
ARTICLE Communicated by Jonathan Victor

Synaptic Information Storage Capacity Measured
With Information Theory

Mohammad Samavat
msamavat@ucsd.edu
Department of Electrical and Computer Engineering, Jacobs School of Engineering,
University of California, San Diego, and Computational Neurobiology Laboratory,
Salk Institute for Biological Sciences, La Jolla, CA 92037, U.S.A.

Thomas M. Bartol
bartol@salk.edu
Computational Neurobiology Laboratory, Salk Institute for Biological Sciences,
La Jolla, CA 92037, U.S.A.

Kristen M. Harris
kharris@utexas.edu
Center for Learning and Memory and Department of Neuroscience, University
of Texas at Austin, Austin, TX 78712, U.S.A.

Terrence J. Sejnowski
terry@salk.edu
Computational Neurobiology Laboratory, Salk Institute for Biological Sciences,
La Jolla, CA 92037, U.S.A., and Department of Neurobiology, University
of California, San Diego, La Jolla, CA 92093, U.S.A.

Variation in the strength of synapses can be quantified by measuring
the anatomical properties of synapses. Quantifying precision of synap-
tic plasticity is fundamental to understanding information storage and
retrieval in neural circuits. Synapses from the same axon onto the same
dendrite have a common history of coactivation, making them ideal can-
didates for determining the precision of synaptic plasticity based on the
similarity of their physical dimensions. Here, the precision and amount
of information stored in synapse dimensions were quantified with
Shannon information theory, expanding prior analysis that used signal
detection theory (Bartol et al., 2015). The two methods were compared
using dendritic spine head volumes in the middle of the stratum ra-
diatum of hippocampal area CA1 as well-defined measures of synaptic
strength. Information theory delineated the number of distinguishable
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782 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

synaptic strengths based on nonoverlapping bins of dendritic spine head
volumes. Shannon entropy was applied to measure synaptic information
storage capacity (SISC) and resulted in a lower bound of 4.1 bits and up-
per bound of 4.59 bits of information based on 24 distinguishable sizes.
We further compared the distribution of distinguishable sizes and a uni-
form distribution using Kullback-Leibler divergence and discovered that
there was a nearly uniform distribution of spine head volumes across
the sizes, suggesting optimal use of the distinguishable values. Thus,
SISC provides a new analytical measure that can be generalized to probe
synaptic strengths and capacity for plasticity in different brain regions
of different species and among animals raised in different conditions or
during learning. How brain diseases and disorders affect the precision of
synaptic plasticity can also be probed.

1 Introduction

In the late 19th century, Santiago Ramón y Cajal (1894) proposed that mem-
ories are stored at synapses and not through the generation of new neurons.
Since then, there has been an extensive search for synaptic mechanisms re-
sponsible for learning and memory. Although synaptic plasticity is well es-
tablished as an experience-dependent mechanism for modifying synaptic
features, the precision of this mechanism is unknown. Connectomic stud-
ies are generally concerned with whether synapses exist between pairs of
neurons, an important starting point; we are concerned here with quantify-
ing synaptic strengths, the precision of synaptic plasticity, and the amount
of information that synapses can store.

The existence of both intrinsic and extrinsic origins of variability and
dysfunction of structural modulation (Kasai et al., 2021) motivates further
exploration of the potential precision with which synaptic strengths can
be adjusted. From an information theory perspective, there can be no in-
formation stored without precision. Indeed, the more precise that synaptic
plasticity is, the more distinguishable synaptic strengths are possible and
the greater the amount of information that can be stored at synapses. The
synaptic strength is itself the information that is stored at a synapse, and this
information is retrieved with subsequent synaptic transmission. Synapses
are complex dynamical structures and “synaptic strength” encompasses in-
trinsic pre- and postsynaptic variables that can be modulated by synaptic
plasticity. Among the variables are probability of presynaptic vesicular re-
lease, number of docked vesicles, number of postsynaptic receptors, and
degree of short-term facilitation/depression, to name but a few. Thus, when
a particular synapse is activated repeatedly, the resulting responses are ex-
pected to vary in amplitude in a way that is consistent with the synaptic
strength (Kandaswamy et al., 2010; Klyachko et al., 2006).

