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Promoter melting triggered by bacterial RNA
polymerase occurs in three steps

Jie Chen?, Seth A. Darst®, and D. Thirumalai*<'

*Biophysics Program, Institute for Physical Science and Technology, ‘Department of Chemistry and Biochemistry, University of Maryland, College Park,
MD 20742; and °The Rockefeller University, 1230 York Avenue, New York, NY 10065

Edited* by José N. Onuchic, University of California at San Diego, La Jolla, CA, and approved May 28, 2010 (received for review March 18, 2010)

RNA synthesis, carried out by DNA-dependent RNA polymerase
(RNAP) in a process called transcription, involves several stages.
In bacteria, transcription initiation starts with promoter recogni-
tion and binding of RNAP holoenzyme, resulting in the formation
of the closed (R - P.) RNAP-promoter DNA complex. Subsequently, a
transition to the open R - P, complex occurs, characterized by se-
paration of the promoter DNA strands in an approximately 12 base-
pair region to form the transcription bubble. Using coarse-grained
self-organized polymer models of Thermus aquatics RNAP holoen-
zyme and promoter DNA complexes, we performed Brownian
dynamics simulations of the R - P, — R - P, transition. In the fast
trajectories, unwinding of the promoter DNA begins by local melt-
ing around the —10 element, which is followed by sequential un-
zipping of DNA till the +2 site. The R - P, — R - P, transition occurs
in three steps. In step I, dsDNA melts and the nontemplate strand
makes stable interactions with RNAP. In step Il, DNA scrunches into
RNA polymerase and the downstream base pairs sequentially open
to form the transcription bubble, which results in strain build up.
Subsequently, downstream dsDNA bending relieves the strain as
R - P, forms. Entry of the dsDNA into the active-site channel of
RNAP requires widening of the channel, which occurs by a swing
mechanism involving transient movements of a subdomain of the
subunit caused by steric repulsion with the DNA template strand. If
premature local melting away from the —10 element occurs first
then the transcription bubble formation is slow involving reforma-
tion of the opened base pairs and subsequent sequential unzipping
as in the fast trajectories.

DNA scrunching | transcription initiation | self-organized polymer model |
molecular simulations | sequential DNA unzipping

he DNA-dependent RNA polymerase (RNAP), whose se-

quence, structure, and functions are universally conserved
from bacteria to man (1, 2), is the key enzyme in the transcription
of the genetic information in all organisms (3-5). There are three
major stages in the transcription cycle (3), which first requires
binding of promoter-specific transcription factors to the catalyti-
cally-competent core of RNAP, to form a holoenzyme. They are:
(i) initiation, which first requires binding of an initiation-specific
o factor to the catalytically-competent core RNAP to form the
holoenzyme, followed by recognition of the promoter DNA to
form the closed (R - P.) complex and subsequent spontaneous
transition to the open (R - P,) complex; (ii) elongation of the
transcript by nucleotide addition; (iif) termination involving ces-
sation of transcription and disassembly of the RNAP elongation
complex. Among these highly regulated stages, the most compli-
cated may be the initiation process because it involves promoter
recognition, DNA unwinding, and the formation of the transcrip-
tion bubble inside the RNAP active-site channel, where RNA
synthesis occurs.

A simplified transcription initiation pathway is (6, 7)

R+P=R-P,=R-P,=IC.,,—~TEC, 1]

where R is RNAP, P is the promoter DNA (Fig. 14), and R - P,
and R - P, are the closed and open complexes (Fig. 1B), respec-
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Fig. 1. Structural models for the promoter DNA and RNAP. (A) Schematics
of the base pairing between the template (green) and nontemplate (yellow)
strands of the promoter. Nucleotide positions are numbered relative to the
transcription start site, +1. DNA segments that interact with RNAP, —35 and
—10 elements, are shaded red. (B) Structural models on top correspond to
R- P, (left) and R - P, (right) and are color-coded as p cyan, p’-magenta,
c-orange, al, all, and w-gray, DNA nontemplate strand-green, and template
strand-yellow. The B subunit is removed to show the interactions of the
promoter with the ¢ subunits (bottom left) and the transcription bubble
structure on the bottom right, while on the top row it is shown in full opacity.

