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ABSTRACT Monte Carlo simulations on a class of lattice
models are used to probe the thermodynamics and kinetics of
protein folding. We find two transition temperatures: one at
To, when chains collapse from a coil to a compact phase, and
the other at Tf (< TO), when chains adopt a conformation
corresponding to their native state. The kinetics are probed by
several correlation functions and are interpreted in terms ofthe
underlying energy landscape. The transition from the coil to the
native state occurs in three distinct stages. The initial stage
corresponds to a random collapse of the protein chain. At
intermediate times i¢, during which much of the native struc-
ture is acquired, there are multiple pathways. For longer times
rr (>> r,) the decay is exponential, suggestive of a late
transition state. The folding time scale (= rr) varies greatly
depending on the model. Implications of our results for in vitro
folding of proteins are discussed.

It is known that biologically active proteins fold into a native
state characterized by a fairly well-defined three-dimensional
structure (1). However, the mechanism-the kinetic aspects
and pathways-of the folding process remains as one of the
most important unsolved problems in structural biology. It is
not clear whether the native state corresponds to a global
free-energy minimum structure (2) or whether kinetic con-
siderations trap the protein into a metastable minimum (3, 4).
The experimental studies of the kinetics of folding have been
difficult to carry out; thus the determination of the folding
mechanism has remained elusive (5, 6). However, the re-
binding kinetics of small ligands to heme proteins following
flash photolysis (7, 8) suggest that kinetic events in the folding
process should be dictated by the complex energy landscape
in proteins (9, 10).

Several authors (11-16) have used random heteropolymer
models to gain useful insights into the thermodynamics of
protein folding. In this paper, we adopt a different and more
natural approach (3, 4, 17-21) by considering three (nonran-
dom) lattice models of proteins. Our main objective is to
understand the dynamics of the folding process in terms of
the underlying energy landscape. The most novel aspect of
our study is that important features ofthe energy landscape-
namely, barrier heights and the connectivity between low-
energy states of the system-have been characterized. Thus,
relaxation processes can be interpreted directly in terms of
the computed topography ofthe energy landscape and folding
pathways.
Our understanding of macromolecules has been greatly

advanced from the study ofidealized models. In keeping with
such an approach, we have considered a class of simple (d =
2)-dimensional models of proteins. These consist of self-
avoiding walks (SAWs) ofN sites on the square lattice. The
sites in a SAW can only be of two types, hydrophobic (H) or
hydrophilic (P). A sequence is specified by the nature of each
lattice site (H or P). In our models, interactions involving P
sites are taken to be zero. These models embody the domi-
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nant interactions in proteins: the flexible connectivity of the
residues represented here as sites; self-avoidance arising
from steric repulsion between distinct residues; and attrac-
tive interactions (potential of mean force) between hydro-
phobic beads, representing the major driving force of the
folding process. Dill and Chan (17, 18) have argued that many
of the phenomena observed in proteins can be adequately
understood in terms of model A (see below). For all the
models, a given structure and its mirror image have identical
energies. The energy ofa configuration for each ofthe models
is as follows.

A. Heteropolymer Model. Given the coordinates of the
SAW sites (ri, i = 1, 2,. . . , N), the energy ofa configuration
is determined by the number oftopological contacts involving
only H sites. Such contacts satisfy the criteria Ji - jl > 3 and
rVIri - rjl = a, where a is the lattice spacing. Each
hydrophobic contact is assumed to have an attractive energy
-e, with E - 0. The energy of a configuration for this model
is given by EA = - E7Xi>j8r*,a (17, 18), where the sum is over
only HH pairs.

B. Bond Saturation Model. The maximum number of fa-
vorable nonbonded contacts in the square lattice is three. In
model B the decrease in energy when there are multiple
nonbonded H contacts is assumed to be nonadditive. Thus,
we have taken into account possible packing hindrance. The
energy of a chain explicitly depends on the number of HH
contacts at each site and is taken to be

EB= -eJ (g 2 ) [1]

where g(0) = 0, g(1) = 3/5, g(2) = 9/10 and g(3) = 6/5, and
the sum is only over HH pairs. Thus, many pairwise inter-
actions are preferred to three- and four-particle interactions.