Several studies have shown that synaptic strength is highly correlated
with dendritic spine head volume (SHV; Harvey & Svoboda, 2007; Mat-
suzaki et al., 2004; Harris, 2020, reviewed in Yang & Liu, 2022). (Note that
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SISC Measured With Information Theory 783

the abbreviations used in the article are listed at the end of section 1.) Pairs
of dendritic spines on the same dendrite that receive input from the same
axon (SDSA pairs) occur naturally in the brain and are expected to have ex-
perienced the same activation histories (Harris & Sorra, 1998). Hence, the
precision of synaptic strength can be estimated by measuring the difference
between the spine head volumes of individual SDSA pairs. These measure-
ments can then be used to calculate the number of distinguishable synaptic
strengths in a particular population of synapses.

Signal detection theory was used in previous studies to estimate the
number of distinguishable synaptic strengths (Bartol et al., 2015, Bromer
et al., 2018). Here, Shannon information theory was applied to overcome
the limitations of using signal detection theory. Information theory is based
on the distinguishability of messages sent from a transmitter to a receiver in
the presence of noise. In the case of synaptic strength, the postsynaptic den-
drite or soma is the receiver that must distinguish the strengths of messages
coming from discrete synaptic inputs. The distinguishability of the received
messages depends on the precision with which synaptic plasticity sets the
strength of individual synapses. The new approach calculates the number
of bits of Shannon information stored in synaptic strengths and thus quan-
tifies empirically the synaptic information storage capacity (SISC).

The analysis of precision begins by measuring the coefficient of variation
(CV) of SDSA pairs, as in Bartol et al. (2015). The new method differs in that
nonoverlapping binning is performed across the entire range of sampled
dendritic spines with the bin width, or precision level, equal to the median
CV of the SDSA pairs. Comparison of the new SISC measurements with the
previous results demonstrates that the new method is more robust to out-
liers and, importantly, can reveal gaps and variation in the shape of the dis-
tribution. Finally, in the new SISC analysis, the number of distinct synaptic
strengths converges toward the actual (population) number of strengths as
the number of spine head volumes increases and the true shape and extent
of the distribution are sampled. Statistics and information theory allowed
us to quantify the precision and information capacity of the message. Ear-
lier versions of this new method appeared in Samavat et al., 2022a, 2022b;
Samavat, Bartol, Harris et al., 2022; Samavat, 2023; Samavat et al., 2024).

Abbreviations of Terms

Term Abbreviation

Synaptic information storage capacity SISC
Postsynaptic density PSD
Spine head volume SHV
Same dendrite same axon SDSA
Coefficient of variation CV
Kullback-Leibler divergence KL divergence
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784 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

2 Results

2.1 Precision Analysis. Precision is defined as the degree of repro-
ducibility of a measurement; it is often mistaken for accuracy, which is de-
fined as the deviation of the average measurement from a reference value
(see Figure 4 in the appendix). The CV shown in equation 2.1 is a statistic
that measures variation within a sample, defined by the standard deviation
(σ ) (see equation 2. 2, normalized by the mean of the sample (μ), making it
a useful metric for measuring precision. Here we used (σ ) = 2 in equation
2.2 because we analyzed SDSA pairs.

CV = σ

μ
(2.1)

σ =
√√√√ 1

N − 1

N∑
i=1

(xi − μ)2 (2.2)

Precision is a key factor for discovering the number of distinguishable
synaptic strengths. Spine head volume provides a convenient estimate
of synaptic efficacy as it correlates well with other measures of synaptic
strength (Bartol et al., 2015). The precision is estimated from the CV of spine
head volumes among the SDSA pairs (see Figure 1A). This value is then
used in algorithm 2 in section 5.5 to assign each spine head to its appropri-
ate bin (algorithm 2 provides the steps and details). To accomplish this, we
first determined that the measurement error among four investigators was
smaller than the intrinsic variability of the measured spine head volumes
among the SDSA spine pairs (see Figure 1B). Then we could calculate the
median CV, after calculating the CV of all SDSA pairs for the CA1data, as
an estimate of the precision of synaptic plasticity (see Figure 1D). The CVs
among the SDSA pairs varied from pair to pair by over an order of magni-
tude within the data set, but there was no significant trend from the smallest
to the largest spine head volumes. These outcomes suggest that the synaptic
plasticity based on the coactivation history among small spines is equally
precise for small and large spines. This median CV value establishes the pre-
cision level of SDSA pairs and applies to the other synapses of similar type
(i.e., spines here) sampled from a particular brain region, not just spines in
the SDSA pairs. Thus, the median CV is used for binning and calculation of
the number of distinguishable synaptic strengths as described below.