tively. IC<, is the abortive initiation complex with transcript size
<12 nt, and TEC is the transcription elongation complex. Here,
we focus only on the dynamics of transcription bubble formation,
which occurs during the R - P, - R - P, transition. The approxi-
mately 150 A long and 110 A wide core enzyme from the bacterial
Thermus aquaticus (8, 9) has five subunits, oI, oll, B, f’, and @
(Fig. 1B) that are assembled like a crab claw. The two “pincers,”
formed from the large p and p’ subunits, hold the promoter DNA
in the active-site channel between the pincers (Fig. 1). The struc-
tural model of RNAP holoenzyme complexes with fork-junction
DNA (10) has given insights into the mechanism of the R - P, —
R - P, transition. A variety of structures were pieced together to
construct detailed models for the R - P. and R - P,,, which lead to
the following mechanism of R - P, formation (3, 10). Local melt-
ing of the promoter —10 element allows binding of the exposed
nontemplate strand to conserved region 2.3 of ¢ (6,3) (Fig. 1B),
stabilizing the melted region. Melting also renders the promoter
DNA flexible, thus facilitating its entry into the active channel.
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The R - P, structure further suggests that the promoter DNA
bends into RNAP active channel to form the transcription bubble
(11-13). Although the structural models provide plausible
hypothesis for the transcription bubble formation, dynamical
studies are required to describe the conformational changes that
accompany the R- P, - R - P,
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to the time needed for the bubble opening (Fig. 34), the charac-
teristic time associated with the decrease of d_s



mechanism proposed for the R - P, — R - P;. based on single



Active Channel of RNAP Opens by a “Rope-Swing” Mechanism. De-
spite the enhanced flexibility of the melted region of DNA,



into RNAP. The dynamical structural and energetic changes in
our simulations do not support this picture. In particular, the sta-
bilization of melted single-strand DNA around the —10 element
by the aromatic residues of ¢ 2.3 could also prevent KMnO, from
reacting with the intermediate (31). If such a mechanism prevails
then the complex formation mechanism would be similar to the
present and previous (26) studies. Finally, the predictions linking
the internal RNAP dynamics and the bending of the promoter
can be tested using single molecule experiments.

Methods

Self-Organized Polymer (SOP) Model for R- P, — R - P, Transition. The large
size of RNAP-DNA complex with 3,122 amino acids and a dsDNA with 150
nucleotides make it necessary to use a coarse-grained (32-35) models.
Here we use a SOP model (14, 32, 34) for the enzyme and DNA. In the
SOP model (32, 36), the structure of a protein is represented using only
the C, coordinates, r(i =1,2,...NP) with NP being the number of amino
acids). DNA is represented by the centers of mass of the nucleotides,
rPNA(jf =1,2,...NPNA) with NPNA being the number of nucleotides. The
state-dependent energy functions for RNAP, DNA, and protein-DNA interac-
tion are given in S/ Text. The proposed SOP force field yields accurate value of
the persistence length (44.3 nm) of the isolated DNA. In addition, the calcu-
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lated B factors for the core RNAP are in excellent agreement with the mea-
sured data based on crystal structures except for a few solvent-
exposed residues that are not involved in promoter melting. These results
are predictions of the model and not a consequence of adjusting the para-
meters to obtain agreement with experiments. The accurate description of
the properties of the isolated DNA and the core enzyme and previous pre-
dictions for forced-unfolding of GFP (37) and rigor to postrigor transition in
Myosin V (38) provide ample validation of the coarse-grained model.

Brownian Dynamics Simulation of the R - P, — R - P, Transition. The simula-
tions of the R- P, — R - P, are based on the assumption that the local strain
that triggers the open complex formation (due to DNA bending), propagates
on a time scale that is faster across the structure than the time in which
R-P.— R- P, transition occurs (32, 36, 39). The forces that trigger the
R-P.—> R:-P, transition are computed from the energy function
H(ri|R - P,), where the functional for H(r;|R - P,) is given by Eq. S1 in S/
Text. The trajectories are generated by integrating the Langevin equations
of motion for R- P, = R - P, transition (see S/ Text for details).
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