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Age Differences in a Circadian Influence on Hippocampal LTP
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Data from several experiments on long-term potentiation (LTP) in the rat hippocampus were examined for circadian influence.
Incidence and magnitude of LTP produced in both area CA1 and area dentata were analyzed, and a reciprocal light/dark difference
was found in the two areas, with pyramidal cells of area CA1 showing more LTP during the light period and granule cells of area
dentata showing more LTP during the dark period. In addition, results from experiments on developing animals, suggested that the
circadian influence on LTP in either area was not present before postnatal day 20. All of these experiments were from hippocampal
slice preparations; therefore, it is important to note that circadian influences on hippocampal LTP are preserved in the in vitro
environment where tonic extrahippocampal input has presumably been removed.

INTRODUCTION

Periodic variations in biological function are
features of many behavioral, hormonal and neural
systems!é, In 1977, Barnes et al.2 described a circa-
dian rhythm of synaptic excitability in the dentate
gyrus of the rat. Monosynaptic responses of den-
tate granule cells to perforant path stimulation were
measured extracellularly. They found that field
EPSPs and population spikes were of greater magni-
tude during the animal’s dark period than during its
light period. The cyclic changes in response magni-
tude were synchronized by, but not due to environ-
mental factors such as light, temperature and am-
bient noise. Cauller et al.3 have recently extended
these experiments in the rat dentate gyrus and they
have found similar results for the field EPSP, in that
it was largest during the animal’s dark period.
However, in contrast, they found that the popula-
tion spike was largest during the animal’s light
period. Their results are compatible with observa-
tions made by West and Deadwyler!?, showing that
dentate granule cells were more excitable during the
light period.

Winson and Abzug20.2l have also investigated
fluctuations in granule cell excitability. They found
that natural variations in the behavioral state were
correlated with changes in population response am-
plitude. During alert wakefulness, the dentate field
EPSP amplitude was elevated relative to that ob-
served during rapid eye movement sleep (REM) and
slow-wave sleep (SWS). Conversely, the population
spike was reduced during the alert state and elevated
during SWS and REM. Examination of responses in
area CAl revealed a different pattern of relation-
ships between amplitudes and behavioral states. In
area CAl, the population spike was of maximal
amplitude during SWS and reduced during the alert
and REM states.

These experiments demonstrate that excitability
of the hippocampal cells is modulated on a circadian
rhythm and is influenced by the behavioral state of
the animal. With these observations in mind, we
have analyzed several data bases®:8-10 to determine
whether any light/dark variations existed in either
the incidence or magnitude of long-term potentia-
tion (LTP) in area CA1l or area dentata of the rat
hippocampus. LTP is an enduring form of synaptic
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plasticity found in several pathways of the hippo-
campus!. Our data were collected over several years,
in different laboratories, using cssentially the same
methodology!8. Data from both developing and
adult animals were analyzed for circadian modula-
tion of LTP.

MATERIALS AND METHODS

Sprague-Dawley or Long-Evans rats, aged from
6 days to adult (55-200 days) and of both sexes, with
the majority of the subjects being male, were used
for these experiments. All animals were obtained
from vivariums that maintained a 12:12 hour light/
dark cycle. Animals were taken from the vivarium at
various times during their circadian cycles, approxi-
mately 15-30 min before the slice procedure was
done. All animals were in illuminated surroundings
after removal from tke vivarium, and before prepa-
ration of the hippocampal slices. Hippocampal
slices were obtained according to standard proce-
dures!8 and responses monitored to ensure a stable
baseline prior to delivering a single tetanus of 33 Hz
for 3 s. For most of the experiments, the stimulus
intensity was adjusted prior to tetanus to give about
a 1 mV population spike. Exceptions are the data
from developing animals presented in the first 4
columns of Fig. 2. In these experiments, the stimulus
intensity was adjusted to give a population spike at
half the magnitude which produced the maximal
population spike obtainable from that slice.

For the experiments on area dentata, stimulation
was delivered to the fibers in stratum moleculare,
and extracellular population responses were record-
ed from the granule cells. For the experiments on
area CAl, similar procedures were used except that
the stimulating electrode was placed in stratum
radiatum and the recording electrode was placed in
stratum pyramidale. In addition, responses of CAl
pyramidal cells were tested in one group of deve-
loping animals by giving a tetanus of 100 Hz for 1 s
at a stimulus intensity which produced a population
spike averaging 1 mV in magnitude prior to tetanus,
(columns 5 and 6 of Fig. 2). For all of these experi-
ments, post-tetanus responses were obtained at 5, 20
and 30 min after delivery of the tetanic stimulation.
As a measure of LTP, the amplitude of the popula-
tion spike obtained at 20 or 30 min post-tetanus was

normalized with respect to the amplitude of the pre-
tetanus population spike. Data from 174 experi-
ments were analyzed for light/dark differences in
the incidence or magnitude of LTP produced by
these procedures.