2.2 Measurement of the Distinguishable Strength Distribution. The
performance of the new method for measuring the distribution of distin-
guishable synaptic strengths was tested on the same CA1 data set that was
previously analyzed with signal detection theory (Bartol et al., 2015). A total
of 288 spine head volumes were fully contained within a 6 × 6 × 5 μm3 CA1
neuropil volume (see Figure 2A). Previous signal detection theory revealed
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SISC Measured With Information Theory 785

Figure 1: Same dendrite, same axon pairs and implication for information the-
ory. (A) Visualization of a pair of spines (an SDSA pair) (with gray necks) from
the same dendrite (yellow) and the postsynaptic density (PSD) associated area
(red, indicated by white arrows) formed by the same axon (black stippling) with
presynaptic vesicles (white spheres). (B) The 3D reconstructions of the spine
head volumes of the five data sets were performed with the same protocol as
that used for the CA1 data set in Bartol et al. (2015). Four individuals made
hand tracings from the two-dimensional electron micrographs; after alignment,
the automatic 3D reconstruction was made. The average measurement error is
about 0.01 as shown in the figure. (C) Bartol et al. (2015) showed that 26 dis-
tinguishable gaussian distributions constructed with equal CV and overlap of
∼31%, corresponding to SNR of 1, spanned the range of spine head volumes of
SDSA pairs (black and blue gaussians). Extension of this analysis to include in
the data set with the complete range of measured spine head volumes (plus in-
cluding a 0.55 μm3 spine head found in another data set (Harris & Stevens, 1989)
is illustrated by red gaussian distributions. The blue gaussians have means lo-
cated in gaps that lack sample data. Gaps are identified by methods developed
in this article (see Figure 2B). All the gaussian distributions are constructed by
using the median CV (fixed ratio for standard deviation over the mean for each
gaussian distribution), a fixed amount of overlap between consecutive gaus-
sians, a fixed range (min, max), and all with the same area under the curve
(Bartol et al., 2015). (D) Uniform CV across the range of SDSA spine head vol-
umes. The gray region is the 95% confidence interval for the regression line.
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786 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

Figure 2: Binning the spine head volumes from the area CA1 data set. (A) Illus-
tration of all 288 spine heads that are fully contained within the reconstructed
volume. The postsynaptic density (PSD) associated area is displayed in red and
spine head membranes in yellow. (B) In this histogram (one-dimensional bin
diagram), the y-axis indicates the frequency of spine head volumes within each
bin, and the x-axis indicates the value of spine head volumes in log scale. The
width of each bar is equal to the median CV, which appears constant on a log
scale. The starting value of each bar along the x-axis is derived from the small-
est SHV of the given bin (see section 5 for details of Figure 2B generation.) The
dashed rectangular box around the histogram is plotted to demonstrate the fre-
quency of spine head volumes if the 288 spine head volumes were distributed
uniformly among the 24 bins, pr = 1/NS, where NS is the number of sizes (num-
ber of bins).

26 distinguishable gaussian distributions with equal CV when assuming an
overlap of 31% (see Figure 1C; the black represents gaussians). This amount
of overlap is equivalent to assuming a signal-to-noise ratio (SNR) equal to
1 and a 69% discrimination threshold common in psychophysics (Schultz,
2007). Here, in the new method, we derived discrete entities by binning
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SISC Measured With Information Theory 787

the distribution of spine head volumes, where the width of the bins for the
new analysis was determined by the precision analysis protocol with the
median CV of 0.12 ± 0.046 for the CA1 SDSA pairs (see Figure 1D), without
any assumptions regarding the signal-to-noise ratio (see algorithms 1 and
2 in, respectively, sections 5.4 and 5.5). The outcome resulted in 24 distin-
guishable strengths (shown by SHV on log scale in Figure 2B and by bin
number in appendix Figure 5). The number of spines in each bin is read-
ily visualized (see appendix Figure 5), as are vacancies in the distribution
(see Figure 2B). Since the histogram of spine head volumes is shown on a
log scale in Figure 2B, the bins appear to be equal in width because of the
constant value of CV, and the shape of the CV-width binned distribution re-
places the skewed histogram of absolute sizes of spine-head volumes. The
highest frequency occurs in bin #10, which contains 36 spine head volumes,
and there appears to be a second peak at around bin 21 (see Figure 2B and
appendix Figure 5). It is critical to note that the 24 bins found by the new
method are conceptually different from the potential multiple modes de-
rived from the distribution of spine head volumes.

