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ABSTRACT The dynamic properties of
the RNase A/3'-UMP enzyme/product complex
and the S-peptide of RNase A have been inves-
tigated by molecular dynamics simulations us-
ing suitable generalization of ideas introduced
to probe the energy landscape in structural
glasses. We introduce two measures, namely,
the kinetic energy fluctuation metric and the
force metric, both of which are used to calcu-
late the time needed for sampling the conforma-
tion space of the molecules. The calculation of
the fluctuation metric requires a single trajec-
tory whereas the force metric is computed us-
ing two independent trajectories. The vacuum
MD simulations show that for both systems the
time required for kinetic energy equipartition-
ing is surprisingly long even at high tempera-
tures. We show that the force metric is a pow-
erful means of probing the nature and relative
importance of conformational substates which
determine the dynamics at low temperatures.
In particular the time dependence of the non-
bonded force metric is used to demonstrate that
at low temperatures the system is predomi-
nantly localized in a single cluster of conforma-
tional substates. The force metric is used to
show that relaxation of long range (in sequence
space) interactions must be mediated by a se-
quence of local dihedral angle transitions. We
also argue that the time needed for compact
structure formation is intimately related to the
time needed for the relaxation of the dihedral
angle degrees of freedom. The time for non-
bonded interactions, which drive protein mole-
cules to fold under appropriate conditions, to
relax becomes extremely long as the tempera-
ture is lowered suggesting that the formation of
maximally compact structure in proteins must
be a very slow process. © 1993 Wiley-Liss, Inc.
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INTRODUCTION

The dynamics of internal motions in proteins and
nucleic acids have been extensively investigated
theoretically’? and experimentally® by a variety of
techniques. Much of the theoretical insight into
these complex systems has been obtained using sev-
eral different simulation methods. Results of molec-
ular dynamics (MD) simulations have shown that
the fluctuations in internal motions of proteins can
span several decades in time. Furthermore the pos-
sible relationship between these fluctuations and
the ultimate biological function of proteins is begin-
ning to be unraveled.* For example, the dynamics at
different temperatures of the rebinding of ligands to
myoglobin and hemoglobin following flash photoly-
sis has revealed a rich array of motions on time-
scales from subpicoseconds to microseconds. Perhaps
the most significant aspect that has emerged from
these studies is that the energy (or free energy)
landscape is very rough possessing many minima in
which the protein has somewhat different structure
although the precise differences between these
structures is unknown. It has been argued that the
spectra of these structures [referred to as conforma-
tional substates (CS)] are arranged in tiers,® and
that individual substates are separated by barriers
ranging from hundredths to many kcal/mol. These
general characteristics of the free energy landscape
are believed to result in nonexponential kinetics,
and non-Arrhenius temperature dependence of the
rebinding rate constant.>® The rough free energy
landscape that exhibits these CS has also been
probed by MD simulations.”® Although all of the
conclusions regarding the general energy landscape
for proteins have been reached by a series of studies
on the heme proteins myoglobin and hemoglobin it
is likely that the generic features will be observed in
all proteins.®
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In this paper we present general methods that can
be used to obtain some insight into the nature of
minima explored by proteins by using trajectories
from MD simulations. All of the simulations in this
paper have been done in vacuum. However the
methods introduced here can be conveniently used
even if the effects of the solvent molecules are ex-
plicitly taken into account. The basic methodology
used in this paper to analyze the dynamics of relax-
ation of the different degrees of freedom in proteins
was first introduced to understand the nature of po-
tential minima in structural glasses.!'! The adap-
tation of ideas developed in the context of glasses to
study protein dynamics is natural because it is sus-
pected that for these seemingly disparate systems
the low temperature dynamics is essentially con-
trolled by a rough energy surface, i.e., the presence
of many minima separated by barriers of varying
heights. For structural glasses this scenario was
postulated a long time ago.'? The stretched expo-
nential behavior seen in the rebinding kinetics of
ligands to myoglobin and the associated non-Arrhe-
nius temperature dependence of the rate constant
are often used as evidence of a rough energy land-
scape in proteins.!® In addition both neutron scat-
tering experiments'* and computer simulations'® of
proteins show that below a certain (glass transition)
temperature the dynamic structure factor develops a
nondecaying component at long times. The features
described above are the hallmark of glasses'® and it
is in this sense that one believes when dynamic
properties of proteins are examined over a wide tem-
perature range these systems appear to be glass-
like.

There are two important issues in MD simulations
which must be addressed before the results can be
usefully interpreted. The first is the need to know
the potential energy function that adequately de-
scribes interactions in protein molecules. The second
issue, which is the one dealt with here, is given a
potential energy function and the temperature what
is the minimum time required for the system to
reach equilibrium? By equilibrium we mean that
the fluctuations in the various degrees of freedom
have been sampled sufficiently so that the computed
averages of physical observables can be expected to
agree with experimental measurements (provided
the potential energy function is adequate). In es-
sence our methods provide a theoretical means for
obtaining the minimum time, ¢, required for
equipartitioning to be reached in systems with a
large number of degrees of freedom as is the case in
proteins. This is an extremely important problem
because MD simulations are commonly used to in-
terpret experiments, and based on such comparisons
the adequacy of the potential energy functions is
often assessed.’® If the value of ¢, is not large
enough such comparisons are meaningless, and
therefore it is of interest to understand in a quanti-

tative way the time scale needed for sampling the
available conformational space. In part the present
paper is devoted to addressing this issue.