C. Affine-Sites Model. In proteins the interaction between
residues can be quite varied depending on the location as well
as the nature of residues in the primary sequence. This
specificity is mimicked by dividing the H sites into noninter-
acting subsets. As a further restriction we have chosen the
subsets among the sets of topological contacts found in the
ground state ofmodels A and B (see, e.g., Fig. 1) (19, 20). The
allowed interactions between H sites belonging to the same
subset are the same as in model A.
For each model, we have generated random sequences of

H and P sites forN = 15 and the number ofH sites NH = 8.
We have found-using exact series enumerations of d = 2
SAWs-that only 3.2% of all possible sequences lead to a
unique ground state for model A, whereas the corresponding
percentage for model B is 7.6%. Since we are primarily
interested in the kinetics of approach to the native state
(believed to be unique in proteins), we have considered only
those sequences of H and P residues that lead to a nonde-
generate ground state (except for the mirror image). Numer-
ical results presented here are restricted to those obtained for
the sequence described in Fig. 1. Qualitatively similar results

Abbreviations: SAW, self-avoiding walks; MC, Monte Carlo; H,
hydrophobic; P, hydrophilic.
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FIG. 1. Ground-state configuration for the sequence shown. N =
15; e, H; o, P. The total number of distinct structures is 296,806. For
model C, the subsets of interacting H sites are the following {1, 8, 10,
14), {2, 7), {3, 14}, and {10, 13). Notice that these interactions involve
only nearest neighbor contacts present in the ground state.

have been found for other sequences as well. The simulation
results have been obtained by using single-site lattice Monte
Carlo (MC) dynamics (22) and a standard Metropolis algo-
rithm. The energy scale, E, the Boltzmann constant, kB, and
the lattice spacing, a, have been set equal to unity.
The energy levels and the associated degeneracies have

been explicitly enumerated, from which the thermodynamic
properties ofthe folding process can be exactly calculated. On
the other hand, the dynamical properties are determined not
only by the spectrum but also by the connectivity ofthe energy
states. However, given the multidimensional nature of this
problem, an accurate representation of the energy landscape
connecting different states is in general difficult to construct.
Nevertheless, due to the discreteness of our models, we have
been able to characterize the connectivity of at least some of
the relevant low-energy states. Fig. 2 displays energy land-
scapes indicating the minimal energy pathways between ad-
jacent states for models A-C in the neighborhood of the
ground state (S); i.e., every connecting pathway between two
local minima has to go over an energy barrier of at least the
height indicated on the figure. Each well contains a number of
slightly different overall structures connected to the local
minimum by at least one monotonically decreasing energy
pathway. We have computed the total number of distinct
structures belonging to a given well (at or below the reference
energy represented by the dashed lines in Fig. 2) by an
extensive MC search (see Fig. 2 for some examples).
The folding kinetics has been probed by studying different

relaxation functions as a function of time-i.e., MC steps.
These functions include the radius of gyration, (RG(t)) =

( r2 (t)); the energy, (E(t)); and the probability that a
2N2 "Ii r"
sequence is in its ground state, (P(t)) = (8[Xi,j{rij(t) - r°}]),
where the superscript 0 refers to the ground state. As a
further microscopic probe ofthe folding process we have also
computed an "overlap" function X (' 1) that measures the
degree of disorder of the protein structure with respect to the
ground state,

(Xt) = 1- N2 3N + 2

' 1 ' 2
CONFIGURATIONAL SPACE

FIG. 2. Energy landscape for models A-C. Every configuration
present at or below the dashed line has been enumerated (a total of
783, 542, and 479, respectively). The landscape for model C includes
all the states with Ec < -4E. The grouping of states is unique but at
the energy level represented by the dashed lines. The ordering of the
different wells on the horizontal axis is roughly determined by how
many MC steps are needed to reach the native well.

ments were restricted to a finite amount of computational
time, T. 4 x 1010 MC steps, thus limiting the value ofN to
22.

Before describing the dynamical behavior, let us discuss
the relevant thermodynamic transitions that take place in
these models as the temperature is lowered. High-
temperature conformations behave very much like SAWs or
polymers. At a lower temperature To, the chain undergoes a
continuous collapse transition into more compact configura-
tions (e.g., ref. 23 and references therein). The temperature
To can be estimated by computing the-energy fluctuations in
the system, where the resulting plot of the specific heat as a
function of T shows a peak. From the specific-heat plots we
have estimated To 0.39,0.34, and 0.41 for models A, B, and
C, respectively.

It is natural to assume that the transition to the native state
takes place from the set of compact structures found at T <
To. To ascertain whether an additional amount of native
structure is acquired with a further decrease in T, we have
calculated (X) as well as AX as a function of temperature. As
T is lowered, a rather abrupt decrease of (X) is observed
(unpublished work), suggesting the possibility of an addi-
tional transition. Further evidence for this transition emerges
when the temperature dependence of Ax is analyzed. The
peaks observed in Fig. 3 occur at the same temperature at
which the abrupt change in (X) takes place. We have asso-
ciated these peaks with a folding transition temperature Tf,

The overlap function X, which is zero only when the protein
is in its ground-state configuration, can be thought of as a
measure ofthe amount ofnon-native-like structure present in
the protein. To address the nature ofthe folding transition we
have also computed fluctuation quantities such as the specific
heat and the fluctuations in the overlap function, Ax = (x2)
- (x)2. Note that Ax = 0 implies that the system is in a pure
state (namely the ground state for our models) and in this
sense Ax is analogous to susceptibility in magnetic systems.
The folding dynamics has been inferred by studying the

relaxation to equilibrium of a set of independent infinite
temperature conformations after a temperature quench. The
aforementioned relaxation functions have been calculated by
averaging over many independent runs ranging from 900 to
20,000, depending on temperature. Our numerical experi-
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FIG. 3. AX as a function of temperature for models A-C.