2.3 Shannon Information Storage Capacity of Synapses. The concept
of entropy, H(P), comes from the field of thermodynamics and measures the
number of possible configurations in a system. Shannon entropy is defined
as the average of Shannon information (Shannon, 1948). Shannon entropy
measures the amount of information in a set of distinguishable strengths,
each of which has a certain probability of occurrence. With more informa-
tion, it is possible to distinguish more strengths. The Shannon entropy of a
discrete random variable is defined as follows:

H(X ) = E

[
log2

1
PX (X )

]
=

∑
x∈x

PX (x)log2
1

PX (x)
. (2.3)

The Shannon information per synapse was calculated from the frequency
of spine head volumes in the bins and using equation 2.3, where each bin
is considered one of the possible synaptic strengths of the system, that is,
one of the possible “messages” that can be reliably sent and received. The
observed Shannon entropy H(P) (expressed in log2 “binary units” or “bits”
of information) for the CA1 data set is listed in column 4 of Table 2, setting
a lower bound for SISC at 4.1 ± 0.39 bits in this data set. These data clearly
demonstrate that the synapses are not simple one bit on/off switches as was
widely assumed.

The closeness of the observed value of SISC to the theoretical upper
bound on SISC is defined as the benchmark distribution having maximum
entropy, which occurs when there is a uniform distribution across the pos-
sible sizes. The KL divergence between the two discrete probability distri-
butions does not depend on the choice of scale. Under these circumstances
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788 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

Table 1: Number of Distinguishable Strength, or Sizes, (NS) of Spine Head
Volumes.

Data Number Median CV Number of Median spine
Set of SDSA of SDSA set spine head head volumes

Type pairs (± SEM) volumes (μm3) (± SEM) SRF NS

CA1 10 0.12 ± 0.046 288 0.018 ± 0.00091 163 24 ± 5.40

Notes: For columns 3 and 5, the term, SEM stands for standard error of median calculated
using algorithm 1. SRF = scale range factor. For calculating the standard error on NS,
bootstrapping is used. For each of the 10,000 bootstrap samples, algorithms 1 and 2 are
used with resampling the spine head volumes and resampling 10 CV values of the 10
observed SDSA pairs to calculate the binning threshold.

Table 2: Calculating the Entropy of Synaptic Strengths Based on the Calculated
Frequency of Spine Head Volumes in Distinguishable Sizes.

Mean CV of Shannon Maximum KL
Data of all Entropy Entropy divergence Efficiency
Set SHVs SHVs H(P) H(U ) KL (P||U) ratio η

CA1 0.031 ± 0.0021 1.045 ± 0.066 4.1 ± 0.39 4.59 ± 0.37 0.49 ± 0.068 89%

Notes: For columns 2 to 6, standard error calculated with bootstrapping using algorithms
1 and 2 concurrently. SHV = spine head volume. Note that η = (1 − KL/KLMAX) × 100
and stands for efficiency ratio.

equation 2.3 reduces to log2(NS), where NS is the number of bins. Thus, the
maximum number of bits of Shannon information is calculated as H(U) =
log2(NS), the entropy of a uniform distribution among NS sizes. In this CA1
data set, NS = 24 ± 5.40 (see Table 1) and sets an upper bound of 4.59 ± 0.37
bits for SISC (see Table 2, column 5), a value that is within the error range
of the observed lower bound of 4.1 ± 0.39 bits.

2.4 KL Divergence Analysis. Measurement of the distance between
an observed distribution with a reference probability distribution can be
done by KL divergence. A uniform distribution is the discrete probabil-
ity distribution with maximum entropy when there is no constraint on
the distribution except having the sum of the probabilities equal 1 for a
fixed number of sizes. Formally, the KL divergence between the distribu-
tion of spine head volume bins (P) and the uniform distribution of sizes
(U) is the difference between cross entropy of (P) and (U) and the entropy
of (P): [H(P,U ) − H(P)]. The closeness of fit between the distribution of
the distinguishable values to the maximum entropy distribution was de-
termined with the fixed number of sizes (bins of spine head volumes) as
the only known constraint on the distribution. When the distribution of
the distinguishable values approaches the uniform distribution, the KL
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SISC Measured With Information Theory 789

divergence decreases and the Shannon entropy will approach maximum
(see Figure 3).

