Publications

1990
Roux SJ. Partial purification and characterization of a Ca(2+)-dependent protein kinase from the green alga, Dunaliella salina. Plant Physiol. 94 :143-50.Abstract
A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10(-7) molar. and half-maximal activation was at about 3 x 10(-7) molar. The optimum pH for its Ca(2+)-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separated from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.
1989
Scheuerlein R, Wayne R, Roux SJ. Calcium requirement of phytochrome-mediated fern-spore germination: No direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain. Planta. 178 (1) :25-30.Abstract
Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca(2+) was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10(-4) M. At concentrations ≥10(-1) M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La(3+), an antagonist of Ca(2+). From these results it is concluded that Ca(2+) influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca(2+) the R-stimulated system remained capable of responding to Ca(2+), added as late as 40 h after R. Moreover, Ca(2+) was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. "Coupling" of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting "escape kinetics" were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of photochrome.
Scheuerlein R, Wayne R, Roux SJ. Calcium requirement of phytochrome-mediated fern-spore germination: no direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain. Planta. 178 :25-30.Abstract
Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10(-4) M. At concentrations > or = 10(-1) M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. "Coupling" of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting "escape kinetics" were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of phytochrome.
Kim SH, Shinkle JR, Roux SJ. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings. Proc Natl Acad Sci U S A. 86 :9866-70.Abstract
The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.
1988
Scheuerlein R, Wayne R, Roux SJ. Early quantitative method for measuring germination in non-green spores of Dryopteris paleacea using an epifluorescence-microscope technique. Physiol Plant. 73 (4) :505-11.Abstract
A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.
Kim SH, Terry ME, Hoops P, Dauwalder M, Roux SJ. Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedlings. Plant Physiol. 88 :1446-53.Abstract
A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.
1987
Roux SJ, Serlin BS. Cellular mechanisms controlling light-stimulated gravitropism: role of calcium. CRC Crit Rev Plant Sci. 5 (3) :205-36.
Chen YR, Datta N, Roux SJ. Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem. 262 (22) :10689-94.Abstract
A nucleoside triphosphatase/deoxynucleoside triphosphatase associated with the chromatin fraction from a highly purified preparation of pea nuclei has been isolated and characterized. The purified enzyme has a molecular weight of 47,000 as checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it has an isoelectric point of 6.6. In the presence of divalent cations (Mg2+ = Mn2+ greater than Ca2+), this enzyme hydrolyzes nucleoside triphosphates or deoxynucleoside triphosphates. Hydrolysis is optimal at pH 7.5 and is significantly inhibited by relatively low concentrations of quercetin, but is not sensitive to vanadate, nitrate, or oligomycin. The enzyme has a rather broad nucleotide substrate specificity and has a Km for MgATP2- of 0.6 mM. The enzyme activity is stimulated over 3-fold by Ca2+ and calmodulin, and the stimulation is blocked by the Ca2+ chelator EGTA and by the calmodulin antagonists compound 48/80 and chlorpromazine.
Datta N, Schell MB, Roux SJ. Spermine stimulation of a nuclear NII kinase from pea plumules and its role in the phosphorylation of a nuclear polypeptide. Plant Physiol. 84 :1397-401.Abstract
We have previously demonstrated that spermine stimulates the phosphorylation of a 47 kilodalton nuclear polypeptide from pea plumules (N Datta, LK Hardison, SJ Roux 1986 Plant Physiol 82: 681-684). In this paper we report that spermine stimulates the activity of a cyclic AMP independent casein kinase, partially purified from a chromatin fraction of pea plumule nuclei. This effect of spermine was substrate specific; i.e. with casein as substrate, spermine stimulated the kinase activity, and with phosvitin as substrate, spermine completely inhibited the activity. The stimulation by spermine of the casein kinase was, in part, due to the lowering of the Mg2+ requirement of the kinase. Heparin could partially inhibit this casein kinase activity and spermine completely overcame this inhibition. By further purification of the casein kinase extract on high performance liquid chromatography, we fractionated it into an NI and an NII kinase. Spermine stimulated the NII kinase by 5- to 6-fold but had no effect on the NI kinase. Using [gamma-32P]GTP, we have shown that spermine promotes the phosphorylation of the 47 kilodalton polypeptide(s) in isolated nuclei, at least in part by stimulating an NII kinase.
1986
Chen YR, Roux SJ. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light. Plant Physiol. 81 :609-13.Abstract
A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.
Dauwalder M, Roux SJ. Distribution of calmodulin in corn seedlings: immunocytochemical localization in coleoptiles and root apices. Adv Space Res. 6 (12) :67-70.Abstract
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.
Dauwalder M, Roux SJ, Hardison L. Distribution of calmodulin in pea seedlings: immunocytochemical localization in plumules and root apices. Planta. 168 :461-70.Abstract
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.