The major objectives of our study are the follow-
ing: (1) To demonstrate using the generalized er-
godic measures (GEM) that one can assess the ap-
proximate time scale for sampling the configuration
space of a protein molecule. Currently MD simula-
tions can only probe motions in proteins that occur
on the time scale of nanoseconds and consequently
only those degrees of freedom that relax on this time
scale can be monitored. (2) We show using the GEM
that there is a direct correlation between the dy-
namics of nonbonded interactions and dihedral an-
gle transitions. We argue that the ideas presented
here are quite general and may be used to analyze
MD (as well as Monte Carlo or hybrid dynamics)
trajectories of other heterogeneous systems. (3) We
demonstrate that the GEM provides a natural way
of probing the nature of the energy landscape in pro-
teins. There have been previous attempts to probe
the topography of the potential energy surface in
Mb.” However, these approaches have used static
measures whereas the GEM are dynamic. Thus our
methods can offer insight into the recent claim
based on experiments* that the energy landscape
appears to be time and temperature dependent. By
combining various aspects of the GEM we show how
the dynamics in different CS can be characterized.

THEORY AND METHODOLOGY

In the molecular dynamics method, in which tra-
Jectories are generated by solving the classical equa-
tions of motion, it is commonly assumed that the
time averages of physical observables are equiva-
lent to the corresponding averages over all spatial
conformations of the system. This is the celebrated
ergodic hypothesis'” and it is almost always as-
sumed that classical many body systems (such as the
protein models considered here) are ergodic. Strictly
speaking the equivalence between time and phase
space averages stated in the ergodic hypothesis is
expected to be satisfied only when the averaging
time, 7,,., is essentially infinite [or more precisely
scales as 1,,, ~ exp(lN) where N is the number of
atoms in the system]. However, this requirement is
far too strict to be of practical utility. In practice one
simply requires that a “representative” number of
conformations be sampled and the time required for
this is always far less than that needed for the er-
godic hypothesis to be satisfied. The “representative
number” of conformations will depend on the prob-
lem. For example, it is suspected that in the process
of folding of proteins a random sampling of all con-
formations does not take place. Rather only a re-
stricted number of conformations, determined by en-
ergetic considerations as well as excluded volume
effects, are sampled. In general in biological appli-
cations certain severe constraints, which are often
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difficult to determine, drastically reduce the number
of relevant conformations.

In MD simulations, in which 1,,, is finite, for
meaningful computations we require that 7., be
long enough so that typical conformations of the pro-
tein molecules corresponding to a fixed total energy
(microcanonical ensemble) are adequately sampled.
In practice this means that the trajectory should
uniformly sample all the accessible regions of the
conformation space of the protein. If 7, . is long
enough for this to be satisfied then we assume that
effective ergodicity is achieved.

The second point, which is especially pertinent to
the analysis of fluctuations in proteins, concerns the
range of motions that can be adequately sampled on
the simulation time scale 7,,,. Currently the time
scale obtainable in MD simulations using present
day computers is at best on the order of nanoseconds.
Thus if there are motions that have relaxation times
significantly greater than a few nanoseconds the
physical quantities dependent on such motions will
appear frozen when observed on the time scale 7.
Consequently these quantities are essentially non-
ergodic on the time scales accessible to computers,
and thus at this time simulations are not capable of
probing the dynamics of such motions. This is why
the study of protein folding (which apparently in-
volves large scale slow collective motions) on realis-
tic systems using computer experiments has so far
proved intractable. However, there are numerous
situations involving biological molecules where a
variety of dynamic processes occur on the time
scales accessible to computer simulations.? Al-
though the methods we present here are applicable
without regard to limitations set by current comput-
ing methods the present applications to the S-pep-
tide and RNase A/3'-UMP enzyme/product complex
(referred to as enzyme/product from now on) are re-
stricted to degrees of freedom that can be probed on
the order of hundreds of picoseconds.

With the above important comments in mind we
want to address the following questions: Given a po-
tential energy function for a particular protein and
the temperature T how can one estimate the mini-
mum value of the averaging time for which effective
ergodicity is achieved? In the time ¢,,., what is the
interplay between the dynamics of relaxation of the
dihedral degrees of freedom and the nonbonded in-
teractions? Finally is it possible to recognize when
the system is not effectively ergodic and probe into
the nature of the conformational substates which
characterize the low temperature protein dynamics?
To address these and related issues we propose a
generalization of the ergodic measures which were
introduced to study related problems in structural
glasses.'®!! Generalization of the ergodic measures
(referred to as GEM) is necessary because proteins
are heterogeneous systems. We will argue that to a
large degree the questions raised above can be an-

swered using the dynamic scaling law obeyed by the
GEM.

Fluctuation Metric

The fluctuation metric, which is an example of the
GEM, is constructed from quantities that are readily
calculable in a typical MD simulation. The fluctua-
tion metrics are calculated from time averaged val-
ues of the relevant space variables. Suppose we have
a variable F,(?) for the jth atom of a system of N
atoms. (Later in our discussion we choose F(#) to be
the kinetic energy for which F (1) = m;v?/2 where
v,(t) is the velocity of the jth particle at time ¢ and m;
is the mass.) We write the time average of Fit) as

1 t
fio =~ { dsFy(s). %)

Further writing the average of f,(¢) over all N atoms
of the system as

- 1 X
f) = N}; £ @)

we define the mean-square difference of the individ-
ual f(#)s from the average fit) as the function!®

1 X _
Q@) = =D [f®) - FOI 3)
N=

The function Q.(#) is referred to as the fluctuation
metric. The reason Q(¢) is called the fluctuation
metric is the following: if N is sufficiently large, i.e.,
N >> 1 then the results obtained by measurements
on a single sample will differ negligibly (at most of
the order 1/VN) from those computed using aver-
ages over an ensemble of systems. This is the law of
large numbers. Physical properties that satisfy this
criterion are self-averaging. Thus one can replace
Eq. (2) by <f> where < > denotes an ensemble av-
erage, and if the system behaves ergodically on the
time scale 7, then f(1,,.) = <f>. From the above
discussion we understand that for systems which are
effectively ergodic ((¢) measures the mean-square
fluctuations of f from its ensemble average.

It follows from the law of large numbers that Q,.(0)
gives the equilibrium fluctuation in the variable

Q:(0) = <f2> - <f>2, @)

The above equation is valid only when N is suffi-
ciently large, but in practice even for simulations of
small proteins (containing on the order of 1000 at-
oms) in vacuum Eq. (4) is obeyed.

