2014
Kenney AM, McKay JK, Richards JH, Juenger TE.
Direct and indirect selection on flowering time, water-use efficiency (WUE, delta13C), and WUE plasticity to drought in Arabidopsis thaliana. Ecology and Evolution [Internet]. 4 (23) :4505-4521.
Publisher's VersionAbstractFlowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought.
kenney_et_al-2014-ecology_and_evolution.pdf Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M, Martin J, Bragg JN, Tyler L, Lee C-R, Bryant D, et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. The Plant Journal [Internet]. (79) :361-374.
Publisher's VersionAbstractBrachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.
gordon_et_al-2014-the_plant_journal.pdf Meyer E, Aspinwall MJ, Lowry DB, Palacio-Mejía JD, Logan TL, Fay PA, Juenger TE.
Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics [Internet]. (15) :527.
Publisher's VersionAbstractBackground: In light of the changes in precipitation and soil water availability expected with climate change, understanding the mechanisms underlying plant responses to water deficit is essential. Toward that end we have conducted an integrative analysis of responses to drought stress in the perennial C4 grass and biofuel crop, Panicum virgatum (switchgrass). Responses to soil drying and re-watering were measured at transcriptional, physiological, and metabolomic levels. To assess the interaction of soil moisture with diel light: dark cycles, we profiled gene expression in drought and control treatments under pre-dawn and mid-day conditions.
Results: Soil drying resulted in reduced leaf water potential, gas exchange, and chlorophyll fluorescence along with differential expression of a large fraction of the transcriptome (37%). Many transcripts responded differently depending on time of day (e.g. up-regulation pre-dawn and down-regulation mid-day). Genes associated with C4 photosynthesis were down-regulated during drought, while C4 metabolic intermediates accumulated. Rapid changes in gene expression were observed during recovery from drought, along with increased water use efficiency and chlorophyll fluorescence.
Conclusions: Our findings demonstrate that drought responsive gene expression depends strongly on time of day and that gene expression is extensively modified during the first few hours of drought recovery. Analysis of covariation in gene expression, metabolite abundance, and physiology among plants revealed non-linear relationships that suggest critical thresholds in drought stress responses. Future studies may benefit from evaluating these thresholds among diverse accessions of switchgrass and other C4 grasses.
meyer_etal2014.pdf Des Marais DL, Auchincloss LC, Sukamtoh E, McKay JK, Logan T, Richards JH, Juenger TE.
Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. PNAS [Internet]. 111 (7) :2836-2841.
Publisher's VersionAbstractPlant water relations are critical for determining the distribution, persistence, and fitness of plant species. Studying the genetic basis of ecologically relevant traits, however, can be complicated by their complex genetic, physiological, and developmental basis and their interaction with the environment. Water use efficiency (WUE), the ratio of photosynthetic carbon assimilation to stomatal conductance to water, is a dynamic trait with tremendous ecological and agricultural importance whose genetic control is poorly understood. In the present study, we use a quantitative trait locus-mapping approach to locate, fine-map, clone, confirm, and characterize an allelic substitution that drives differences in WUE among natural accessions of Arabidopsis thaliana. We show that a single amino acid substitution in an abscisic acid-responsive kinase, AtMPK12, causes reduction in WUE, and we confirm its functional role using transgenics. We further demonstrate that natural alleles at AtMPK12 differ in their response to cellular and environmental cues, with the allele from the Cape Verde Islands (CVI) being less responsive to hormonal inhibition of stomatal opening and more responsive to short-term changes in vapor pressure deficit. We also show that the CVI allele results in constitutively larger stomata. Together, these differences cause higher stomatal conductance and lower WUE compared with the common allele. These physiological changes resulted in reduced whole-plant transpiration efficiency and reduced fitness under water-limited compared with well-watered conditions. Our work demonstrates how detailed analysis of naturally segregating functional variation can uncover the molecular and physiological basis of a key trait associated with plant performance in ecological and agricultural settings.
pnas-2014-des_marais-2836-41.pdf Verslues PE, Lasky JR, Juenger TE, Liu T-W, Kumar NM.
Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol. 164 (1) :144-59.
AbstractArabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods.
Lowry DB, Behrman KD, Grabowski P, Morris GP, Kiniry JR, Juenger TE.
