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ABSTRACT We present two methods to probe the energy
landscape and motions of proteins in the context of molecular
dynamics simulations of the helix-forming S-peptide ofRNase A
and the RNase A-3'-UMP enzyme-product complex. The first
method uses the generalized ergodic measure tocompute the rate
of conformational space sampling. Using the dynamics of non-
bonded forces as a means ofprobing the time scale for ergodicity
to be obtained, we argue that even in a relatively short time (<10
psec) several different conformational substates are sampled. At
longer times, barriers on the order of a few kcal/mol (1 cal =
4.184 J) are involved in the large-scale motion of proteins. We
also present an approximate method for evaluating the distri-
bution of barrier heights g(EB) using the instantaneous normal-
mode spectra ofa protein. For the S-peptide, we show thatg(EB)
is adequately represented by a Poisson distribution. By com-
paring with previous work on other systems, we suggest that the
statistical characteristics of the energy landscape may be a
"universal" feature of all proteins.

The dynamics of the internal motions in proteins spanning
several decades in time is thought to be a direct consequence
of the "complexity" of the underlying energy landscape (1).
The wide distribution of time scales for protein motion and its
consequences has been described in the experiments of
Frauenfelder and coworkers on ligand binding in heme pro-
teins (2). Based on the relaxation characteristics over a wide
temperature range, they have argued that a single monomeric
protein can possess many nearly isoenergetic conformations,
which are referred to as conformational substates (1, 2). The
individual substates are believed to be separated by barriers of
differing heights. There appears to be a wide distribution of
barrier heights ranging from a few hundredths to many kcal/
mol (1 cal = 4.184 J). The existence ofthe multivalley structure
of the energy landscape together with the notion of a distri-
bution of barriers has been used to analyze quantitatively the
kinetics of binding of small ligands to myoglobin over a wide
temperature range (2, 3). Frauenfelder and coworkers (1, 2)
have argued that it is necessary to postulate the existence of
conformational substates (CS) in which the CS have structure
on several energy and length scales. This idea explains
naturally the presence of an array of internal motions in
proteins as well as fluctuations on several length scales (1).
The existence of many time scales implies that, in general,
relaxation functions should exhibit nonexponential kinetics.
In addition, the rate constant for rebinding apparently ex-
hibits marked deviation from the Arrhenius law; non-
Arrhenius temperature dependence is obtained only when the
rebinding constant is examined over a range oftemperatures.

Molecular dynamics simulations have also provided some
evidence for the existence of conformational substates. Fol-
lowing the analysis of a 300-psec trajectory generated by
solving Newton's equation for myoglobin, Elber and Karplus
(4, 5) have suggested that there are many thermally accessible
minima in the neighborhood of the native structure. Structural

differences between distinct CS corresponded to relative
orientations of the helices, which seem to be initiated by
side-chain rearrangements. The measure used by Elber and
Karplus is approximate and simple arguments can be used to
show that these authors have overestimated the number of
distinct minima explored by myoglobin in 300 psec at room
temperature. More recently, a much more ambitious study of
the topography ofthe energy landscape in flexible systems has
been completed by Czerminski and Elber (6, 7). They were
able to map out the distinct minima in a tetrapeptide and obtain
the location of the transition states separating the minima in
the small peptide molecule. The protocol used by Czerminski
and Elber yields a set of "optimized" reaction pathways
separating the minima. Perhaps the most important aspect of
their study is that the general features (see below) of the
distribution of barrier heights in this small molecule seems to
be quite similar to that postulated for a much larger protein
molecule-namely, myoglobin (8). Finally, Czerminski and
Elber showed by using an approximate kinetic model for
conformational transitions that as a consequence of the dis-
tribution of saddle points there are several relaxation times.
The study by Czerminski and Elber, while interesting, is
computationally intensive and a similar characterization ofthe
energy landscape in larger polypeptides will be far more
difficult.
Although the studies cited above have gone a long way in

