thus keeping the call rates the same between call types). Call amplitudes were normalized in the program Audacity by setting the amplitude of the white to ~6 dB. The 20 stimuli ranged in call complexity from 0 to 3 chucks (average of 1.3±1.37) and differed between urban and forest males by 0.8 chucks. For seven of the stimulus pairs, the urban call had more chucks than the forest call.

For a single pair, the urban call had one chuck and the forest call had no chucks. For another pair, the urban call had three chucks and the forest call had one chuck. The remaining five pairs had one versus two chucks, for forest and urban stimuli respectively. Within each pair, three of the stimuli were used for which we recorded calls with the calibrated microphone, we maintained the recorded amplitude differences (thus setting the amplitude of the loudest white to ~6 dB in the stereo file).

We tested females that were collected from urban or forest locations for their preference to approach the urban or forest male for each stimulus pair in a hemi-anechoic chamber under infrared lighting. Individual females were placed under a funnel in the centre of the room and were stimulated with a playback from two speakers on opposite sides that played either the urban or forest stimulus from a distance of 80 cm. The speakers were calibrated with a reference recording of an artificial whine set to 82 dB SPL (re. 20 µPa at 30 cm, measured with Extech Instruments SPL meter type 407764, set to C-weighted, fast and max). We raised the speaker volume by 2 dB over the detection threshold of the female, measured from the distance between the speakers (10, 20 and 30 cm). The final experimental males were positioned in the centre of the room and were played a whine to 6 dB. The 20 stimuli ranged in call complexity from 0 to 3 chucks.

When females did not move for 5 min or did not make a choice within 10 min the experiment was abandoned.

Translocation experiments. We collected 112 male frogs from five different urban and five different forest populations and placed them in one of four different mesocosm environments. These mesocosms consisted of a pool (Inter Ocean Systems, Model 190, vol. 572), with water depth 18 cm. Artificial prickly puddles (diameter of 40 cm), covered with mosquito nets to exclude predators and parasites, and to keep the frogs in the pool. Clumps of conehead termite (Nasutitermes corniger) nests were added to each mesocosm to allow frogs to forage ad libitum. The mesocosms were placed in either a forested environment near Gamboa or an urban environment in Gamboa and contained 6–8 males from an urban or forest population. Mesocosms were equipped with temperature and humidity at 13 locations using a Sper Scientific environmental meter S50070 at calling sites in a subset of the study sites that we visited in 2016. Puddles with a minimum of three calling males were visited at night between 20:00 and 24:00. Water temperature was measured at the position of calling males using a type K thermocouple probe. For each puddle, the water temperature for three males was averaged. In order to compare temperature and humidity between urban and rural sites, we used a generalized mixed model with sites, date and time as random effects. These data revealed that air temperature, water temperature and humidity did not vary significantly between urban and forest puddles (n = 54, P = 0.56; n = 54, P = 0.19; and n = 41, P = 0.53, respectively; Supplementary Table 3).

| VOL 3 | MARCH 2019 | 374–380 | www.nature.com/natecolevol

Data analyses. We scored the call rate of each individual (number of calls per min) and the maximum and average complexity (number of chucks produced per call) in Audacity. Call rate and average complexity could not always be scored in a high-density chorus owing to many overlapping calls. For the field recordings, we selected a 1-min portion of continuous calling. Frogs in the translocation experiment did not always call on the first or second night in the mesocosms and we therefore analysed recordings from the third or fourth night. We randomly selected for each night up to 80% of the calls of a calling frog (resulting in 16 treatment trials on 16 different nights) and randomized and balanced the location of the mesocosms. We always collected males from the urban and forest populations on the same night. Male calling behaviour was recorded for 4 h on four consecutive nights on automatic sound recorders (SongMeter SM2, Wildlife Acoustics) starting at sunset.