The reason {),(¢) is useful in analyzing certain as-
pects of the internal motions in proteins is that one
can show that Q,(#) obeys a simple dynamic scaling
law for ¢ greater than a certain characteristic time.
If a particular observable, F, is self-averaging then
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Fig. 1. Schematic of the energy surface of a protein. The solid
horizontal line corresponds to a fixed value of the total energy.
Isoenergetic conformers belonging to the minima labeled « and

the fluctuation metric decays to zero at long times
asll

QL0)/Qt) ~ Dg (5)

where Dy is the rate at which the fluctuations in-
volving the physical variable F are sampled, and
will be referred to as the generalized diffusion con-
stant. Alternatively if (0{(¢) does not obey the scaling
relation given in Eq. (5) we can assume that the
physical property f is not self-averaging at least on
the time scale of the simulations. We will show later
that the lack of decay of Q(¢) at long times is a useful
probe of the rough energy surface in proteins.

The reason for referring to D, as a generalized
diffusion constant is that the relationship given in
Eq. (5) is indicative of a diffusive process. Physically
this implies that the approach to equilibrium for the
phase space variable F proceeds by a random walk
process, and Eq. (5) is then the usual result for the
long time behavior of such a Markov process. The
slope of 1/Q(¢) gives the rate of exploration of avail-
able conformations of the protein, and the approxi-
mate time needed for adequate sampling of these
conformations is proportional to D;~*.

A necessary, but not sufficient, condition for the
system dynamics to be ergodic is that Q#) obey Eq.
(5). For example, imagine the dynamics of proteins
in a rough free energy surface which is schemati-
cally shown in Figure 1. The two minima labeled «
and B in Figure 1 are separated by a barrier. As-
sume that a particular 7, is not long enough for the
system (so that the protein, which is initially in say
a, is unable to overcome the barrier separating the
two minima). Within either minima, given enough
time, any trajectory will explore all of the allowed
space. For a set of trajectories started in a, Q(#) will
decay to zero obeying Eq. (5), and the property F(¢)
will be self-averaging. However, unless we have
started one of our trajectories in region g (or 7., is
long enough to overcome the barrier AE,_;) we can-
not know that the partition exists and the system is

AWAY
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B, respectively, are separated by the potential barrier AE .. In
general there are numerous minima and there is a distribution of
barrier heights.

effectively ergodic. Therefore, the decay of Q(#) ac-
cording to Eq. (5) is only a necessary condition for
ergodicity. For a probe of the situation described
above one has to compute the energy or force metrics
as discussed in the next subsection. However, Q4?) is
easily calculable and is a powerful measure of the
convergence of a given property that is dominated
by dynamics in a single minimum. This would be the
case at low temperatures or at temperatures such
that the barriers separating the minima are large
enough that they cannot be overcome even on exper-
imental time scales. The latter situation pertains to
glassy systems, and under these circumstances the
conformations belonging to the two minima are
truly disjoint. It should be noted that the computa-
tion of alternative measures of stochasticity such as
Lyapunov exponents'® in a protein are much more
involved, and do not appear to be as relevant to the
convergence of thermodynamic properties as the er-
godic measure.

Force Metric

In order to introduce the force metric let us as-
sume that there are two distinct minima correspond-
ing to two different conformational substrates of the
molecule such as the ones labeled « and B in Figure
1. If the simulation time T,,, is less than the typical
time needed to cross the barrier separating the two
minima then configurations belonging to a given
minimum will in the process of evolution remain in
the same basin for times on the order of 7,... It
should be noted that configurations belonging to the
other minima are energetically accessible but if T,
is less than exp(AE,,/kgT) then the bottleneck pre-
vents the system from sampling these configura-
tions. If on the other hand the system is ergodic on
the time scale 7,,, the bottleneck can be overcome
and the conformations belonging to both « and B will
be sampled. (Note that the arguments presented
above explicitly assume that the number of degrees
of freedom is very large and it is possible to ex-
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change energy between the various degrees of free-
dom.) If there is a barrier separating the conforma-
tions belonging to two distinct minima, as is the case
with the minima labeled a and B in Figure 1, then
the simulation time must exceed 1, exp(AE, 4/kgT)
for effective ergodicity to be reached where 1, is a
microscopic time scale like the typical vibrational
time in one of the minima.

In order to probe whether there are two distinct
minima separated by barriers it is necessary to com-
pare properties of trajectories that are independent.
Since the conformations belonging to the two min-
ima have the same total energy it is desirable to
construct an energy metric as was done in the con-
text of structural glasses.'® For proteins modeled by
the standard potential energy function® it proves
more convenient to consider the force metric which
is computed using the time averaged values of the
force on the ith atom. In introducing the force metric
we first focus on the force experienced by the ith
atom arising from the nonbonded potential only.
Two independent initial states of the system corre-
sponding to two distinct conformational states are
chosen and are labeled a and b. For example, in Fig-
ure 1 the conformation labeled a belongs to the min-
imum labeled o while b belongs to the minimum B.
The method of generating the two independent ini-
tial conformations of the system is discussed below.
Let

t
£ = Ut f Fi(s) ds (6)
0

be the time averaged value of the force due to the
nonbonded potential acting on the ith atom. Simi-
larly we compute f5(#) starting from the other in-
dependent starting configuration b. A measure that
can distinguish between the forces (and hence the
dynamics) in the two distinct minima (if they are
present) is the nonbonded force metric