establishing the existence and importance of CS, relatively
little has been done to elucidate the time scales involved in
exploration of the underlying energy landscape. The ultimate
goal, of course, is to reveal the relationship between protein
function and the associated energy landscape (9). Our goals
in this paper are the following. (i) To devise simple methods
that can be readily used to assess the time scales on which a
protein samples the available conformational space. We use
recently developed techniques for quantitatively measuring
the approximate rate at which proteins search the energy
landscape as a function of temperature. In the process, we
gain insight into the rate of sampling for the conformational
degrees offreedom. (ii) To compute the distribution ofbarrier
heights in the energy landscape ofproteins. We show that the
distribution of saddle point energies is approximately de-
scribed by the Poisson law for energies greater than a certain
cut-off value. We wish to stress that our objective is to devise
methods that can be used in conjunction with standard
molecular dynamics simulations to obtain qualitative infor-
mation about the dynamics of the energy surface that is
explored at a specified temperature. The complete charac-
terization of the energy landscape along the lines attempted
by Czerminski and Elber, while important, may not be as
relevant for finite temperature dynamics.

METHODS
The analysis presented in this paper is based on finite duration
molecular dynamics (MD) simulations in vacuum. We carried
out calculations on the S peptide of bovine pancreatic RNase

Abbreviation: CS, conformational substate(s); MD, molecular dy-
namics.
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A and the RNase A-3'-UMP enzyme-inhibitor complex. The
protein parameters are based on the version 19 CHARMM
parameter set. The inhibitor and histidine parameters were
developed separately and will be described elsewhere (J.E.S.,
C. Lim, and M. Karplus, unpublished data). The dynamics
were performed at constant energy using a modified version 20
of the CHARMM simulation program (10).
As emphasized in the Introduction, the generic feature of

the complex energy landscape that dictates protein dynamics
is the multivalley structure with a rather wide spectrum of
barrier heights. A question of interest is to obtain the time
scales for the transition between different conformational
substates that are being sampled in a given observation time.
Let us assume that there are two distinct CS labeled a and ,(
separated by an effective free energy of activation AFR.
Conformations belonging to a and (3 would mix only if in the
process of time evolution the molecule makes a transition
from a to (. Such an activated transition requires times on the
order of Toexp(AF* /kBT), where T0 is typically on the order
ofa vibrational period. Therefore, to assess whether there are
distinct minima separated by barriers, it is necessary to
follow the time development oftwo trajectories starting from
independent initial conditions. Let

1 rt
faN(t) = - fdsFN(s) [1]

t

be the time average of the force due to the nonbonded
potential experienced by the ith atom. Superscript a indicates
that the starting conformation maps onto CS a. Similarly, let
fiN(t) be the time averaged nonbonded force whose initial
configuration maps onto CS (. Since the initial conformations
have to be independent, sufficient care must be used to
generate them in any numerical computation. The force
metric dFN(t) is defined as

i N
dFN(t) = - IIfN(t) -fPN(t)II [21N i=1 2

The properties of dFN(t) are easy to discuss. If the initial
conformations mix on the time scale of the simulations, then
dFN(t) should vanish for long times. On the other hand, if the
initial conformations belong to distinct CS then dFN(t) -O 0
only for times longer than roexp(AFa/kBT), which can be
very long even for moderate values ofAF I/kBT. IfdFN(t) for
long times does not vanish, then it follows that the two
trajectories explore distinct conformational substates. The
most important aspect of the force metric is that in cases in
which there is a bottleneck between the initial conformations
a and X that the protein overcomes in the process of simu-
lation, the time scale for such a transition can be obtained
from the scaling relation (11, 12)

dFN(t)IdFN(O) - 1DFN(T)t. [3]

The parameter DFN (analogous to the maximal Lyapunov
exponent) gives the temperature-dependent rate at which the
conformational space is being explored. Estimates of barrier
heights separating two conformational substates may be ob-
tained from Eq. 3. Since DFN gives roughly the rate for
sampling conformations belonging to a distinct CS, it fol-
lows that AFRO kBTln(DFNTO). According to the CS picture,
there is a wide range ofbarriers in proteins and, consequently,
AFts obtained from this relation should be viewed as the
average free energy barrier between the two CS a and ,(. This
interpretation assumes that the distinct CS are dilutely con-
nected. It should be noted that other quantities, such as the
energy ofthe ith residue, local density, etc., may also be used
to monitor the rate of sampling of conformational space.