We analysed all our data on call behaviour, (a)biotic conditions and mate choice in R (v.3.2.2). We constructed GLMMs for each dependent variable using the package lme4 (v.1.1.3). For the field data models, we included paired population numbers as a random effect and the habitat type (urban or forest) as a fixed effect. Models on average and maximum call complexity contained chorus size as an additional fixed effect. The model on male mass contained size (snout–vent length) as an additional fixed effect and vice versa. For maximum call complexity, we used a Poisson distribution with sqrt link function. For models of chorus size, call rate, vigilance distance, average call complexity, noise and light levels, and bat, midge and female attraction, we used a Gaussian distribution with an identity link function. Average call complexity, light and noise levels, canopy cover, and bat, mudge and female attraction were model-transformed to fit model assumptions. For the translocation experiment, we tested for both single and interaction effects of translocation environment (urban/forest mesocosm) and background environment (urban/forest) on male call rate, as well as a Gaussian distribution with a binomial identity link function and included day of nested in experimental day, experimental round and male number as random effects. We followed up on significant interaction effects by running a new model with the four treatment groups added as fixed effects and by constructing independent contrasts between the groups. Data on calling
beha(our recorded at the start or during peak activity of a call bout showed very similar patterns and we therefore only report results for the former. Data on the female choices were analysed with a binomial test for which we pooled choices for females collected from urban and forest environment as our sample sizes did not allow for testing of an interaction effect.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Raw data for the environmental samples, the translocation experiment and the female preference test can be found at the Dryad online depository (https://doi.org/10.5061/dryad.t78c588).

Received: 1 May 2018; Accepted: 13 November 2018; Published online: 10 December 2018

References
40. Carrete, M. & Tell, J. L. Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859 (2011).

Acknowledgements

We are grateful to L. de Herder, J. Smit and H. Loning for their help with collecting the data. We thank the Beta VU workshop for development of the playback devices and the Smithsonian Tropical Research Institute (STRI) for logistical support and in particular R. Taylor and K. Hunter for the use of the phonotaxis chamber. M. Still provided valuable advice on male and female sampling. The research was funded through a Marie Curie grant (655262), a Veni grant (863.15.006) and through the Ecology fund of the Royal Netherlands Academy of Arts and Sciences (713/18011). X.E.B. was funded by NSF grant IOS1433990.

Author contributions

W.H. and J.E. conceived the study and designed the experiments. M.B., L.K., N.H. and S.G. collected the field data. M.B., L.K., S.G. and W.H. analysed the data. W.H., J.E., R.A.P., P.A.T., X.E.B. and M.I.R. discussed the results and wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41559-018-0751-8.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to W.H.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2018
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
- Clearly defined error bars
- State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection

Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR state that no software was used.

Data analysis

Provide a description of all commercial, open source and custom code used to analyse the data in this study, specifying the version used OR state that no software was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Raw data on environmental sampling, translocation experiment and female preference test will be made available at the Dryad online depository.
Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ✗ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

We collected field data on 98 calling male túngara frogs (Physalaemus pustulosus) in 11 urban and 11 forest sites. We assessed selection pressures in the field by carrying out playback experiments at these 22 different sites on at least two different nights per site. We followed up on differences in call behaviour by carrying out a translocation experiment using 112 males from 10 different populations. For this experiment we used a two-by-two design of urban and forest males placed either in urban and forest environments. These males were recorded for four nights in a row and we used a repeated measure design to test for difference in call behaviour based on population of origin or translocation environment. Finally, we collected 40 females from a rural and urban population and tested their preference for urban vs forest male(n=10 males) in a phonotaxis experiment.

Research sample

We studied both male and female túngara frogs (Physalaemus pustulosus) as well as their main predator, the fringe-lipped bat (Trachops cirrhosus) and eavesdropping parasitic midges (Corethrella spp.). Frogs were studied both in the field and in the lab, bats and midges only in the field.