N
din(t) = UN D, [Ifn® — 0|12 (7
=1

Suppose the two initial conformations a and b be-
long to the same minimum. Then d(?) (or a suit-
able measure constructed by following the dynamics
of two independent trajectories) should vanish as t
approaches 7., in a time averaged sense, i.e., one
expects [ (Tave) = o (Tave). If the initial conforma-
tions a and b belong to distinct minima then
den(t)—0 only when each trajectory crosses the bar-
riers separating the two minima or when 7, >
To eXp(AE, 3/kgT). On the other hand if dpy(7,,.) # 0
then one can conclude that the initial conformations
belong to two distinct conformational states sepa-
rated by a barrier AE,, where on average
Tave<To €XP(AE o/kpT). The long time behavior of
the metrics of the form given by Eq. (7), which ex-

plicitly compares the time evolution of two indepen-
dent trajectories of the system, can serve to distin-
guish between two different minima, and therefore
can be used as a probe of the energy landscape in
proteins. We have shown previously that for any
Hamiltonian system, independent of the nature of
the potential energy function, the metrics of the
form defined by Eq. (7) also obey the scaling law
given by!!

dpn(0)/dgpn(8) = Dpnt (8)

where as before Dy is the rate at which the confor-
mations responsible for the nonbonded degrees of
freedom are sampled. The above equation is appli-
cable only for ergodic systems, and if Eq. (8) is not
obeyed then one can conclude that the system is not
ergodic on the time 7,,.. We have also computed the
metric for the total force, dp(f), which is defined as

1 &
drn(t) = D lIFa® — Fore)? 9)
i=1

where fi1(f) is the time-average value of the total
force on the ith atom. Interestingly, the total force
metric proves to be of little value in examining the
time scale for sampling conformation space. Decom-
position of the force metric into its various compo-
nents (like the nonbonded force) is much more use-
ful. In the next section we also consider the total
force metric and the dihedral angle force metric.

Simulation Details

The MD simulations were performed at several
temperatures, ranging from 40 to 400K for the bo-
vine pancreatic RNase A/3'-UMP enzyme/product
complex?® and the corresponding S-peptide of RNase
A. The X-ray structure of RNase A shows that it
contains three short helices. When RNase A?! is
cleaved at the peptide bond between residues 19 and
20 one obtains the so called S-peptide®? (residues
1-19) and the enzymatically active RNase S (resi-
dues 20-124). The S-peptide forms a-helical struc-
ture between residues 3 and 132% as can be seen in
Figure 2. All the simulations were done in vacuum,
and hence are not as realistic as the simulations
that explicitly include the effect of solvent. Never-
theless for the purposes of demonstrating the anal-
ysis methods suggested here, and to show the inter-
relation between the various internal motions in
proteins, the vacuum simulations should suffice.
The starting structures for our simulation of both
the full RNase A/3'-UMP enzyme/product system
and the S-peptide was the 1.9 A resolution X-ray
crystal structure.?® The initial configuration of the
S-peptide was obtained by retaining the coordinates
of the atoms of the first 19 amino acid residues of the
full enzyme crystal structure. The initial configura-
tion of the S-peptide was equilibrated at each tem-
perature for approximately 50 psec (150 psec for the
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RNase S-peptide 300K

Fig. 2. Ball and stick representation of snapshots of the S-peptide backbone atoms at 40K and 300K.

40K trajectory) while the enzyme/product complex
was equilibrated for 50 psec at each temperature.
The equilibration was performed using uniform ve-
locity rescaling every 0.5 psec. After the systems
were equilibrated, two independent trajectories
were generated for both systems at each tempera-
ture. In our model all atoms were free to move, i.e.,
no bond length constraint was enforced. The classi-
cal equations of motion were integrated using the
Verlet algorithm with a time step of 0.5 fsec. The
nonbonded interaction energy was cut off at r, =12
A using a shifting function of the form

{1—2(r/rc)2 + (rir)tr=r,
s(r) =

0 r>r. 10)

In these simulations an empirical distance-depen-
dent dielectric constant was used, and a modifica-
tion of version 20 of the CHARMM program?®® was
employed with the version 19 polar-hydrogen poten-
tial function.

The computation of the force metric [cf. Eq. (7)]
requires the generation of two independent trajecto-
ries. The generation of independent trajectories is
not an issue at higher temperatures where the cor-
relation times between various configurations are
expected to be short. However, at low temperatures,
especially when the dynamics is dominated by bot-
tlenecks separating the different conformational

substates (see Fig. 1), these correlation times can be
extremely long. It is therefore important to ensure
as far as possible the independence of the trajecto-
ries. For the S-peptide, the first trajectory was ini-
tiated from the endpoint of the equilibration run,
and continued at constant energy for 75 psec. The
second “independent trajectory” was generated by
using a starting configuration of the endpoint of an
equilibration run at a higher temperature. This
higher temperature structure was then equilibrated
at the desired temperature for 50 psec before gener-
ating a 75 psec trajectory at constant energy. For
the trajectories at 40K and 80K the equilibrated
120K structure was used as a starting point; for the
120K, 160K, and 240K trajectories the equilibrated
300K structure was used; at 300K the equilibrated
400K structure was used; at 400K an equilibrated
500K structure was used.

For the enzyme/product complex system the first
trajectory was initiated from the endpoint of the
equilibration run and continued at constant energy
for 30 psec. The second “independent” trajectory was
generated for the 40, 120, and 240K runs starting
from the equilibrated 300K structure followed by 25
psec equilibration at 40K or 12.5 psec equilibration
at 120 and 240K. At 300K the equilibrated 300K
structure was heated to 400K and run for 12.5 psec
with velocity rescaling, followed by 12.5 psec equil-
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Fig. 3. The reciprocal of the normalized kinetic energy metric,
Qy(0)/Qye(8), for the S-peptide as a function of tin psec. The thin
solid line is for T = 40K, the thick solid line for T = 120K, the open
circles for T = 240K, and the closed circles for T = 300K.

ibration at 300K. These quasiindependent equili-
brated configurations were used as the starting
points for the second 30 psec trajectories.

RESULTS AND DISCUSSION

In this section we present results for the kinetic
energy fluctuation metric, the total force metric,
and the decomposition of the force metric into the
contribution arising from the dihedral angle poten-
tial and the nonbonded potential. In addition the
temperature dependence of the generalized ergodic
diffusion coefficients is analyzed.