The distribution of CA1 spine head volume bins was compared with
a uniform distribution having 24 sizes (see Figure 2B and Table 2). The
outcomes provide an upper bound on SISC for these sampled synapses
but not necessarily for other synapses. We also calculated the ratio of the
KL divergence values over the maximum value that KL divergence can
possibly have (KL/KLMAX) where KLMAX equals the entropy of a uniform
distribution, H(U). This ratio was then used to define the efficiency ratio
η = (1 − KL/KLMAX) × 100. It measures the efficiency of the measured KL di-
vergence value with respect to the maximum value it could hypothetically
have (see Table 2, column 7). The higher the efficiency ratio, the more effi-
cient is the use of distinguishable values for the storage of synaptic strength
values across the population of synapses (see Figure 3). The KL divergence
for this CA1 data set is 0.49 ± 0.068, a value suggesting that the number
of distinguishable values approaches maximum entropy with an efficiency
ratio of 89%. Thus, the reported distinguishable values are close to the max-
imum entropy.

This outcome provides a new statistic to assess information storage effi-
ciency. This analysis for CV-width binned distribution of synaptic strength
is more useful for comparisons between experimental conditions or be-
tween regions in diseased or normal brains. The precision level has a high
impact on the efficiency ratio (on both KL in the numerator and KLMAX in
the denominator of η). Namely, cases with similar precision levels may still
result in an insensitivity of the efficiency ratio to reflect deviations from a
uniformly binned distribution. The efficiency ratio of binned distributions
or the information storage capacity can be the same, while the shapes of the
spine-head size distributions are different. Thus, when evaluating the infor-
mation storage capacity of synaptic strength, both the entropy of synaptic
strength and the efficiency ratio should be determined.

3 Discussion

This article introduces a new analytical approach for determining SISC that
has several advantages over our prior approach (Bartol et al., 2015). SDSA
pairs are independent synapses, but because they are driven by the same
input, they respond in a similar way and arrive at the same size due to the
precision of similar underlying mechanisms in each synapse. Thus, the CV
in the dimensions of these coactive pairs provides the basis for determining
the range over which synaptic strength is essentially equal. There are more
distinguishable strengths with greater Shannon information as the CV de-
creases due to higher precision. Bootstrapping analysis was used to esti-
mate the standard error of the precision level, number of distinguishable
strengths, and Shannon entropy and established SISC as a robust measure.
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790 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

Figure 3: KL divergence of the sample spine head volumes approaches maxi-
mum entropy. (A) Hypothetical minimal KL divergence showing all spines in
one bin (synaptic strength). (B) Hypothetical distribution with 50% KL diver-
gence produces a distribution with six bins. (C) Actual spine head volumes of
the CA1 data set distributed using algorithm 2 shows efficiency ratio η equals
89%. (D) Uniform distribution of the spines across the 24 sizes produces the min-
imal KL divergence and efficiency ratio equals 100%. The y-axis indicates the
frequency of spine head volumes within each bin, and the maximum decreases
from panels Ato D to reflect the proportional decrease of spine frequency in each
bin. Note the change in scale of the y-axis in panels A to D. The x-axis indicates
the bin number that reflects a unique synaptic strength. The dashed rectangular
box around the distributions of sizes in each graph illustrates the frequency of
spine head volumes if the samples were uniformly distributed among the 24
bins as in panel D. KL divergence value and efficiency ratio η are shown in all
scenarios.
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SISC Measured With Information Theory 791

The new method was tested on the same data from area CA1 of the hip-
pocampus to compare it with the prior approach.

3.1 Advantages of the New SISC Analysis. There are several advan-
tages to the new SISC method for assessing the storage capacity of synapses.
Signal detection theory (Bartol et al., 2015) assumed that the width of the
gaussian curves, based on the CV of the SDSApairs, was distributed equally
along the full range of sampled spine head volumes, without accounting
for gaps in the distribution. Thus, the signal detection theoretical approach
tended to overestimate the true number of distinct synaptic strengths be-
cause the distribution of the population was assumed to be continuous. In
the new SISC analysis, the number of distinct synaptic strengths defined
by the individual bins converges toward the true number of sizes as the
number of spine head volumes increases and the true shape of the distri-
bution is sampled. A second advantage is that the full population of spine
head volumes, not just the SDSA pairs, is included in the analysis, greatly
improving the statistical power of the estimate. A third advantage is that
there are no free parameters in the estimate, unlike signal detection theory
where the degree of overlap of the gaussians is a free parameter. A fourth
advantage is that the new method is robust to the outliers. The largest spine
head volume we found in an earlier data set in rat hippocampal area CA1
was 0.55 cubic microns (Harris & Stevens, 1989). It is worth mentioning that
by adding this one value to the 288 CA1 spine head volumes would result in
25 distinguishable strengths, an increment of 1 size using SISC. In contrast,
using the prior signal detection approach results in 39 distinguishable gaus-
sians spanning the range, a 50% increase in the number of sizes. Thus, the
previous method is not robust to outliers. Finally, the new method, based
on information theory, allows access to the frequency of the bins, making it
possible to compute the entropy of the distinguishable synaptic strengths,
the number of modes in the CV-width distribution, and any gaps in the
range of functionally distinguishable synaptic strengths.