Sampling strategy

Pilot data on field recordings from 1 urban and 1 forest site indicated near-significant differences for 20 males. We aimed at repeating these results for at least 10 urban and 10 forest using a paired design (urban and forest site always nearer to one and other than to other site). Numbers for the translocation experiment were based on preliminary results obtained from the field study. Number of females was based on previous experiments usually showing clear preferences with sample sizes of 20-40 females.

Data collection

Data from the field study, the field playback and translocation experiment was collected by the corresponding author with help of two Master students (MB, LK) and an intern (NH). The phonotaxis data was collected by a master student (JS).

Timing and spatial scale

The field data was collected between May and July 2016, which is the start of the rainy season and peak activity of the frogs. The translocation experiment was carried out in June-July of 2016 and the phonotaxis experiment in May 2017.

Data exclusions

For the field data, some measurements could not be taken. For example, when a male called from a drainage pipe, out-of-sight, we did not score its vigilance (n=83 out of 98 males). Average call complexity (n=85 of 98 males) and call rate (n =93) was not always possible to measure accurately in high-density choruses. The camera used to score females approaching a speaker in the field failed once (out of 44 nights).

Reproducibility

We aimed to record a large number of males from different sites and therefore did not repeat this experiment. The translocation experiment was repeated 4 times. Recordings of males from the field, the mesocosms as well as in the lab (to create stimuli for phonotaxis experiment) showed the same effect sizes for urban vs forest males in call complexity and partly in call rate (see main manuscript for more details).

Randomization

Field sites were visited using a pseudo-randomized order (not more than two times the same habitat in a row). Males were assigned randomly to one of two translocation environments. The side of the speaker for the two-choice phonotaxis experiment was randomized and balanced across the 40 females.

Blinding

A subset of the sound and video recordings from the field, the playback experiment, and the translocation experiment was scored blindly by one of the Master students. These results were compared against the full-data set and no major differences were found. This step was in particular important to ensure that the calls that were selected from the recordings were not biased by the student. The student that carried out and analysed the phonotaxis experiment was blind to the treatment.

Field work, collection and transport

Field conditions

Field work was carried out during the rainy season, at temperatures ranging from 25-28 degrees Celsius. Humidity ranged from 80-95%.

Location

Data collection and experiments were carried out around the Panama canal area. A full list of sites is provided as supplementary information.

Access and import/export

We obtained the required permits from ANAM, the governmental body of Panama in charge of its natural environment. Permit number is provided in the manuscript.

Disturbance

Frogs in the field were recorded in a standardized way. We actually used disturbance by the observer as a measure of vigilance. We placed a microphone close to a disturbed male and recorded it once it resumed calling from a distance of 8m. The recordings...
made for the translocation experiment were made by automated recorders that were programmed to record for 4 hours after sunset. The field playback experiment was also pre-programmed to avoid any disturbance.

Reporting for specific materials, systems and methods

<table>
<thead>
<tr>
<th>Materials & experimental systems</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Involved in the study</td>
</tr>
<tr>
<td>Unique biological materials</td>
<td>n/a</td>
</tr>
<tr>
<td>Antibodies</td>
<td>Involved in the study</td>
</tr>
<tr>
<td>Eukaryotic cell lines</td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>Palaeontology</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>Animals and other organisms</td>
<td>MRI-based neuroimaging</td>
</tr>
<tr>
<td>Human research participants</td>
<td></td>
</tr>
</tbody>
</table>

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

<table>
<thead>
<tr>
<th>Laboratory animals</th>
<th>Wild animals</th>
<th>Field-collected samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.</td>
<td>Frogs were brought to the lab in small plastic containers and were kept in a plastic cooler in between recordings or experiments. Males and females were toe-clipped for individual recognition after the experiment and their weight and snout-vent length (SVL) were measured. All individuals were released back to the site from which they were collected on the same night, or after one week for the males used in the translocation experiment.</td>
<td>For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.</td>
</tr>
</tbody>
</table>