Kinetic Energy Fluctuation Metrie:

The reciprocal of Qgg(#), normalized to unity at ¢
= 0, Qgx(0)/Qgg(®), for the S-peptide as a function of
tis given in Figure 3. The results for Qgg(0)/Qyx(?)
for the enzyme/product complex system are given in
Figure 4. There are several comments that are
worth making based on the results displayed in Fig-
ures 3 and 4: (1) We see that both systems are effec-
tively ergodic as far as the sampling of the kinetic
energy is concerned. This means that within some
finite time, which is set by Dyy (see below), equi-
partitioning of the kinetic energy is expected to oc-
cur. (2) Analysis of the short time behavior of Qyg(#)
yields some insight into the short-time librational
motion undergone by the individual atoms or group
of atoms. Since both of these systems adopt well-
defined compact structures at low temperatures it is
clear that many atoms are tightly confined in a
“cage” of neighboring atoms. Thus at short enough
times we expect a small amplitude rattling type mo-
tion in which an individual atom is perceived to

50 : . : ,
40K —
45 %Zgg =
300
40} .
35F .
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25

Qi e(0)/Qce(t)

20

15
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L n I

o

4Time (ps)6 8 10

Fig. 4. Plots of Q,:(0)/Q(f) at several temperatures for the
RNase A/3'-UMP enzyme/product (referred to as enzyme/prod-
uct) as a function of t. For an explanation of the symbols see
Figure 3 caption.

move in a cage created by the neighboring atoms.?
For short times the expected behavior for Qg g(f) is
given by

Qre®)/Qge(0) =~ 1 — (Const) £ (11)

where the constant is independent of temperature
and is related to the density of normal modes of the
protein. The duration for which the above equation
is valid is roughly the lifetime of the cage and can be
estimated from Figures 3 and 4. Inspection of these
figures shows that for up to ¢, =~ 3 psec for the S-pep-
tide, and up to ¢, =~ 1.5 psec for the enzyme/product
complex system, we find the behavior predicted by
Eq. (5) in Qgg(?). For ¢t = ¢, one is basically observ-
ing a rattling type motion in a cage, and for times
greater than £, the atoms begin to collide inelasti-
cally with the neighbors resulting in exchange of
energy which in turn leads to equipartitioning of the
kinetic energy. The amplitude of the rattling type
motion can be estimated using ¢, and this turns out
to be in the range 0.5-1.2 A. We note that the above
picture of the short time dynamics has been well
established using different methods of analysis.
The temperature dependence of Dy is shown in
Figure 5 for both the S-peptide and the enzyme/prod-
uct complex system. Before we analyze the results
shown in Figure 5 we first argue that the fluctua-
tion metric for the kinetic energy is a unique mea-
sure for heterogeneous systems. As discussed before
Qggp(f) measures the mean-square fluctuations of
the kinetic energy from the average value K = 1/N
> 3 mp?(t), which according to the law of large
numbers is <K> = 3kgz7/2. If the system is effec-
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Fig. 5. The kinetic energy ergodicity diffusion constant D, (in
units of inverse psec) as a function of temperature. The circles
correspond to the enzyme/product complex and the stars are for
the S-peptide. The solid lines connect the various symbols as a
guide to the eye.

tively ergodic on the averaging time scale 1, then

we expect

ave

tave

— f kis)ds—<K> 12)

ave ¢

independent of i. This is the equipartition theorem.
In general for all other properties of heterogeneous
systems the time average property of a physical
variable will depend on the residue, and one will
have a distribution of equilibrium values of the
physical variable. It is for this reason that Q. g(¢)
plays a special role, and it also implies that we ex-
pect the equipartitioning of the kinetic energy to be
the fastest of any property in proteins. The approx-
imate time in which equipartitioning happens is
proportional to Dgk. Figure 4 shows that Dyg is
larger at all temperatures for the enzyme/product
complex system than for the S-peptide. This implies
that the time needed for equipartitioning of the ki-
netic energy is smaller for the enzyme/product com-
plex system than for the S-peptide. The process of
energy exchange requires collisions with neighbor-
ing atoms. The number of such collisions is expected
to be frequent in the more compact enzyme/product
complex system than in the S-peptide thus resulting
in the smaller values of Dk} In general given
roughly the same number of amino acids comprising
a protein we can conjecture that Dgk would be
smaller for the more compact structure. Structures
with a larger proportion of surface residues should
have smaller values of D, This picture is also sup-
ported by calculation of Qg g(#) on BPTI and myoglo-

bin.?® The above conclusion may not be valid (espe-
cially for the less compact structures) when the
solvent molecules are included. In such cases colli-
sions with solvent molecules can effectively increase
Dxg; resulting in a decrease in time needed for equi-
partitioning.

It is of interest to obtain a quantitative estimate of
tave from the values of Dy shown in Figure 5. If we
assume that equipartitioning is achieved if Q. (0)/
Qke(® =~ 100 then ¢,,, =~ 100/Dyy. This criterion
gives t,,. =~ 50 psec for the enzyme/product complex
at T = 300K. The arbitrariness involved in writing
Tave = 100/Dyy can be removed by comparing the
values of ¢, at two different temperatures. The
value of ¢, increases by a factor of four in the tem-
perature range 40—300K. From Figures 2 and 3 it is
obvious ¢, has to be much greater than ¢, and thus
very optimistically we would estimate that a mini-
mum acceptable ¢, must be in the range of 10-30
psec. These values of ¢, even for the equipartition-
ing of the kinetic energy, which is perhaps the sim-
plest dynamic process that involves no obvious acti-
vated or cooperative mechanism for relaxation, are
surprisingly long. It is likely that these times could
be reduced, while not drastically?” in a simulation
that includes solvent molecules explicitly. For vac-
uum simulations it might be prudent to use noisy
MD (low friction Langevin dynamics) to decrease
tave @8 Was recently done in the simulation of the
folding of a model heteropolymer?® and as is com-
monly employed in calculating equilibrium proper-
ties of proteins.?® However, preliminary results us-
ing the force metric indicate that the gain is small
and that other simulation strategies such as hybrid
MC?° or mean-field algorithms®' must be employed
to significantly increase the rate of sampling confor-
mation space.