The temperature-dependent parameter DFN gives an esti-
mate of the average barrier height separating the various CS
that are sampled during a MD simulation. It is, however,
desirable to obtain a direct expression for the distribution of
barrier heights connecting the various CS. The distribution of
barrier heights can in principle be obtained by using the force
metric. To do this, one has to compute DFN(T) for a large
number of pairs of initial conformations. This is not only
cumbersome but it also does not offer any physical insight.
Here we use an approximate method for computing g(EB)
from the analysis of the temperature dependence of the
fraction of unstable instantaneous normal modes. Typically,
normal mode calculations are carried out at zero temperature
by expanding the potential function about a mechanically
stable energy minimum. Originally in the study of glasses
Rahman et al. (13) and more recently in the context ofmelting
(14) and the liquid to glass transition (15-17), a number of
studies have suggested that the fluidity of the system may in
fact be associated with the fraction of unstable modes. The
unstable modes, characterized by imaginary frequencies, are
associated with motion over regions of the potential surface
with negative curvature-namely, the saddle points. Here we
show that by using a few simple approximations g(EB) may
be directly estimated from a molecular dynamics trajectory.
Our method is easily used for any protein for which the
potential function is known. A more accurate determination
of g(EB) can be made by extending the time scale of the
simulation. However, we will show that the robustness ofthe
CS picture becomes apparent even within our limited simu-
lation time scales.
We use the following method to obtain g(EB). Ifthe potential

energy function is known, then the equilibrium fraction of
unstable modes can be computed as a function of temperature.
For example, we can divide the configuration integral at a fixed
temperature into regions ofthe potential correspondingto stable
and unstable motion. This decomposition allows us to identify
the fraction of imaginary frequencies as

fu(T) = Zunstable(T)/Z(7), [41

where Z.,table(T) is the configuration integral for the unstable
motion and Z(T) is the total configuration integral. In general,
the required configuration integrals for proteins cannot be
performed analytically and one requires numerical methods
for evaluating fu(T). Nevertheless, a simple normal-mode
model can be used to obtain g(EB) from the calculation off (T).
We make two assumptions. (i) The nonlinear modes of the
protein can be adequately described by the corresponding 3N
one-dimensional normal modes. This appears to be reasonable
at least near one of the local minima of the conformational
substates as well as near the saddle point. (ii) We approximate
the true potential separating two CS by a piecewise local
harmonic potential. The local harmonic approximation to the
free energy surface is likely to be valid (18), even though the
dynamics of the protein as a whole is highly anharmonic.
These two approximations, which enable us to reduce the
complex landscape into a series of local harmonic wells
separated by various barrier heights, can be rationalized if the
fluctuations of the protein about an instantaneous position are
due to barrier crossing and not simply stable anharmonic
motion. Within this approximate characterization ofthe actual
free energy landscape, the equilibrium fraction of unstable
modesfu(T, EB), for a particular value ofthe barrier height EB,
can be readily calculated. The result (unpublished data) is

e-2e fdxex2

fu(T, EB) = [5]
dte-2 + e-2 2rfdxex2
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where 42 = 83EB/2. If we assume a continuous distribution of
barrier heights, the fraction of unstable modes measured at a
particular temperature can be written as

fE
fu(T) = |dEsg(EB)fu(T, EB). [6]

By calculatingfu(T) from a molecular dynamics trajectory (or
a Monte Carlo simulation) at a series of temperatures, one
can in principle extract an approximate form for the distri-
bution of barrier heights g(EB) for the system. The above
equation, which is a Fredholm integral equation of the first
kind, is a general way of obtaining g(EB). The analytic
representation of the kernel fu(T, EB) that we have obtained
using an idealized caricature of the energy landscape is
perhaps the simplest one imaginable. The knowledge ofg(EB)
together with DFN(T) gives us a way of quantifying the
dynamics of exploration of the complex energy landscape in
proteins. The above computational methods were used to
analyze molecular dynamics trajectories at several temper-
atures for the S-peptide of RNase A and the RNase A-3'-
UMP enzyme-product complex.