Roux SJ, Wayne RO, Datta N. Role of calcium ions in phytochrome responses: an update. Physiol Plant. 66 :344-8.
Dauwalder M, Roux SJ, Hardison L. Distribution of calmodulin in pea seedlings: Immunocytochemical localization in plumules and root apices. Planta. 168 (4) :461-70.Abstract
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal system may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca(2+).
Serlin BS, Roux SJ. Light-induced import of the chromoprotein, phytochrome, into mitochondria. Biochim Biophys Acta. 848 :372-7.Abstract
Mitochondria extracted from plants that were irradiated with actinic light in vivo have associated with them the chromoprotein, phytochrome. This phytochrome retains its native subunit size of 124 kDa after proteolytic treatment of the mitochondria with trypsin and chymotrypsin. This result suggests that phytochrome is not exposed on the outer surface of the outer mitochondrial membrane. Phytochrome, so protected, is not found to be associated with mitochondria derived from unirradiated plants. The possibility that the photoactivation of phytochrome induces a conformational change in its structure which facilitates its transport into the mitochondrion is discussed.
Datta N, Hardison LK, Roux SJ. Polyamine stimulation of protein phosphorylation in isolated pea nuclei. Plant Physiol. 82 (3) :681-4.Abstract
The phosphorylation of several proteins in isolated nuclei from Pisum sativum L. was stimulated by spermine. Although spermine increased the general protein phosphorylation by 10 to 20%, it increased the phosphorylation of a 47 kilodalton polypeptide by 150%. By comparison other polyamines, spermidine, putrescine, and cadavarine had far less effect on the phosphorylation of the 47 kilodalton or any other polypeptide. Sodium fluoride was able to inhibit the phosphorylation of the 47 kilodalton polypeptide in the control, implying the participation of protein phosphatase(s) in the phosphorylation of nuclear proteins. Spermine stimulated the phosphorylation of the 47 kilodalton polypeptide over the controls, even in the presence of NaF. This result indicates that spermine probably activates a nuclear kinase, a conclusion supported also by thiophosphorylation data. The inability of ethyleneglycol-bis (beta-amino-ethyl ether)-N, N'-tetraacetic acid and Compound 48/80, a calmodulin antagonist, to inhibit this spermine stimulated phosphorylation renders improbable any role of calcium and calmodulin in mediating this response.
1985
Dauwalder M, Roux SJ, Rabenberg LK. Cellular and subcellular localization of calcium in gravistimulated corn roots. Protoplasma. 129 :137-48.Abstract
Antimonate staining procedures and energy dispersive X-ray micro-analytical techniques were used to determine the patterns of localization of calcium in nonstimulated and gravistimulated corn roots. In horizontally positioned roots within the region of the developing bend there was a change in the staining from that principally localized within cells of the stele to asymmetric staining within the vacuoles of the cortical cells along the upper root surface. There was little staining in the walls. The pattern observed is quite different from that seen in gravistimulated coleoptiles. Staining of mitochondria, plastids and Golgi stacks was seen in most cell types, but no asymmetry of staining was observed. In the rootcap where graviperception is thought to occur, there was little staining of any cellular organelles.
Silberman LG, Datta N, Hoops P, Roux SJ. Characterization of monoclonal antibodies to oat phytochrome by competitive radioimmunoassays and comparative immunoblots of phytochrome peptides. Arch Biochem Biophys. 236 (1) :150-8.Abstract
A library of 50 hybridomas which make antibodies to oat phytochrome was produced from the fusion of spleen cells from immunized Balb/c mice with P3x63Ag8 myeloma cells. Hybridomas were selected in a medium containing hypoxanthine, aminopterin, and thymidine, and specific hybridomas were screened for production of antibodies to phytochrome using a solid-phase enzyme-linked immunoadsorbent assay which was antigen specific. Positive cultures were cloned three times by limit dilution to assure monoclonal growth and stability. Specificity toward phytochrome was established by Western blot analysis and immunoprecipitation. Epitope specificity of nine monoclonal antibodies was determined by competitive inhibition radioimmunoassays and/or comparative immunoblots of tryptic peptides of phytochrome.
Roux SJ, Dauwalder M. Immunocytochemical localization of calmodulin in pea root caps and plumules and its relevance to hypotheses on gravitropism. Physiologist. 28 (6 Suppl) :S115-6.
Datta N, Chen YR, Roux SJ. Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem Biophys Res Commun. 128 (3) :1403-8.Abstract
The phosphorylation of several proteins in pea nuclei was promoted by Ca2+ and by red light. The red light-induced stimulation was reversed by far-red light, indicating that the photoreceptor modulating this response was the photochromic pigment, phytochrome. Both the red light and the Ca2+-promoted enhancement of phosphorylation were inhibited by the calcium chelator, ethylene glycol bis(beta-aminoethyl ether) N, N'-tetraacetic acid, and by the calmodulin inhibitors, chlorpromazine and compound 48/80.

Pages