Force Metric

The inverse of the total force metric for the S-pep-
tide, normalized to its initial value, as a function of
time at several temperatures is shown in Figure 6.
This figure shows that for all times

where 8 is a temperature independent constant. This
is a very striking result. In particular from the £
dependence of dg.(f), which is very different from
the scaling behavior expected for the GEM for effec-
tively ergodic systems [cf. Eq. (8)], we may be
tempted to conclude that as far as the force metric is
concerned the system appears to sample only config-
urations belonging to a single valley. However the
results given in Figure 6 follow from the notion of
connectivity i.e., the atoms in a protein are con-
nected to their neighbors by covalent bonds. The
connectivity in our model is described by a harmonic
potential with appropriate force constants. Because
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Fig. 6. The reciprocal of the total force metric, d(0)/d({), as
a function of time for the S-peptide at seven temperatures. The
plot demonstrates that the inverse of the normalized force metric
is identical at all temperatures.

of this constraint the displacement of individual at-
oms may be small enough that a normal mode pic-
ture is appropriate as far as the total force metric is
concerned. If the normal mode picture is accurate
then it can be easily shown that Eq. (13) results. The
constant 3 is related to the second moment of the
normal mode spectrum. A far more general deriva-
tion of Eq. (13) will be provided elsewhere. From this
result it follows that the total force should be dom-
inated by the harmonic potential describing the con-
nectivity in protein molecules. Clearly this result is
fairly general and should hold for other proteins as
well as polymeric systems.

In order to examine the dynamic interplay between
the relaxation of dihedral angle motion and the non-
bonded (Coulomb and van der Waals) interactions,
which are responsible for enabling the systems to
become compact at low temperatures, we have ex-
amined the force metrics corresponding to these de-
grees of freedom. In particular we have computed

1 N
drp(®) = > @ — £he? (14)
i=1

where N is the total number of atoms in the mole-
cule, and f;,(¢) is the time-average value of the force
from the dihedral angle potential on the ith atom.
The superscripts a and b correspond to two indepen-
dent initial conformations of the system.

In addition we have also computed the fluctuation
metric for the nonbonded force

1 X _
Qpn(®) = N > fin® — W@|P? (15)
=1
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Fig. 7. Plots of the normalized nonbonded force metric, dgy(1)/
den(0), as a function of time for the S-peptide. The solid line cor-
responds to T = 40K, the thin line is for T = 120K, the open
circles are for T = 240K, and the closed circles are for T = 300K.

where /i (8) = (1/N) 31 fin(t). Notice that fi(£) =0
for all ¢ even for the force arising from nonbonded
interactions alone. This is because the force on par-
ticle i due to particle j is exactly opposite to that on
particle j due to particle i. The fluctuation metric for
the force measures the mean-square fluctuations in
the force, and therefore unlike the kinetic energy
metric the long-time limit of Oy (#) will not be zero
but will have a well-defined value independent of
the starting configuration for systems for which ¢,
is adequate for sampling the conformational space.
On the other hand we expect dg(#) [or dgp ()] would
decay to zero at long times provided the conforma-
tions a and b mix on the time ¢,,.. More precisely, in
order for dp(t) [or dep(#)] to vanish at long times
requires not only that the magnitude of the time
average forces on the ith particle be equal for the
initial conformation but also that their directions
have to be parallel. The force metric thus enables
one to obtain insight into the average correlations in
the relative local orientations of the two conforma-
tions.

The quantities dpn(£)/drpn(0) and Qpp(0)/Qpp(?)
for the S-peptide as a function of ¢ at various tems-
peratures are displayed in Figures 7 and 8 respec-
tively. The corresponding results for the enzyme/
product complex system are given in Figures 9 and
10. The results for the S-peptide were calculated to
75 psec and are shown to 40 psec. There appears to
be little convergence between 40 and 75 psec. Fig-
ures 7 and 9 show that for both systems dpy(t) de-
cays extremely slowly. In both systems we observe a
rather fast initial decay in about 5—10 psec followed
by a very slow decay. The rapid decrease at short
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Fig. 8. Reciprocal of the fluctuation force metric for the non-
bonded interactions as a function of time for the S-peptide at four
temperatures. For an explanation of the various curves see Figure
7 caption.
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Fig. 9. Plots of dr\(#)/d-y(0) as a function of time for the en-
zyme/product complex. The various curves correspond to differ-
ent temperatures, and the symbols are the same as in Figure 7.

times implies that there are conformations that can
be sampled easily without encountering any signif-
icant barriers. The nonvanishing of dgy(¢) at long
times (out to 75 psec) implies that significant coop-
erative motion may be involved in the process of
sampling conformations belonging to the two dis-
tinct conformational states. It is interesting that
even at the highest temperature dpy(f) decays ex-
tremely slowly at long times indicating the presence
of significant barriers which require times of 75 psec

6 T T T T

Qrn(0)/Qpn(t)

2
IQFime (ps)15 20 5

Fig. 10. Plots of Q\(0)/Qc\(f) as a function of time for the
enzyme/product complex. The explanation of the various curves
is given in Figure 7.

or longer to traverse. As discussed below the aver-
age barrier between the conformational substates
can be estimated from the values of Dy [cf. Eq. (8)].
For the enzyme/product complex we find that AE,
is in the range of 2.3—3.5 kcal/mol.