RESULTS AND DISCUSSION
We have calculated the nonbonded force metric at several
temperatures for the enzyme-product complex by using a
number of molecular dynamics trajectories. The reason for
computing dFN(t) is the following: proteins adopt well-
defined three-dimensional structures because residues far
apart in the protein (nonbonded residues) would prefer to be
close in the configuration space. Thus, the initiation of
folding is determined by the time scale required for estab-
lishing the nonbonded contacts (19). The relaxation of non-
bonded forces, probed by dFN(t) for times on the order of 100
psec, can yield useful insights into the dynamics of early
events in the establishment of these contacts. Fig. 1 shows a
plot of dFN(t) as a function of time for the enzyme-product
complex at several temperatures. Initial configurations for
the a and 83 states were taken as endpoints of a 50-psec
trajectory at a higher temperature. This figure shows that
there is a rapid initial convergence followed by a slow, long
time decay. We have analyzed the initial decay that occurs at
times less than -10 psec. This analysis shows that there is a
spectrum of relaxation times as indicated by the presence of
several distinct slopes in the plot of the reciprocal of dFN(t).
This shows that even in the 10-psec regime the protein
samples several different CS that are separated by small
barriers. These CS would correspond to the substructure in
the tier organization of substates proposed by Frauenfelder et
al. (2). The short time exploration of substates is due to the
peptide exploring an essentially local harmonic potential
minimum and the relatively constant interactions along the
main chain, which are nearly independent of the peptide
conformation.
For times greater than =15 psec (see Fig. 1), we notice a

rather slow decay in dFN(t). Because dFN(t) probes the
dynamics of two independent trajectories that map onto
distinct CS, this implies that there is a bottleneck that is
overcome only on time scales greater than those explored by
our simulations. This is suggestive of the existence of an
organization of CS into tiers of minima separated by barriers
of increasing height. The exploration of various substates
depends on the temperature, and this is illustrated by ana-
lyzing dFN(t) in terms of the properties of the individual
trajectories. The decomposition of the force metric into
fluctuation metric and the cross terms provides an interesting
contrast between the low- and high-temperature dynamics.
We find that at 40 K the independent trajectories are frozen
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FIG. 1. Reciprocal of the normalized nonbonded force metric,
dFN(0)/dFN(t), as a function of time for the RNase A-3'-UMP
enzyme-product complex. Thin line, data at 40 K; thick line, data at
120 K; open circles, data at 240 K; solid circles, data at 300 K.

into a particular CS and fluctuate about the average structure
without making any significant dihedral angle transitions.
This implies that the initial conditions for the two trajectories
reside in separate CS and transitions between these and other
substates occur on a much longer time scale than explored by
our simulations. On the other hand, at 300 K we find that the
two trajectories mix and the barriers between the CS can
indeed be overcome on time scales on the order of 75 psec.
As a quantitative estimate ofthe average barriers between the
CS that are sampled, we have computed the temperature
dependence of DFN(T) using the scaling relation given in Eq.
3. The average effective barrier height can be estimated from
the relation Toexp(AF*/kBT) = DFN. If T0 is taken to be =1
psec we estimate AF* to be 2.2-3.5 kcal/mol. These values
fall in the range of activation energies computed by Czer-
minski and Elber for model peptides (7).
The results for the force metric can also be used to show

that the long time relaxation in the protein is strongly tied to
infrequent events such as dihedral angle relaxation (unpub-
lished data). To further explore the nature of the relaxation
process, we have computed the distribution ofbarrier heights
g(EB) for the S-peptide by calculating the instantaneous
normal-mode spectrum for eight temperatures ranging from
40 K to 500 K. At low temperatures, the eigenfrequencies are
real and the density of states agrees with the 0 K normal-
mode spectrum. As the temperature is increased, the number
of imaginary eigenfrequencies (corresponding to unstable
modes) increases and the center of the imaginary lobe of the
spectrum shifts to higher values. Fig. 2 shows the fraction of
unstable modesfu(T) computed as a function of temperature.
The fraction ofunstable modes is zero at 0K and quickly rises
through 100 K, at which there is a break leading to a weaker
slope through higher temperatures.
The behavior offu(T) can be interpreted in terms of the

