Publications

1984
Roux SJ. Ca2+ and phytochrome action in plants. Bioscience. 34 (1) :25-9.Abstract
Red light initiates many important morphogenetic responses in plants through the mediation of the pigment, phytochrome. How phytochrome promotes photomorphogenesis is unknown. The evidence that photoactivated phytochrome initiates calcium fluxes in cells is reviewed and how these fluxes could regulate several known red-light induced effects in plants is discussed.
Biro RL, Daye S, Serlin BS, Terry ME, Datta N, Sopory SK, Roux SJ. Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol. 75 (2) :382-6.Abstract
A protein identifiable as calmodulin has been isolated from oat (Avena sativa, var Garry) tissues. This protein is relatively heat stable, binds to hydrophobic gels, and phenothiazines in a calcium-dependent fashion, and binds to antibody to rat testes calmodulin. Based on its migration on sodium dodecyl sulfate-polyacrylamide gels, ultraviolet absorption spectrum, and amino acid composition, oat calmodulin is essentially identical to calmodulin isolated from other higher plants. Radioimmunoassays indicate that calmodulin is associated with isolated oat protoplasts, mitochondria, etioplasts, and nuclei and also appears to be a component of oat cell wall fractions.
Serlin BS, Sopory SK, Roux SJ. Modulation of oat mitochondrial ATPase activity by CA2+ and phytochrome. Plant Physiol. 74 (4) :827-33.Abstract
The activity of a Mg(2+)-dependent ATPase present in highly purified preparations of Avena mitochondria was photoreversibly modulated by red/far-red light treatments. These results were obtained either with mitochondria isolated from plants irradiated with white light prior to the extraction or with mitochondria isolated from unirradiated plants only when purified phytochrome was exogenously added to the reaction mixture. Red light, which converts phytochrome to the far red-absorbing form (Pfr) depressed the ATPase activity, and far-red light reversed this effect. Addition of exogenous CaCl2 also depressed the ATPase activity, and the kinetics of inhibition were similar to the kinetics of the Pfr effects on the ATPase. The calcium chelator, ethyleneglycol-bis(beta-amino-ethyl ether)-N,N' -tetraacetic acid, blocked the effects of both CaCl2 and Pfr on the ATPase. These results are consistent with the interpretation that Pfr promotes a release of Ca2+ from the mitochondrial matrix, thereby inducing an increase in the concentration of intermembranal and extramitochondrial Ca2+.
Daye S, Biro RL, Roux SJ. Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid. Physiol Plant. 61 (3) :449-54.Abstract
A treatment period as brief as 8 h in 10(-3) M EGTA completely blocks gravitropism in 70-80% of the treated coleoptiles of oats (Avena sativa L. cv. Garry) without inhibiting growth. Only about 10% of the plants perfused in water failed to exhibit gravitropism. Subsequent perfusion of EGTA-treated plants with calcium completely restores gravitropism; post-perfusion with water does not. After perfusion in water for 10 h, gravistimulated oat coleoptile segments show the same asymmetry of 45Ca distribution as reported earlier for non-perfused coleoptiles and sunflower hypocotyls. The degree of this asymmetry is reduced in those coleoptiles partially inhibited by perfusion in EGTA and is essentially absent in those coleoptiles completely inhibited by EGTA. The fact that calcium reverses the inhibitory effects of EGTA on gravitropism indicates that the inhibition was probably due to a reduction in the availability of free calcium required for one or more of the transduction steps of gravitropism.
Serlin BS, Roux SJ. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists. Proc Natl Acad Sci U S A. 81 (20) :6368-72.Abstract
The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on the phytochrome-controlled light response. These results support the hypothesis that calcium functions as a chemical messenger to couple the stimulus of phytochrome photoactivation with physiological responses in plants.
1983
Roux SJ, Biro RL, Biro RL. Calcium movements and the cellular basis of gravitropism. Adv Space Res. 3 (9) :221-7.Abstract
An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.
Slocum RD, Roux SJ. Cellular and subcellular localization of calcium in gravistimulated oat coleoptiles and its possible significance in the establishment of tropic curvature. Planta. 157 (6) :481-92.Abstract
Light-and electron-microscopic studies of the distribution of calcium in gravitropically responding oat (Avena sativa L. cv. "Garry") coleoptiles are described. A modification of the antimonate precipitation procedure was used to localize tissue calcium in situ. An accumulation of Ca in the upper halves of horizontal, gravistimulated coleoptiles is seen within 10 min of stimulus onset. A pronounced redistribution of Ca to the upper side occurs within 30 min; although the localization of this cation is not uniform along the organ axis and in the apical region, Ca appears to accumulate along the lower side. The observed asymmetric distribution of Ca in these tissues precedes large-scale visible bending by 20-30 min, but is temporally well-correlated with differential growth responses in the coleoptile, as measured by more sensitive quantitative techniques. Gravitropic curvature is well developed by 3 h and is accompanied by further redistribution of Ca to tissues along the upper coleoptile half, centered around the bend. Ultrastructural localization studies indicate that Ca asymmetry results primarily from changes in the distribution of Ca within the apoplastic compartment. Large amounts of Ca accumulate at the cuticle in epidermal cell walls and in the walls of the underlying parenchyma cells at the upper side of the organ in the region of maximal bending. The differential growth response resulting in the establishment of gravitropic curvature may largely be the consequence of antagonistic effects of Ca on auxin-mediated cell wall loosening and elongation growth processes at the upper side of the organ.
Roux SJ. A possible role for Ca2+ in mediating phytochrome responses. Symp Soc Exp Biol. 36 :561-80.