To further characterize the motion in the two dis-
tinct conformational substates it is convenient to
write dpyn(8) as

dpn(® = Q20 + Q@) — X2b() (16a)

where
M N - -
& =1/N ZHf{-N(t) — @ |12 J = a,b(16b)
i=1
and

N
X2(t) = 2IN D £ - £ (16¢)
i=1

The qualitative features of the long time properties
of dpn(f) can be predicted based on the decomposi-
tion given in Eq. (16). The cross term X*°(f) can be
written as 2/N XN |fay(®)| [fSu(®)| cos 6,(t) where
[fan(®)| is the magnitude of £2,(¢) and 6,(¢) is the angle
between the vectors f(¢) and £8(8). The term X=2(¢)
provides information on correlations in the local
time-averaged forces between conformations a and
b. At high temperatures we expect that such corre-
lations will persist only for short times. This should
lead to the conclusion that the long time value of
X°*(¢) should be zero. However, at low temperatures
we expect longer correlation times implying that
X*b(#) either goes to a constant at long times or de-
cays slowly. Furthermore if the conformers a and b
mix on the time scale 7,,. implying adequate sam-
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Fig. 11. Plots of dgy(f), Q2(1), Q°(f), and X=°(1) as a function of
time for the S-peptide at T = 40K. The thin solid line represents
X®°(1), the open circles correspond to Q2(t), the closed circles are
QP(f), and the thick solid line is dey(t).

pling has occurred then Q2(7,,.) = Q(1,,.) indepen-
dent of a and b. From the above arguments it follows
that the conformations a and b belong to the same
cluster of CS if either of the following conditions are
satisfied: (1) dgn(Tave) = 0 which is a very stringent
criterion and the time for this to happen can scale
very roughly as exp(\); (2) X**(r,,.) = 0 and
Q*7,ve) = QP(1,,.). If either of the above conditions
is not satisfied then we can conclude that the con-
formations a and b belong to distinct conformational
substates, and longer times are needed for the mix-
ing of a and b.

The various terms in Eq. (16a), namely Q2(2),
Q"(#), and X22(p), for the S-peptide at T = 40K and T
= 300K are plotted in Figures 11 and 12, respec-
tively. It is obvious from Figure 11 that at 40K Q2(¢
= 25 psec) # (P(¢ = 25 psec) and that the cross term
X=5(1,..) is significantly different from zero. There is
little change over the full 75 psec duration of our
simulation. This clearly demonstrates that a and b
belong to two different conformational substates
separated by barrier(s) which cannot be overcome on
a 75 psec time scale. On the other hand we notice in
Figure 12 that at 300K Q%25 psec) = QP(25 psec)
and X®P(¢) = 0 for all ¢. It therefore follows that the
conformations a and b belong to the same conforma-
tional substate (or at least to dynamically equiva-
lent substates). The vanishing of X2(¢) for all times
implies that the conformations a and b are truly
independent, and the fact that Q%(r,,.) = Q°(r,..)
suggests that the two conformers mix in a time on
the order of 25 psec indicating that a and b belong to
dynamically equivalent substates.

Because the systems explore conformations be-
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Fig. 12. Same as Figure 11 except the temperature corre-
sponds to T = 300K. The symbols are explained in Figure 11.

longing to two distinct CS at low temperatures it is
of interest to ascertain the structures that are being
sampled during the time evolution of the two inde-
pendent trajectories. The easiest way to examine
this is to obtain average structures of the systems
for the two independent trajectories. In the case of
the S-peptide we find that the helical structure is
maintained during the time evolution of the trajec-
tories. For the enzyme/product complex we also find
that the substrate UMP is always bound to the en-
zyme at all times. This suggests that the relevant
conformations that are sampled starting from two
independent initial conformations maintain the
overall three-dimensional structure of the proteins.
Thus the average structure of the protein in the dis-
tinct conformational substates probably differs only
in the relative orientations of the backbone and the
side chains of the protein.

The process of relaxation in the protein molecule
involves primarily the dynamics of the dihedral an-
gles, and the relaxation associated with nonbonded
degrees of freedom. We have shown that metrics for
the nonbonded interactions exhibit an initial fast
relaxation followed by a slower decay which presum-
ably involves large scale collective motion. It is of
interest to see if the relaxation of nonbonded inter-
actions is coupled to dihedral angle transitions. In
order to investigate this aspect we have computed
the dihedral angle force metric [cf. Eq. (14)]. The
results for the S-peptide are shown in Figure 13. At
all temperatures the time scale for the relaxation of
dep(), 7p, appear to be very similar to that for
den(t), namely Ty. To demonstrate more succinctly
this interrelationship between the nonbonded dy-
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Fig. 13. Reciprocal of the dihedral angle force metric di(0)/
dep(1) as a function of time for the S-peptide. For an explanation of
the symbols representing the different curves see Figure 7.

namics and the relaxation of the dihedral angle de-
grees of freedom we plot the quantity

dpn(0)  drp(0)
dpn(t)  dpp(®)

Anp(®) = an

as a function of ¢ for the S-peptide at four different
temperatures in Figure 14. By comparing Figures 8,
12, and 13 we can conclude that within fluctuations
dpn(0)/dpn(t) = dpp(0)/dep(®) for all ¢. This suggests
a mechanism for the relationship between the relax-
ation of dihedral angle transitions and the non-
bonded degrees of freedom. If 71, [given by the slope
of dpp(0)/dpp(®)] is much larger than 1y then the
relaxation in the protein molecule would first in-
volve dynamics involving the nonbonded forces fol-
lowed by the relaxation associated with dihedral an-
gle degrees of freedom. If 7/t >> 1 then the
situation would be reversed. However we find 7 ~
Tp at all temperatures and thus we conclude that the
relaxation of the nonbonded interaction is mediated
by dihedral angle transitions. This finding has an
important consequence for the dynamics of the fold-
ing of proteins. It is believed that the conformation
of proteins in the native state is maximally compact.
The formation of compact structure is possible be-
cause certain residues that are well separated in se-
quence space (i.e., nonbonded) prefer to be close to
each other in configuration space. Thus it is reason-
able to assume that the process of achieving a state
of higher compactness (i.e., having a spatial ar-
rangement with higher packing fraction) involves
the relative motion of nonbonded residues. Based on
our results we can assert that the time needed for

8 T T T T T T

dpp(0)/drp(t)

0 0 5 10 15 20 25 30 35 40
Time

Fig. 14. Plot of Agp(f) [cf. Eq. (17)] showing the difference
between the nonbonded force metric and the dihedral angle force
metric for the S-peptide. The symbols representing the various
curves are explained in Figure 7.

reaching the maximally compact structure should
be roughly proportional to Ty.

