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Can energy landscape roughness of proteins
and RNA be measured by using mechanical
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By considering temperature effects on the mechanical unfolding
rates of proteins and RNA, whose energy landscape is rugged, the
question posed in the title is answered in the affirmative. Adopting
a theory by Zwanzig [Zwanzig, R. (1988) Proc. Natl. Acad. Sci. USA
85, 2029-2030], we show that, because of roughness characterized
by an energy scale ¢, the unfolding rate at constant force is
retarded. Similarly, in nonequilibrium experiments done at con-
stant loading rates, the most probable unfolding force increases
because of energy landscape roughness. The effects are dramatic
at low temperatures. Our analysis suggests that, by using temper-
ature as a variable in mechanical unfolding experiments of proteins
and RNA, the ruggedness energy scale &, can be directly measured.

isualizing folding of proteins (1-3) and RNA (2) in terms of

the underlying energy landscape has been fruitful in antic-
ipating diverse folding scenarios. The polymeric nature of these
biomolecules and the presence of multiple energy scales asso-
ciated with the building blocks of proteins and RNA make their
underlying energy landscape rugged. By rugged, we mean that
the energy landscape consists of several minima separated by
barriers of varying heights. To understand the diversity of the
folding pathways, it is necessary to determine the characteristics
of the energy landscape experimentally.

It is difficult to represent the large dimensional space of the
energy landscape in terms of a few parameters. However, the
ruggedness of the energy landscape can be described in terms of
an energy scale e regardless of the precise nature of the
underlying reaction coordinate. Within the energy landscape
picture, it is clear that rapid folding to the native conformation
on a finite (biologically relevant) time scale is unlikely if & /kgT
>> 1 (kg is the Boltzmann constant, and 7 is the temperature)
(1). Folding of proteins and RNA for which e/kpgT > 1 is,
therefore, dominated by kinetic traps.

There are a number of proteins that fold kinetically in an
apparent “two-state” manner (4). Similarly, tRNA and indepen-
dently folding subdomains of large RNA (for example, the PSabc
construct of Tetrahymena thermophila Group I intron) are also
predicted to follow “two-state” kinetics (2). However, due to the
polymeric nature of proteins and RNA, there is inherent incom-
patibility between local structures (a-helical B-strands in protein
and helical “secondary” structures in RNA) and the global folds
that results in topological frustration (2) even for “two-state”
folders. Length scale-dependent ruggedness in the free energy
landscape arises due to topological frustration. For “two-state”
folders, the roughness arising from the presence of multiple
energetic interactions is likely to be small i.e., ¢ /kgT ~ O(1). By
O(1),we mean 0 < g/kgT < 5. Although no direct measurement
of ¢ has been made for biomolecules, it has been inferred by
using a diffusion limited time scale for loop closure in model
peptides, that e/kgT ~ 2 (5).

The purpose of this paper is to show that mechanical unfolding
experiments can be used to extract e. The stretching of proteins
(6-10) and, more recently, RNA (11-13) already has begun to
provide glimpses of their underlying energy landscape. In con-
cert with theoretical studies (9, 14, 15), these measurements can
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be used to construct the free energy landscape of proteins and
RNA. For example, we have shown that, by using dynamics of
nonequilibrium stretching experiments, one can infer the distri-
bution of free energy barriers in the absence of force (16).
Measurement of distribution of free energy barriers requires
following time-dependent events, at the single molecule level,
when unfolding is induced by force. At present, laser optical
tweezer and atomic force microscopy methods can measure
force(f)—extension(z) (f — z) curves either at constant f or as a
function of loading rates. We show here that, by using such
experiments, ¢ can be directly measured if the force-dependent
unfolding rates can be measured over a range of temperatures.

Caricature of Energy Landscape of RNA and Proteins

We consider proteins and RNA that fold and unfold by an
apparent “two-state” transition. Thus, the conformations of the
biological molecules belong either to the native basin of attrac-
tion (NBA) or the unfolded basin of attraction (UBA). To
describe the effect of force on RNA and proteins, we assume that
the reaction UBA = NBA may be described by using a suitable
low-dimensional reaction coordinate. Although the reduction of
a multidimensional free energy landscape into one (or two)
dimensions is a major simplification, it has been shown that such
a description gives nearly quantitative results for a folding rate
of minimally frustrated sequences (17). When subject to force,
the 1D parameter, namely the extension of the molecule, is a
natural reaction coordinate.