model leading to Eqs. 4-6. A large number of modes in the
peptide will remain stable even at the highest temperature.
Other modes, such as those localized in dihedral angle space
and the low frequency, continuum-like global fluctuations,
are imagined to move over a roughly periodic potential with
barriers distributed according to g(EB). Physically, we know
that the quick rise infu(T) even at low temperatures indicates
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FIG. 2. Fraction of unstable modes as a function of temperature
calculated from a 75-psec constant energy trajectory ofthe S peptide.
Shown for comparison is the fit to f.(T) using Eq. 6 (solid circles).

significant anharmonicity in the lowest frequency normal
modes and the presence ofmany low barriers where EB 100

K. The slower rise at higher temperatures indicates the
presence of many high barriers and the rate of increase in
fu(T) at these temperatures will depend on the nature of
g(EB). The physical insight provided by the changes infu(T)
with temperature leads us to postulate the following equation
for g(EB):

g(EB) = aO(EB - Elow) + bEseeEB/EK. [7]

There is a constant density of low energy barriers for EB <
E10w [written in terms of the Heavyside function e(E)] and
Poisson distribution of higher energy barriers. The parame-
ters for our model are a = 0.5 and E1ow = 0.2 kcal/mol, and
b = 0.2 and Eo = 1 kcal/mol, respectively, which we derived
from fittingfu(T) by Eqs. 5, 6, and 7 for a periodic piecewise
parabolic potential. Our equation for g(EB) with the above
choice of parameters solves the integral Eq. 5 adequately
over the entire temperature range. This is shown in Fig. 2,
where a comparison between fu(T) computed by MD simu-
lations and that computed by evaluating the right-hand side
of Eq. 5 is given.
A plot of g(EB) for the S-peptide along with a distribution

of energy barriers for the tetrapeptide Ala-Val-Ala-Ala com-
puted by Choi and Elber (20) is shown in Fig. 3. The
tetrapeptide data are plotted only with a resolution of 1
kcal/mol and show a large number of low energy barriers, EB
< 1 kcal/mol, in agreement with our result. The two curves
for larger values of EB show qualitatively similar behavior,
although our results indicate a significantly smaller number of
high energy barriers. In all likelihood, this is because we have
computedfu(T) only for limited values of T, and inversion of
fu(T) to obtain g(Es), for larger EB would require data at
significantly higher temperatures. Nevertheless, given the
differences in the two systems, it appears that the Poisson
distribution ofbarrier heights is a robust feature ofthe energy
landscape in proteins. This is further corroborated by noting
that similar distributions have been found experimentally in
heme proteins (8). The major consequences of the dynamics
of proteins (i.e., nonexponential relaxation) readily follow
from this distribution of activation energies.

FIG. 3. Distribution of barrier heights g(EB) extracted from a fit
of the temperature dependence of f.(T). For comparison, we also
show the distribution of adiabatic barrier heights calculated directly
for the tetrapeptide Ala-Val-Ala-Ala by Choi and Elber (20).

The calculations presented here show the importance of
the CS picture in the dynamics of proteins. The major
observation is that even on relatively short time scales there
are several CS that are explored, which implies the existence
of small barrier heights (a few hundredths kcal/mol). The
behavior of dFN(t) at the longest time examined here shows
that barriers on the order of 2-3 kcal/mol are encountered.
These results together with the normal-mode analysis for
determination of g(EB) show that the statistical characteris-
tics of the energy landscape responsible for the complex
dynamics in proteins are manifested in the presence ofa wide
distribution of activation barriers. The results presented
here, when combined with similar previous theoretical find-
ings on model peptides (6, 7) and experimental studies on
heme proteins (8), can be used to assert that the Poisson
distribution for g(EB), which is one of the characteristics of
a complex energy landscape, may be a "universal" aspect of
all proteins. The range of barrier heights may in fact be
necessary for the flexibility and enzymatic function of pro-
teins and nucleic acids.
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