The temperature dependence of Dgy, which is ob-
tained from the slope of dpp(0)/dpn(t), for the two
systems is shown in Figure 15. The results in Figure
15 indicate that for the S-peptide the time needed for
compact helical structure formation (t.0 Dgy),
which happens for T < 120K, is extremely long. In
fact 7. is much longer than our simulation times. By
comparing Figures 5 and 15 we find that the ratio
Dy g/Dgy ~100 which suggests that the time needed
for relaxation of the nonbonded degrees of freedom is
a much slower process than the equipartitioning of
the kinetic energy. This is in accord with our intu-
ition that the relaxation of nonbonded degrees of
freedom involves large length scale cooperative mo-
tion, and hence can have significant barriers. On the
other hand equipartitioning of kinetic energy can
take place by independent random collisions of res-
idues with their neighbors and thus should be a
more facile process. The values of Dpy can be used to
estimate the average activation energy separating
the conformational substates o and B. Since Dy} is
the time required for sampling the conformations
belonging to the two distinct CS we can write Dy ~
7o €xp (AE ,o/kpT). If 7, is taken to be about 1 psec
the values of Dgy in Figure 15 lead to an estimate
for AE ; in the range of 2.2—3.5 kcal/mol. These val-
ues fall in the range of activation energies calcu-
lated more directly for the alanine tetrapeptide.3?

SUMMARY AND CONCLUSIONS

In this paper we have introduced a very general
method for analyzing the dynamics of heterogeneous
systems such as proteins and nucleic acids. The spe-
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Fig. 15. The nonbonded force metric diffusion constant, Dgy
(psec™) [cf. Eq. (8)] as function of temperature. The open circles
correspond to the enzyme/product complex and the crosses are
the S-peptide.

cific application of these concepts to the study of var-
ious motions in the two systems—the S-peptide and
the RNase A/3’~-UMP enzyme/product complex—
have yielded results which we believe to be general
properties of proteins.

We have shown that the time needed for equipar-
titioning of kinetic energy is quite long even at bi-
ological temperatures. This is somewhat surprising
because the kinetic energy is the simplest property
that will have a unique temperature-dependent long
time average value independent of the residue. The
long times involved in the kinetic energy equiparti-
tioning are probably due to the presence of low fre-
quency normal modes, where v~3 cm ™' and the pe-
riod T = 1/v~10 psec, which take a significantly
longer time to average over. We have also found that
at a given temperature the more compact a struc-
ture is the smaller is the value of Dgg. The time
needed for kinetic energy equipartitioning is there-
fore a very rough indication of the degree of com-
pactness in proteins. It also follows from our analy-
sis that these results will be true of homopolymer
systems as well. It is likely that Dgg can be de-
creased by using low friction Langevin dynamics or
a hybrid algorithm that uses a combination of the
standard MD algorithm and Monte Carlo method.3°

The use of the force metric has revealed com-
pletely new ways of probing multiple conforma-
tional substates in proteins. We have shown that by
comparing the dynamics of two conformations that
are initially independent we can infer whether these
conformations belong to the same CS or belong to
two distinct CS separated by a barrier. More impor-
tantly the approximate time scale Dy (and the bar-

rier o In D) for two conformations belonging to
the two distinct CS to mix can be obtained from the
scaling law obeyed by the force metric. The time
Dxy; can be interpreted as the approximate average
residence time in a conformational substate. These
aspects have been demonstrated by examining the
time dependence of the force metric for both the non-
bonded potential and the dihedral angle potential.
On the other hand the time dependence of the total
force metric for all temperatures is superimposable
on to a curve that decays as ¢ 2, and hence this mea-
sure while interesting is not a useful indicator of the
degree of conformation sampling.

There is an interesting correlation between the
dynamics of the dihedral angle motion and the pro-
cess of nonbonded relaxation. In particular the dy-
namics of both processes happen on approximately
the same time scale implying that the nonbonded
relaxation is parametrically dependent on dihedral
angle transitions. The formation of folded structures
in proteins is possible because of the presence of fa-
vorable nonbonded interactions. It is reasonable to
suggest that the time scale for achieving a structure
of maximal compactness is intimately related to the
number of dihedral angle transitions required and
the activation energy for each transition. The large
scale cooperative motion associated with the relax-
ation of nonbonded interactions is in fact driven by a
series of “local” dihedral angle transitions. The non-
bonded force metric can be used as a novel analytical
means of studying the kinetics of folding of a protein
into compact native structures.

In the simulation of proteins one has to contend
with the possibility of a complex energy landscape
with many minima separated by a wide range of
barrier heights. Our results suggest that in order to
optimize the conformation space sampling it is bet-
ter to perform averages over several relatively
short, independent MD trajectories rather than one
very long one. The rationale behind this is that by
generating several independent trajectories (by a
combination of heating and cooling methods) one
can sample more efficiently isoenergetic conforma-
tions belonging to independent conformational sub-
states.?® Thus in proteins in which one has to con-
tend with a rugged energy landscape meaningful
simulations should use a combination of the molec-
ular dynamics method in conjunction with the sim-
ulated annealing technique. It is also likely that a
combination of energy minimization method and
molecular dynamics technique®* can enhance the
rate of sampling of conformation space. The other
important lesson is that the GEM can be used to
design MD simulations. Because the scaling behav-
ior for the GEM is obtained in relatively short times
for systems which are ergodic the associated gener-
alized diffusion constant, and the value 7., can be
easily found. This sort of analysis is particularly
useful in the calculation of the free energy difference
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between reactant and product by free energy pertur-
bation methods in which several MD simulations
corresponding to different Hamiltonians are needed.
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