The free energy profile for UBA = NBA in terms of the scalar
reaction coordinate, x, is taken to be “smooth” on long (18)
(greater than the persistence length of the polypeptide or
polynucleotide) length scales. As stated in the Introduction, we
expect that for “two-state” folders, because of topological
frustration, a scale-dependent roughness is superimposed on the
overall smooth free energy landscape. Following Zwanzig (18),
we assume that the length scale for roughness is Ax << R, (R,
is the dimension of RNA or protein of interest), and the overall
energy scale of roughness is . Thus, on length scales comparable
to Ax, there are free energy barriers with typical barrier heights
on the order of ¢ (Fig. 1). Our calculations are valid only when
&/AF* < 1 (AF* is the average barrier height separating UBA
from NBA). Zwanzig (18) showed that diffusion in such a rough
landscape can be extremely slow, especially at low temperatures,
even for modest values of . Here, we extend these calculations
in the presence of applied force to show that € can be measured
by using single molecule pulling experiments.

Unfolding at Constant Force

The energy landscape (see Fig. 1 for a caricature) can be
decomposed into a smooth part Fy(x), on which is superimposed
the roughness F(x). If a suitable 1D reaction coordinate can
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Caricature of the rough energy landscape of “two-state’ proteins and RNA by using x, the coordinate that couples to force f, as the reaction constant.

For clarity, we have represented the U state by an unbounded potential. The graph (Left) shows that on a long length scale, the landscape is smooth, whereas
on short length scales, there are a number of barriers. We used F(x) = Fo(x) + Fi(x) = — Ax(x — p)(x + p) + & cos 2mgx to generate the rugged energy
landscape. The parameters in the potentialare A = 1 pN/nm2, p = 5nm, e = 3.0 pN-nm, ¢ = 2.0 nm~'. The random variables £ and g are assumed to be given
by Gaussian distribution with dispersions g = 0.5 nm~'and o, = 0.5 pN-nm. On application of force, [shown as -fx (Left)], the landscape is deformed (see Right).
The extent of tilting depends on the precise value of force. The tilted potential, along with changes in the mean barriers, is shown for three values, f < f, f =
f, and f > f., where f, the critical value of force, is 25 pN for the chosen parameters.

describe mechanical unfolding of RNA and proteins, the force-
dependent unfolding rate can be obtained by solving Kramer’s
problem in the overdamped limit. Accordingly, we assume that
diffusion in such an energy landscape is described by the
Smoluchowski equation. The objective is to compute the mean
first passage time (mfpt), (¢, x), for transition from NBA to UBA
in the presence of force. The mfpt (¢, x) is the mean time for
reaching x starting from xo. Assuming a reflecting barrier at
a(a < xo < x), Zwanzig (18) showed (see also ref. 19) that

X 1 (>
(t, x) = f dyeﬁF°<Y>+¢*<y>Df dze PRE*I @ 1)

X0 a

where D is the bare diffusion constant, B = 1/kgT, and e? @) =
(e™Pr@) where (...) is the spatial average of Fi(z) over the
length scale Az. The structure of the equation for (¢, x) suggests
that there exists an effective Smoluchowski equation (18),
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that describes diffusion in a spatially averaged potential F*(x) =
Fo(x) — kgTy~(x). In Eq. 2, p(x, ¢) is the probability distribution
function, and D*(x) = e~ ¥ ®De~ % @) is the spatially averaged
effective diffusion constant. Assuming Eq. 2 is valid, we wish to
solve Kramer’s problem (20) (computation of the unfolding rate
of the native state) on application of f for the energy landscape
sketched in Fig. 1. For the analysis to make sense, e/AF¥ < 1,
where AF* = AF} — fAx is the value of the mean barrier (Fig.
1) that separates UBA from NBA. The inequality e/AF* < 1 will
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ensure that the biomolecule of interest would fold in an apparent
two-state manner when f = 0. When f # 0, the effective potential
is F*(x) = Fo(x) — fx — kgTy~. By expanding this potential
around the minimum x, and the transition state x,; to quadratic
order, the unfolding rate can be calculated by using Kramer’s
theory. Let wo be the frequency of the minimum around the
NBA and o, be the frequency around the saddle point (the
transition state). The unfolding rate is

2y
kpl(f) = <e—BF1><eBF1>eBAF§—Bf-(nrxu>7 [3]
W0 Wi

where AF% = Fo(x;) — Fo(xo), and v is the friction coefficient.
It follows from Zwanzig’s analysis (18) that the effect of rough-
ness manifests only in the renormalization of the effective
diffusion constant. If we assume that the amplitude of roughness
is independent of the position along the reaction coordinate, and
that it is distributed as a Gaussian, then (e ~#F1) = (¢PF1), so that

(kEl(f )
lOg kal

) = B(AF] — fAx) + log (*"")%, [4]

where k¢ L= 2my/wow,s and Ax = x,; — xo. The central result
in Eq. 4 shows that roughness can lead to a non-Arrhenius
temperature dependence in the mechanical unfolding rate. The
result in Eq. 3 can also be extended to the case when there is
memory in the friction, i.e., when vy is time dependent. The
Kramer’s result for this case is kz(f) = [([$2(A§)/4 + op]V? —
FNG)/2)/wis] wol27m (ePF1y~2exp(— B(AF§ — fAx)), where % is the
Laplace transform of y(¢), and A{j is the normal mode frequency
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defined at the transition state (20). For weak roughness BF; <
1, we get

log (kg '(f)/ko ') = BIAF§ — fAx) + BXFY), (5]

which might be more useful in analyzing experiments.