3.2 Information Theory of Synapses. Information theory has been ap-
plied to analysis of spike trains (Dayan & Abbott, 2005) but has not been
used at the level of synaptic strength. We have shown that the amount of
information represented by synaptic strengths in neural circuits can be
quantified by the distinguishability of synaptic dimensions. Here dis-
tinguishability fundamentally depends on the precision of the synaptic
strength measurements and histories of activation. When the precision of
synaptic strengths is low, the amount of information that can be stored in
the ensemble of the neurons will also be low. Complete absence of precision
implies a random process for setting synaptic strength and no information
being stored at synapses. Because spine head volume is highly correlated
with synapse size (Bartol et al., 2015), the precision of spine head volumes
can be used to assess the distinguishability of the synaptic strengths. High
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792 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

precision yields a greater number of distinguishable spine head volume
bins and hence higher information storage capacity. The number of dis-
tinguishable strengths is not static but varies with the history of synaptic
plasticity and is different in different parts of the brain. Thus, the amount
of information that a population of synapses can store is not fixed but can
be changed.

Comparison with the uniform distribution was made because it is the
most conservative assumption when anatomical constraints on the spine
head volume distribution are not known. When no constraint is applied
(except the number of sizes being fixed), the uniform distribution has max-
imal entropy among every discrete distribution. This is why the uniform
distribution for a fixed number of sizes is a lower bound on optimality and
an upper bound for SISC. For example, the entropy of the observed synaptic
strength distribution in area CA1 based on the probability of the 24 distin-
guishable sizes was 4.1 bits, while the maximal entropy for the same num-
ber of sizes is the uniform distribution with 4.6 bits of information. Thus,
the KL divergence analysis provided a reliable measure of the closeness of
the CV-width binned distributions of spine head volume to the maximum
entropy distribution with an efficiency ratio of 89%. The amount of informa-
tion stored across 24 sizes is equivalent to the maximum information that
could hypothetically be stored across 17 sizes. The closer these two numbers
are, the more efficient is the use of the distinguishable synaptic strengths.

If biological constraints were found at some point in the future, the max-
imal entropy distribution could be calculated under those constraints, and
the distance between the empirical distribution (such as log normal) and
maximal entropy distribution (with optimized parameters) could be deter-
mined. For example, if one calculates the maximal entropy distribution as
a log normal distribution with well-constrained shape parameters (i.e., bi-
ological constraints on μ and σ ), under those conditions the KL divergence
would be different.

It is worth noting that synaptic activity, and hence SISC, is highly vari-
able and changes during an animal’s behavior. This article is concerned only
with the optimality of information storage capacity based on proxies for
synaptic strength as the unit of storage of information and the distribution
of strengths at a single moment of time. This analysis sets a lower bound on
the information storage capacity of synapses. Other sources of storage ca-
pacity that include biochemical and structural substrates across timescales
could augment our estimate of long-term plasticity based on spine head
sizes. Another question is how working memories are stored in neural cir-
cuits and how efficiently the synaptic strength is used in those codes. These
issues are beyond the scope of this study and are open for future research.

4 Conclusion

Information storage and coding in neural circuits have multiple substrates
over a wide range of spatial and temporal scales. How information is coded
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SISC Measured With Information Theory 793

and its potential efficiency depend on how the information is stored. The ef-
ficiency of information storage was analyzed by comparing the distribution
of synaptic strengths, as measured in spine head volumes, with the uniform
strength distribution, the maximum entropy distribution. The outcomes re-
veal a near maximal efficiency in storing information across the distinguish-
able sizes of spine head volumes. These new measures of precision and
efficiency can be used to assess the impact on SISC of other factors, such
as pre- or postsynaptic dimensions and composition and variation across
brain regions and species. It will be possible to determine effects on SISC of
intrinsic differences or changes in the location or dimensions of key subcel-
lular components, such as mitochondria, smooth endoplasmic reticulum,
polyribosomes, endosomes, and perisynaptic astroglia. These opportuni-
ties to generalize SISC will result in greater understanding of the role of
each component individually, and in concert, in determining the precision
and efficiency of synaptic strength and plasticity. Ultimately, the outcomes
should give new insight into how disrupted synapses result in cognitive
decline during aging or as a consequence of neurological disorders.