Proc. NatL Acad Sci. USA 90 (1993)

Ya 8 (rij(t) r ioj) . [21
i7&j,j± 1



Proc. Natl. Acad. Sci. USA 90 (1993) 6371

where Tf 0.27, 0.23, and 0.40 for models A, B, and C,
respectively. It is reasonable to suggest that the conforma-
tions in proteins in the region Tf < T ' To may correspond to
a "molten globule" containing the bulk of the backbone
native structure. It is noteworthy that a mean-field replica
analysis of a model similar to model C also shows a molten-
globule phase (11-13), suggesting that this transition may be
generic for proteins.
The origin of the transition at T = Tf can be understood in

terms of the energy landscape shown in Fig. 2. At low
temperatures, the free energy can be envisaged as having
essentially two wells: one well containing the native state,
and the other a collection oflow-energy states. The transition
temperature Tf indicates the possible coexistence between
these two distinct states. By examining the time dependence
of (X(t)) at T Tf, coexistence-defined as transitions
between native structure ((X) 0) and a distinctly different
type of structure (mostly the P levels with (X) 0.4)-is
observed (unpublished work). Thus, it can be concluded that
the anomalous fluctuations present in the protein structure at
T Tf are indicative of finite-size, first-order transitions.

All the models exhibit similar relaxational behavior, al-
though the temperature scales are different (see below).
Typical plots of (X(t)) and (RG(t)) for model C and T = 0.286
(< Tfc) are shown in Fig. 4 a and b, respectively. These
figures also show the striking contrast between the relaxation
functions averaged over several initial conditions and that
obtained in a single realization (dotted lines). The curvature
in (x(t)) and (RG(t)) is a clear signature of the multistage
character of the folding process. [It has been argued (3, 4, 21)
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FIG. 4. (a and b) (x(t)) and (R&(t)) as a function oftime for model
C and T = 0.286. The ensemble average has been done for 2000
independent runs, an example of which is represented by the dotted
line. Some intermediate states are also indicated. The smooth solid
lines shown in both a and b represent the best biexponential fit for
the two final stages of folding. (c) Temperature dependence of Tr and
Tc (the latter is shifted to the right by 0.5). Lines are a guide to the
eye.

that folding proceeds by a two-stage process.] Although one
can interpret the behavior found in (x(t)) and (R2 (t)) in terms
of a distribution of time scales, here we will focus on two of
them, denoted by Tc and r.
For t S cc 6 x 104 MC steps, proteins reach a high degree

ofcompactness [as measured by (R;(t))]. As indicated by the
large decrease in (X(t)), much of the native structure is
formed in this intermediate time scale (3, 4); thus, we
conclude that this stage of the folding process is highly
cooperative. A noncooperative process, related to the initial
random collapse of the protein chain, has also been observed
for t << Tc (see Fig. 4 a and b for t ' 103 MC steps). For Tc
< t sTr 3 x 106MC steps, the folding kinetics show a much
slower decrease of (x(t)) to its equilibrium value (X) =
0.07706.
We have found that in the final stage of the folding process

(X(t)) and (R2 (t)) decay exponentially and are well charac-
terized by a single decay constant, 7T. For shorter times the
decay process is more complex, indicating that the system
may in fact be sampling several distinct structures that are
separated by varying barrier heights. In this time regime the
decay of (x(t)) could be nonexponential. Indeed, a stretched
exponential fit {i.e., (X(t)) exp[-(t/T)'} is consistent with
our results for models A-C. However, our data are not
precise enough to unambiguously extract the exponent f.
Hence, we have assumed that the intermediate time decay is
also exponential and have extracted a time constant Tc for this
regime. Biexponential fits to (X(t)), (P(t)), (R2 (t)), and (E(t))
have been done; to accomplish this we have used the exact
thermodynamic values for (X) and (R2). The results are
summarized in Fig. 4c, where the temperature dependence of
7r and cc have been plotted. The solid lines in Fig. 4 a and b
represent the biexponential fit.
The relationship between kinetics and folding pathways