1982
Slocum RD, Roux SJ. An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. J Histochem Cytochem. 30 (7) :617-29.Abstract
A new variation of the antimonate precipitation technique, employing tannic acid in the primary aldehyde-antimonate fixative, is described for use in the subcellular localization of calcium in various tissues. Chelation studies and electron microscopic, X-ray microanalytical studies of antimonate precipitates in etiolated oat tissues indicate that calcium is the major cation localized using the present experimental protocol. Preservation of ultrastructural morphology in these tissues is greatly improved over that observed in tissues fixed with conventional antimonate-aldehyde or antimonate-osmium fixatives. The regularity and reproducibility of tissue precipitate patterns suggests that 1) penetration of the tissue by the fixative, and subsequent precipitation of calcium, is rapid and uniform and 2) ion displacement during sample preparation is negligible. Calcium appears to be immobilized efficiently in situ, with greater than 90% 45Ca retention in radiolabeled tissues prepared for electron microscopy. Quantitative aspects of calcium precipitation by antimonate in 45Ca-labeled CaCl2 solutions were examined over a wide range of calcium concentrations. Precipitation was essentially linear over the expected range of biological concentrations of calcium. Furthermore, the 3:1 antimonate to calcium ratio estimated for test tube precipitates was also established for Sb/Ca in tissue precipitates analyzed using energy dispersive x-ray microanalytical (EDX) techniques. These observations suggest that the present technique is potentially useful in the semiquantitative estimation of tissue calcium levels.
1981
Roux SJ, McEntire K, Slocum RD, Cedel TE, Hale CC. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats. Proc Natl Acad Sci U S A. 78 (1) :283-7.Abstract
Previous studies have indicated that phytochrome regulates Ca(2+) fluxes across the plasma membrane of plant cells. In this study we investigated whether phytochrome can also regulate such fluxes across mitochondrial membranes, using the Ca(2+)-sensitive dye murexide to monitor the uptake and release of Ca(2+) by mitochondria. The results showed that Ca(2+) fluxes in these organelles could be photoreversibly altered, red light diminishing the net uptake rate and far-red light restoring this rate to its dark control level. Treatment of the mitochondria with ruthenium red blocked their Ca(2+) uptake. In the presence of this inhibitor, red light induced a net efflux of Ca(2+) from the mitochondria, and subsequent far-red light reduced this efflux to nearly zero, the dark control level. Light-induced rate changes in Ca(2+) flux, both with and without the inhibitor, persisted for several minutes in the dark and remained photoreversible through several irradiations for as long as 30 min. The purity of the mitochondrial preparation was judged to be about 80% by electron microscopic morphometry; most of the phytochrome present was localized on the mitochondria in the preparation by using immunocytochemical methods. Taken together with previous findings, the results suggest that red light activation of phytochrome would initiate an increase in the cytosolic Ca(2+) concentration. The results are integrated with the fact that calmodulin is a component of plant cell cytoplasms to construct a model postulating that phytochrome directs photomorphogenesis in part through its regulation of Ca(2+) and calmodulin-controlled enzyme activities.
1980
Hale CC, Roux SJ. Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol. 65 (4) :658-62.Abstract
The chromometallic dye murexide was used to measure photoreversible Ca fluxes in apical tips of etiolated oat coleoptiles and in suspension cultures of protoplasts derived from the coleoptile segments. Phytochrome presence in the protoplasts was indicated by a repeatably photoreversible DeltaA(725 - 800 nm) of >0.001 A centimeters(-1), recorded on a dual wavelength spectrophotometer. Concentrations of Ca in the solution bathing the cells were observed to change photoreversibly, red irradiation inducing an increase in the medium Ca concentration and subsequent farred irradiation inducing a decrease down to near dark control levels. These changes could be measured in media with or without exogenously added Ca. Protoplasts from green primary leaves of oat, which had no spectro-photometrically detectable phytochrome, showed no photoreversible Ca fluxes when measured by the same method. These data imply that red light induces an efflux of Ca from phytochrome-containing cells and that far red light can reverse this change by promoting a Ca reentry into these cells.
1977
Georgevich G, Cedel TE, Roux SJ. Use of I-labeled phytochrome to quantitate phytochrome binding to membranes of Avena sativa. Proc Natl Acad Sci U S A. 74 (10) :4439-43.Abstract
Purified oat phytochrome was labeled with (125)I without altering the photoreversibility or absorbance properties of the pigment. The radiolabeled phytochrome was used in experiments in vitro to quantitate the binding of the pigment to both crude and purified membrane preparations from oat tissue. After the membranes were allowed to react with (125)I-labeled phytochrome, washed free of unbound material, and pelleted, they were found to have significant levels of radioactivity bound to them. Qualitative identification of phytochrome as the bound radioactive species was confirmed by autoradiography of sodium dodecyl sulfate gels after electrophoresis of the proteins contained in the washed membranes. Data supporting the specificity of the binding are that the binding shows saturation kinetics and that unlabeled phytochrome, but not bovine serum albumin, will competitively inhibit the binding of labeled phytochrome. This technique permits the detection of less than a nanogram of phytochrome and provides a new method for quantifying bound phytochrome that is independent of the spectral detectability of the pigment. It should be useful in elucidating the nature of phytochrome attachment to cellular membranes.
1973
Roux SJ, Yguerabide J. Photoreversible conductance changes induced by phytochrome in model lipid membranes. Proc Natl Acad Sci U S A. 70 (3) :762-4.Abstract
The plant protein phytochrome induces photoreversible conductance changes when added to a black lipid membrane made from oxidized cholesterol. The conductance of the phytochrome-modified membrane is increased by red-light illumination but is decreased by illumination with far-red light. Denatured phytochrome does not affect the conductance of the model membrane.
1969
Roux SJ, Hillman WS. The effect of glutaraldehyde and two monoaldehydes on phytochrome. Arch Biochem Biophys. 131 (2) :423-9.

Pages