5 Methods and Materials

5.1 Summary of Methods. The CA1 data set was published in Harris
et al. (2015) and Kinney et al. (2013), and reanalyzed in Bartol et al. (2015)
and this article.

5.2 Reconstruction of a 6 × 6 × 5 μm3 Volume of Hippocampal Area
CA1 Neuropil. The 3DEM data set that was used in this study was re-
constructed from serial thin sections in the middle of the stratum radia-
tum of hippocampal area CA1 from an adult male rat (55–65 days old)
(Mishchenko et al., 2010; Bourne et al., 2013). The dense reconstruction of
6 × 6 × 5 μm3 of hippocampal neuropil reanalyzed in this study was origi-
nally processed as previously described in a study of the extracellular space
(Kinney et al., 2013). In this data set, authors in Bartol et al. (2015) iden-
tified 10 axon-coupled synaptic pairs. To perform an accurate and robust
geometric analysis of the dendrites, dendritic spines, and axons, the recon-
structed surface meshes for artifacts were corrected by Bartol et al. (2015)
to be computational-quality meshes as described elsewhere (Kinney et al.,
2013; Edwards et al., 2014). The postsynaptic densities (PSDs) and presy-
naptic active zones (AZs) were identified in the serial section transmission
electron microscopy (ssTEM) images by their electron density and the pres-
ence of closely apposed presynaptic vesicles. A total of 449 synaptic con-
tacts were found in the dense reconstructed volume of neuropil. Bartol et al.
(2015) excluded a number of synapses from the analysis if they were par-
tially clipped by the edge of the data set (142) or were shaft synapses (20),
leaving 287 valid synapses on dendritic spines in the dense model.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/5/781/2367911/neco_a_01659.pdf by R
am

ona M
archand on 01 M

ay 2024



794 M. Samavat, T. Bartol, K. Harris, and T. Sejnowski

5.3 Segmentation of the Dendritic Spines. Bartol et al. (2015) used
Blender’s functionality, which is user extensible via a Python interface for
creating add-ons. Bartol et al. created a Python add-on for Blender that en-
abled the selection of the mesh triangles of the dendrite corresponding to
the spine head and whole spine of each individual spine. The add-on tagged
each selected set of triangles with metadata for the spine name and geo-
metric attributes of the head, whole spine, and neck as described below.
The selection of the spine head was made by hand based on a standardized
procedure in which the junction between the head and neck was visually
identified as halfway along the concave arc as the head narrows to form
the neck (see Figure 3 and the figure supplement 1A in Bartol et al., 2015).
To select the whole spine, a similar visual judgment was made to locate
the junction where the neck widens as it joins the dendritic shaft. Once the
appropriate area was selected, the tool was designed to automatically cre-
ate the convex hull of the selected region. The closed mesh formed by the
Boolean intersection of the convex hull and the dendrite was used to deter-
mine the measured volume of the spine head or whole spine. The volume
of the neck was calculated by taking the difference between these two mea-
surements. Areas were computed from the selected regions for spine head
and whole spine.

5.4 Code Availability. The codes for algorithms used in this study
will be available in the following github link upon publication: https://
github.com/MohammadSamavat.

5.5 Standard Error of Median. The standard error of median for the
precision levels of each of the CA1 data sets’ SDSA pairs is calculated with
algorithm 1. The idea is to generate 1000 bootstrap samples of length n, each
sampled from the n SDSA pairs with replacement, to estimate the standard
error of median for the n SDSA pairs (see Table 1, column 3). The standard
error of the median of spine head volumes follows the same procedure us-
ing algorithm 1.
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5.6 Binning Algorithm. To construct the bins, spine head volumes are
sorted from smallest to the largest. The first value (smallest value) is selected
and the CV of that value and the remaining head volumes are calculated in
a pairwise manner. The head volumes for which the calculated CV is be-
low the threshold (the median value of the SDSA pairs CV) are assigned to
the first bin and deleted from the pool of N spine head volumes. This pro-
cedure is repeated until the CV exceeds the median SDSA pairs CV and a
new bin is formed. New categories are formed until all the remaining spine
head volumes are assigned to a bin and the original vector of spine head
volumes is empty (see algorithm 2 for details). It is guaranteed that the
coefficient of variation between each random pair within each bin is less
than the threshold value measured from the reconstructed tissue SDSA
pairs. All spine head volumes are rounded to two significant digits for the
display.