can be analyzed in terms of the relaxation functions and the
underlying energy landscape shown in Fig. 2. We have
studied several individual runs and have observed that there
are multiple pathways to the ground state in the first two
stages of the folding process (t S rT) (3, 4, 24). In Fig. 4 a and
b, for instance, the initial transition to the S state takes place
from the P4 conformation; other realizations (not shown)
include transitions from Ps, P6, or P7 to S (see Fig. 2).
However, pathways which early on in the folding process
include P1 and/or P2 relax to the ground state on a time scale
of the order of Tr. In all cases we find that P1 and/or P2 are
always involved in the late stage of folding and represent the
major bottleneck for the transition to the native state. Fig. 4
a and b show that transitions to nearby metastable states
[e.g., S -- (P1, P2) -- SI occur even after proteins have
reached the ground state; notice that the lifetime of this
transition is of the order of rr. These transitions involve a
rearrangement of the whole protein structure and nonbonded
contacts. Indeed, as indicated by the large fluctuations ob-
served in R2(t), there is considerable unraveling of the
protein even in the late stages of folding.
A striking result of our study is that the degree of com-

pactness and the amount of native structure present do not
have a one-to-one correspondence. Indeed, for T t To,
models A and B are significantly more compact than model
C. Furthermore, for T z T9 and t S Tr, the rate of decrease
of (R2 (t)) is also much larger for models A and B than for
model C, and a similar degree ofcompactness is reached only
in the final stage of folding. However, for models A and B,
the rate of decrease of (X(t)) is smaller than for model C for
all t. Moreover, the folding kinetics show that during the early
folding process (t s cc), the amount of native structure is
roughly 4 times larger in model C than in modelsA and B. The
folding time at T = Tf estimated from Fig. 4c is 5 x 106, 3 x
107, and i0s MC steps for models A, B, and C, respectively,
which is consistent with the above observations. Therefore
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searching for the native state within the space of compact
configurations does not imply that the folding time scales are
equivalent. In fact, they are determined by the dynamics of
(X(t)). There appears to be a relationship between the folding
time T, and cr = [1 - (Tf/TA)]: the smaller the value of a, the
smaller the value of T. This relationship may prove quite
helpful in designing sequences that fold in finite times.

In order to use our findings to predict the experimental time
scales for Tc and ir, it is necessary to understand the N
dependence of these relaxation times. It is difficult to unam-
biguously ascertain the N dependence in systems with het-
erogeneous interactions. Nevertheless, one may argue that Tc
(the time scale related to the compactness process) should
scale like the relaxation time for homopolymers in a poor
solvent-i.e., Tc NZ, with z 2-3 being roughly the
dynamical scaling exponent (25). Our limited data are con-
sistent with this behavior. Thus, for a protein with N = 58
(pancreatic trypsin inhibitor), we find that Tc taken from Fig.
4 a and b extrapolates to Tc 10-4-10-3 S, where an estimate
of 10-lO0-10 s has been used to estimate one MC step. It is
harder to produce theoretical arguments for the scaling of T,
with N because this would require estimates of entropy of
activation. However, we believe that our results for the
energy landscapes may be a good starting point from which
to advance a solution to this problem.
The dynamical results presented here have implications for

the kinetics of in vitro folding of proteins. (i) Our results
suggest that the basic kinetic scheme for approach to the
native state-namely, the acquisition of the bulk of the
secondary structure via multiple pathways in an intermediate
time scale Tc, followed by an activated crossing over a late
transition state in times almost 2 orders of magnitude greater
than Tc-may be a robust feature of all sequences that have
a native state. The relevance of Tc is that most of the process
of becoming compact and the formation of secondary struc-
ture have taken place within this relatively short time scale.
From an evolutionary point of view, it is tempting to spec-
ulate that only those sequences for which Tc is short (10-4-
10-3 s in proteins) will fold in a biological time scale (sec-
onds). Furthermore, the unmistakenly exponential decay of
(X(t)) at long times for all the models, along with the similar
value of the effective barrier height of 3.6e obtained from the
temperature dependence of i, in Fig. 4c (consistent with 4e
being the highest energy barrier in Fig. 2), suggests that the
nature of the transition state is essentially the same in all
cases. However, the fast folding time scale for model C
implies that the approach to the native state is greatly
expedited ifthe residues are in their ground state (26, 27). (ii)
A major surprise in our study is that energy landscapes that
are far simpler than that expected in proteins can in fact lead
to highly complicated dynamics. These findings provide
strong support for the use of simple lattice models in yielding
helpful insights into the dynamics of real proteins.
The conclusions we have drawn for the folding kinetics of

proteins should be viewed with caution, however. Side

chains, which are responsible for hydrogen bonding and other
tertiary interactions, have not been considered here. Despite
this limitation and additional restrictions oflattice models, we
have advanced a testable kinetic scheme for protein folding
which should be useful in understanding fast folding exper-
iments currently underway in several laboratories.
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