Background

In order to define stable commutator length, we first need some background:

Definition: Recall that a group \(\langle G, *\rangle\) is a set \(G\) equiped with a binary operation \(*\) such that:

  • The operation is associative
  • There exists an identity  such that for every  we have \(\mathrm{id}_G*g=g*\mathrm{id}_G=g\)
  • For every \(g \in G\), there exists an inverse \(g^{-1} \in G\) such that \(g * g^{-1} =g^{-1}*g=\mathrm{id}_G\).

Definition: A free group is the largest possible group "generated" by some set. For example, let \(S=\{a,b\}\). Then the free group \(F_S\) consists of "reduced words" (i.e. \(a\) and \(a^{-1}\) cannot be adjacent and similarly for \(b, b^{-1}\)) in the letters \(a,b,a^{-1},b^{-1}\) such as \(\{\mathrm{id}_G,a,b,a^{-1},b^{-1},ab,ab^{-1},\cdots\}\) and so on.

 

Definition: For a group \(G\) with elements \(x, y \in G\), define the commutator \([x, y]\) of \(x\) and \(y\) to be \([x, y] := xyx^{-1}y^{-1}\).

Note that \([x, y] = \mathrm{id}_G\) iff \(xy = yx\). Let \([G, G] \) be commutator subgroup generated by all commutators of \(G\). Commutators give a measure of how abelian a group is, since \(G / [G, G] \) is the largest abelian quotient of \(G\).

 

Definition: The commutator length \(\operatorname{cl}_G(x)\) of a word \(x \in [G,G]\) is the minimal number of commutators that can be concatenated to prepresent the given word \(x\).

Example: Let \(G=F_2\).

  • \(aabbAABB=[aa,bb]\) implies \(\operatorname{cl}_G(aabbAABB) =1\)
  • \(abABabAB = (abAB)^2 = [a, b] * [a, b]\), and actually \(\operatorname{cl}_G((abAB)^2) =2\)
  • Although \((abAB)^3=[a,b]^3\), there is a more efficient expression \((abAB)^3 = [abA, BabAA] * [BB, ba]\), and actually \(\operatorname{cl}_G((abAB)^3) =2\) (Culler's identity)

 

GIven this definition, the stable commutator length can be defined as follows, measuring the growth of the commutator length for powers of \(x\).

Definition: The stable commutator length \(\mathrm{scl}_G(x)\) of a word \(x \in [G,G]\) is defined as

\(\mathrm{scl}_G(x) = \lim_{n \to \infty} \frac{\mathrm{cl}_G(x^n)}{n},\)

where the limit exists since the sequence \(\mathrm{cl}_G(x^n)\) is subadditive.

 

Example: For a free group \(G\) generated by \(x,y\), it is known that \(\mathrm{cl}([x,y]^n)=[\frac{n}{2}]+1\) for all \(n\ge1\), so \(\mathrm{scl}_G([x, y]) = \frac{1}{2}\).

This holds more generally for any two non-commuting elements \(x,y\) in a free group, which follows from a "spectral gap theorem" of Duncan-Howie, which shows that \(\mathrm{scl}(g)\ge\frac{1}{2}\) for any nontrivial element \(g\) in the free group.

 

Nice Properties

Monotonicity: For any homomorphism \(f: G\to H\) (i.e. a map respecting the group operations), we have \(\mathrm{scl}_G(g)\ge\mathrm{scl}_H(f(g))\) for any \(g\in[G,G]\), and similarly for cl.

Invariancecl and scl are invariant under isomorphism.

Invariance under conjugationcl and scl are invariant under conjugation. For example, \(\mathrm{scl}_G(abAB) = \mathrm{scl}_G(bABa)\).