Stretching at a Constant Loading Rate

Mechanical unfolding experiments are typically performed far
from equilibrium by stretching the ends of the molecule at a
constant pulling speed. Large changes in the loading rate can be
achieved by variations of the spring constant (related to the
curvature of the optical trap potential in laser tweezer experi-
ments) of the cantilever in atomic force microscopy (AFM). To
fully probe the energy landscape of proteins and RNA, it is
necessary to explore their response over a wide range of loading
rates, ry = df/dt = kv (21), where k is the spring constant of the
cantilever, and v is the pulling speed. By using a combination of
laser optical tweezer, bioforce membrane probes, and AFM, one
can cover loading rates that vary by several orders of magnitude.
In these experiments, the histogram of forces required to unfold
the biomolecule is measured by stretching one molecule at a
time.

The effect of roughness on the dependence of the most
probable unfolding force on the loading rate, ry, can be calculated
by using Kramer’s theory. Under a constant loading rate, the
curvatures of the barrier w,s as well as the barrier height change
as f increases with time. The unfolding rate changes dynamically
as (see Eq. 3)

k (f( )) — M 7B{Fo(xn(f(t) Foleo(fo))}+ Bfe) (xus(f(2)) xn(ft)))
R 27rye PF1y?

[6]

The time-dependent probability of unfolding is P(¢)
k(r)exp(— [ dk(t)). With r, = df/dt, the distribution of forces
for overcoming the barrier is

1 fo1
P(f) = rkR(f)eXp<— f df' kR(f'>). [7]
! 0
The most probable threshold force that drives unfolding is

obtained by using dP(f)/dflf=p = 0, which leads to
J i ( () )
Ax() |28 o (Frye R iy T
LA AFY)(F) vp(f) keT
* log (1 U T g T vD<f*>Ax<f*>)

+ log <eBF‘>2}, (8]

where AF{(f) = Fo(x(f)) — Fo(xo(f)), ' denotes differentiation
with respect to the argument, Ax(f) = x,(f) — xo(f) is the
distance between the transition and native states, and vp(f) =
wo(No(f)/2my. If AFy(f), Ax(f), and the intrinsic angular
frequency at the top and bottom of the barrier are relatively
insensitive to the change of force, the second term on the right-hand
side of Eq. 8 would vanish, leading to f* o (kgT/Ax)log ry (21).
However, if the loading rate spans a wide range, the resulting f*
can deviate substantially from the predicted logarithmic depen-
dence on ry.

It follows from Eq. 8 that the effect of roughness on f* is
similar to that shown in Eq. 4. As the extent of roughness
increases, the value of f* can increase substantially. To use Eq.
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8 to estimate (ePF1)? shifts in /* due to roughness must exceed the
dispersions in P(f) when & ~ 0.

Numerical Results

The theory presented here shows that, by using constant force
mechanical unfolding experiments, the magnitude of roughness
can be measured if temperature can be varied. Our central result
has been derived by assuming that, in the presence of force, the
Smoluchowski equation (Eq. 2) is valid for the roughness
averaged potential. To test the validity of this assumption, we
have performed Monte Carlo simulations for a model potential
F(x) = Fo(x) + Fi(x) = —Ax(x — p)(x + p) — f(x + p/V/3) +
e cos(2mgx). The strength of the random potential ¢ and its
range g ! are taken from a Gaussian distribution with zero
mean. For this potential, with the parameters given in the legend
to Fig. 1, we calculated the mean unfolding time for a number
of realizations of the random potential. The mean unfolding time
is computed from the histogram of the first passage time, which
is the first time the particle reaches the boundary atx = D =
1.5p. For a given force, the mean first passage time is computed
as a function of temperature in the range of 3.80 pN - nm =
ksT = 4.50 pN - nm. The numerical simulations were performed
by using the smart Monte Carlo algorithm (22) with parameters,
v = 4.14 X 1078 pN - sec/nm, and time step, df = 2.0 X 10710
sec.