RESULTS

The results of this analysis are presented in terms
of both the incidence and magnitude of LTP as a
function of brain region (area dentata vs area CA1)
and time of day (light vs dark). In Fig. 1, data from
animals aged 20 days to adult are presented; Fig. 2
presents the data from animals aged 6-20 days. In
both figures, data from males and females have been
combined because no sex-related differences in the
incidence or magnitude of LTP were observed
(x% and r-tests!3, P > 0.1). The ages were
separated into the two groups because it was only
after 20 days that the adult pattern in light/dark
differences appeared. When data from animals aged
20-30 days was analyzed separately from the adults,
the pattern of incidence and magnitude of LTP was
similar to the adult pattern, so their data were
combined with the adult results. Results from ani-
mals less than 6 days old are not presented, because
LTP is not produced reliably in area CA1 before 6
days of age?, and further experiments will be neces-
sary to determine the exact onset of LTP production
in area dentata of developing animalss,10,

Fig. 1A shows that the incidence of LTP was
different for the light and dark periods. Plotted are
the percentage of slices tested during the light or
dark period that showed more than 1209 of pre-
tetanus response levels during the post-tetanus tests.
The dentate region was more likely to show LTP
when the animal was taken from the vivarium
during its dark period than during its light period,
and a smaller reverse pattern was seen for area CA1
(dentate, y2 == 8.58, P < 0.01, CAl, 2 =091, P >
0.1). When the incidence of LTP was compared
across the two regions, area CA | showed LTP more
frequently than area dentata during the light period
(x2 = 16.66, P < 0.001). During the dark period,
area dentata showed LTP more frequently than area
CAl, although this difference was not statistically
significant (y2 = 0.25, P > 0.1).

The magnitude of LTP produced by the two
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Fig. 1. A: incidence of LTP production is presented as a per-
centage of the total number of animals tested. The ratios
reflect the actual numbers of slices (one hippocampus slice per
animal) showing LTP out of those tested. B: average magni-
tudes of LTP attained by those slices showing more than
1209 of pretetanus control are presented as means with
S.E.M. See Results for further discussion.

regions, was also analyzed for light/dark variations.
Fig. 1B shows LTP magnitude (as a percent of
pretetanus response magnitude) for area dentata
and area CAl in the light and dark periods. Only
those slices showing LTP, as defined by a post-
tetanus value of at least 1209/ of the pretetanus
control values, were averaged. The pattern of light/
dark differences in magnitude of LTP paralleled that
seen for incidence of LTP, with area dentata having
a larger magnitude of LTP (in those slices showing
LTP) during the dark period, and area CAl
showing more LTP during the light period. Within
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each area, the light/dark differences were tested by a
t-test for independent means. For area dentata, the
magnitude of LTP averaged 153.6 4 17.1% during
thelightand 213.6 4~ 23.3 9 duringthe dark ( = 1.63
P >0.1),and forarea CAl, LTP magnitude averaged
297.1 4 20.1 % during the light and 187.8 4 21.5%,
during the dark (¢ = 2.55, P < 0.02). Comparisons
between the two regionsrevealed a greater magnitude
of LTP in area CA1 than in area dentata during the
light period (¢ = 2.54, P < 0.02). During the dark
period, the magnitude of LTP was not significantly
greater in area dentata than in area CAl (¢ = 0.08,
P > 0.1).

The incidence and magnitude of LTP obtained in
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Fig. 2. Data are presented for animals (one hippocampal slice
per animal) aged 6-20 days in the same format as for Fig. 1.
See Results for further discussion.
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slices from animals younger than 20 days, was also
analyzed for light/dark differences. Fig. 2A shows
the incidence of LTP in both areas during the light
and dark periods. Note that two sets of data are
presented for area CAl, with the first from experi-
ments where tetanic stimulation of 33 Hz for 3 s was
given, and the second from experiments where te-
tanic stimulation of 100 Hz for 1 s was given. When
a y2 analysis was done on each of the 3 data sets, no
differences were seen to be related to the light/dark
cycle. In Fig. 2B, the magnitude of LTP attained
under each of the 3 experimental conditions is
presented. A r-test analysis revealed no differences
related to the light/dark cycle for either area or
stimulation paradigm. The pattern for LTP magni-
tude in area CA1 under the 100 Hz for I s paradigm
appears to be reversed from the adult pattern.
However, this reversal reflects that more 15-day-old
animals were tested in the dark period than in the
light period. LTP production reaches a peak during
development sometime around 15 days; therefore,
combining these data artifically raises the dark
mean9.

DISCUSSION

This analysis indicates that the incidence and
magnitude of hippocampal LTP are influenced by
the light/dark cycle in rats older than 20 days. LTP
is observed more frequently and in greater magni-
tude, during the light period for area CAl and
during the dark period for area dentata. With the
results of Barnes et al.2, we expect that these data
reflect circadian rhythms, rather than modulation by
transient environmental stimuli.

The combined results from developing animals
less than 20 days old, show that circadian influence
on LTP is not present from birth, but suggest that
the modulation begins sometime during the third
postnatal week. This developmental trend is in
accordance with reports that circadian modulation
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