For Figure 2B, the y-axis shows the percentage of spine head volume
counts in the respective bin. The x-axis shows the spine head volumes in
μm3 on the log scale. The width of each bin is exactly the median value of the
set of CV values plotted in Figure 1D (example: for bin-1 [x1,x2], CV(x1,x2)
= 0.12, where x1 is the smallest spine head volume in CA1 and x2 is a larger
hypothetical head volume that has a CV of 0.12 with x1). The height of bin-1
is the number of spine head volumes in that range normalized to the total
number of spine head volumes in this data set (288).

5.7 Information and Entropy in Synaptic Strengths. Shannon’s infor-
mation theory is the rigorous basis for a new method to quantify empirically
SISC—that is, the number of bits of Shannon entropy stored per synapse.
For the new method, first the precision of SDSA pairs was measured from
the coefficient of variation (CV) of the pairs (illustrated in Figure 1D, also
used in Bartol et al., 2015). The measured precision was then used as a
binning threshold for nonoverlapping bin analysis (see Figure 2B and ap-
pendix Figure 2) using algorithm 2. This analysis yielded the number of
distinguishable sizes of spine head volumes in the sample of reconstructed
dendrites.

Next, the Shannon information per synapse is calculated by using the
frequency of spine head volumes in the distinguishable values where each
bin is a different message for the calculation of Shannon information. The
maximum number of bits is calculated as the log2(NS) where NS is the num-
ber of sizes or categories that set an upper bound for the SISC.

When calculating the amount of entropy per synapse, the random vari-
able is the synapse size, and the number of distinguishable values is the
realization of a random variable for the occurrence of each size. The prob-
ability of the occurrences of each size is calculated by the fraction of the
number of spine head volumes in each of the bins over the total number of
spine head volumes in the reconstructed volume.
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The information coding efficiency at synapses is measured by KL diver-
gence to quantify the difference between two probability distributions—
one from the categories of spine head volumes and the other from a corre-
sponding uniform distribution with the same number of categories.

5.8 Statistical Analysis. The statistical analysis and plots were gener-
ated using Python 3.4 with NumPy (Harris et al., 2020), SciPy (Virtanen
et al., 2020), and Matplotlib (Hunter, 2007) and R package ggplot2 (Wick-
ham, H., 2011).

For the precision analysis, we used the coefficient of variation (see
equation 2.1) as a metric to show the precision level by calculating the ratio
of standard deviation (see equation 2.2) over the mean of N joint synapses.
Here N is 2 but can take higher values as up to 7 have been detected in pre-
vious studies. Since this is a sample from the unknown population of joint
synapses, we used the corrected standard deviation formula with 1/(N −
1) factor.

Bootstrapping was done by combining algorithms 1 and 2 to calculate
the standard errors as explained in sections 5.4 and 5.5.

The standard errors of the entropy, efficiency ratio, maximum entropy
for uniform distribution, and KL divergence (see Table 2, columns 2–5) are
all calculated similarly using the bootstrapping technique explained in al-
gorithm 1. (See Efron et al., 2021, for further information regarding boot-
strapping for the calculation of standard error.)
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Appendix

Figure 4: Precision and accuracy are different measures. When a process or
system is repeated with the same input, the amount of variation in the out-
put shows the precision level of the process. For accuracy, there is a reference
frame with which the average value of measurements is compared. The graphs
illustrate a low-precision and low-accuracy outcome (top left), low-precision
and high accuracy (top right; the average of the positions is almost on the bull’s
eye), high precision and low accuracy (bottom left), and high precision and high
accuracy (bottom right).
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Figure 5: There are 24 distinguishable bins for synapses in area CA1. The upper-
right inset contains 3D reconstructions of the smallest and largest spine head
volumes. The new binning algorithm 2 obtained 24 distinguishable strengths
of the 288 spine heads based on the median CV value (see Figure 1D). The y-
axis shows the number of spine head volumes in each bin, and the x-axis shows
the number of unique bin categories. Each spine head volume is rounded to
three significant digits and stacked vertically in sorted order for each bin. The
3D object shown below each bin is the reconstructed spine head of the largest
head volume in that bin.
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