In accord with our prediction (Eq. 4), we find that the
numerically computed logarithm of mfpt, log 7, as a function of
kBT for the three values of f, can be fit as log T = a + b/kgT +
c/k§T? (Fig. 2). If the theoretlcal prediction is valid, we expect
that the value of ¢ = &2, which for our model is £ = 9.0 pN? -
nm? independent of f. We have used Eq. 5 instead of Eq. 4
because the value of ¢ is less than the temperature used in the
simulation, i.e., e /kgT ~ O(1). The numerical fits give &2 = 9.9,
9.9, and 8.9 for 15 pN (< f), 25 pN (= fc), 40 pN (> fo),
respectively. The critical force fc for our choice of parameters is
25 pN. The coefficient b = B(AF; — fAx) should be equal to 24.3,
0.0, 0.0 for 15 pN (< f.), 25 pN (= f.), and 40 pN (> fo). The
fits give b = 23.4, 0.9, and —0.8, respectively. Thus, the
numerical results confirm the validity of Eq. 5 in the limit when
the roughness is small. If ¢/kgT >> 1, the temperature depen-
dence of force-induced unfolding would have significant curva-
ture, as can be seen by a cumulant expansion of log(efF1)? (Eq. 4).

Proposed Experiments

The theoretical considerations presented here allow us to pro-
pose mechanical unfolding experiments that can be used to
measure a key statistical characteristic of the energy landscape
of proteins and RNA, namely the roughness scale . Measure-
ments of the unfolding rates as a function of temperature with
the force held constant can be used to estimate ¢ (Egs. 3 and 5).
There is a significant advantage in the proposed experiments to
measure e. If the theoretical predictions hold good, measure-
ments of & with single-molecule mechanical unfolding experi-
ments would not involve any assumption about the underlying
folding reaction coordinates. Moreover, no modeling about the
dynamics of proteins and RNA is required to extract € from
mechanical unfolding experiments.

Using Egs. 3 and 4 to measure & is most efficacious if
temperature variation of ko does not compromise the 51gnal
arising from the third term in Eq. 4 or Eq. 5. Because k; ' = m,
the viscosity of the solution, corrections due to variations of n
with respect to 7, have to be taken into account in using Eq. 3
to analyze experiments. The variable temperature range in
mechanical unfolding experiments is likely to be 5°C < T < 50°C.
Over this temperature range, n for water varies as exp (4 / T)
(23). As a result, the coefficient of the 1/72 term in log k' (f)
can be estimated by using mechanical unfolding experiments.
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Fig 2. The logarithm of the mean first passage time, log (7) as a function of temperature at three values of f. The symbols are numerical results, and the lines
are for using log (r) = a + b/T + ¢/T? (Eq. 5).

Let us consider how to use mechanical unfolding experiments ~ variables in Eq. 8 are functions of f*. A plausible way of using Eq.
at a constant loading rate to obtain e. A straightforward appli- 8 to estimate ¢ is illustrated in Fig. 3, which shows P(f) and f* as
cation of Eq. 8 to measure ¢ is difficult, because a number of  a function of the loading rate at two different temperatures. By
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Fig 3. (A) Distribution of unfolding forces P(f) at two temperatures and two loading rates for the potential described in the Fig. 1 legend. The parameters are
the same as in Fig. 2. (B) Dependence of f*, the most probable unfolding force, as a function of the loading rate rr at two temperatures. The curvature in the
lines indicates deviations from f = In r¢. The procedure to extract & from these curves is described in the text.
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using such 2D experiments (done by varying rr and T'), one can
obtain the values of ry that give rise to identical f* value at two
temperatures. The measured 7y values at temperature T and 7>
allow us to estimate &2 (for small e/kgT) with

2 kBTZ X kBT1
&= kBTZ - kBT]
(T AX(f) rf(Tz)Ax(f*))
<"BT1 log” ks, ~Fel21087 ety )

91

In obtaining Eq. 9, we have assumed that the second term in Eq.
8 is small. The numerical results (Fig. 3) for the energy landscape
in Fig. 1 show that the separation in f* as a function of
temperature is greater at smaller loading rates that are easily
accessible in laser optical tweezer experiments. Moreover, the
dispersion in P(f) is also smaller at smaller loading rates. These
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calculations show that measurements of f*(rs, 7)) with optical
tweezer experiments can be used to measure &2 by using Eq. 9.

Conclusion

We have shown that including temperature as a variable in
mechanical unfolding experiments can yield valuable quantita-
tive measurements of the characteristics of the energy landscape
of proteins and RNA without any assumption about their
dynamics. In our previous studies (16), we had shown that the
phase diagram in the (f, T) plane of protein can reveal many
features about intermediates in the folding/unfolding problem.
Previous theoretical studies (9, 14, 15) and the present work show
that variable temperature mechanical unfolding experiments
have great potential in probing the energy landscape of biomol-
ecules at the single-molecule level.
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