Adaptations between ecotypes and along environmental gradients in Panicum virgatum. Am Nat. 183 (5) :682-92.
AbstractDetermining the patterns and mechanisms of natural selection in the wild is of fundamental importance to understanding the differentiation of populations and the evolution of new species. However, it is often unknown the extent to which adaptive genetic variation is distributed among ecotypes between distinct habitats versus along large-scale geographic environmental gradients, such as those that track latitude. Classic studies of selection in the wild in switchgrass, Panicum virgatum, tested for adaptation at both of these levels of natural variation. Here we review what these field experiments and modern agronomic field trials have taught us about natural variation and selection at both the ecotype and environmental gradient levels in P. virgatum. With recent genome sequencing efforts in P. virgatum, it is poised to become an excellent system for understanding the adaptation of grassland species across the eastern half of North America. The identification of genetic loci involved in different types of adaptations will help to understand the evolutionary mechanisms of diversification within P. virgatum and provide useful information for the breeding of high-yielding cultivars for different ecoregions.
Kenney AM, McKay JK, Richards JH, Juenger TE.
Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol Evol. 4 (23) :4505-21.
AbstractFlowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought.
Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M, Martin J, Bragg JN, Tyler L, Lee C-R, Bryant D, et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 79 (3) :361-74.
AbstractBrachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.
Meyer E, Aspinwall MJ, Lowry DB, Palacio-Mejía JD, Logan TL, Fay PA, Juenger TE.
Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics. 15 :527.
AbstractBACKGROUND: In light of the changes in precipitation and soil water availability expected with climate change, understanding the mechanisms underlying plant responses to water deficit is essential. Toward that end we have conducted an integrative analysis of responses to drought stress in the perennial C4 grass and biofuel crop, Panicum virgatum (switchgrass). Responses to soil drying and re-watering were measured at transcriptional, physiological, and metabolomic levels. To assess the interaction of soil moisture with diel light: dark cycles, we profiled gene expression in drought and control treatments under pre-dawn and mid-day conditions.
RESULTS: Soil drying resulted in reduced leaf water potential, gas exchange, and chlorophyll fluorescence along with differential expression of a large fraction of the transcriptome (37%). Many transcripts responded differently depending on time of day (e.g. up-regulation pre-dawn and down-regulation mid-day). Genes associated with C4 photosynthesis were down-regulated during drought, while C4 metabolic intermediates accumulated. Rapid changes in gene expression were observed during recovery from drought, along with increased water use efficiency and chlorophyll fluorescence.
CONCLUSIONS: Our findings demonstrate that drought responsive gene expression depends strongly on time of day and that gene expression is extensively modified during the first few hours of drought recovery. Analysis of covariation in gene expression, metabolite abundance, and physiology among plants revealed non-linear relationships that suggest critical thresholds in drought stress responses. Future studies may benefit from evaluating these thresholds among diverse accessions of switchgrass and other C4 grasses.
Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK, Richards JH, Keitt TH, Juenger TE.
Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol Biol Evol. 31 (9) :2283-96.
AbstractGene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.
Easlon HM, Nemali KS, Richards JH, Hanson DT, Juenger TE, McKay JK.
The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynth Res. 119 (1-2) :119-29.
AbstractEcologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity.
Des Marais DL, Auchincloss LC, Sukamtoh E, McKay JK, Logan T, Richards JH, Juenger TE.
Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc Natl Acad Sci U S A. 111 (7) :2836-41.
AbstractPlant water relations are critical for determining the distribution, persistence, and fitness of plant species. Studying the genetic basis of ecologically relevant traits, however, can be complicated by their complex genetic, physiological, and developmental basis and their interaction with the environment. Water use efficiency (WUE), the ratio of photosynthetic carbon assimilation to stomatal conductance to water, is a dynamic trait with tremendous ecological and agricultural importance whose genetic control is poorly understood. In the present study, we use a quantitative trait locus-mapping approach to locate, fine-map, clone, confirm, and characterize an allelic substitution that drives differences in WUE among natural accessions of Arabidopsis thaliana. We show that a single amino acid substitution in an abscisic acid-responsive kinase, AtMPK12, causes reduction in WUE, and we confirm its functional role using transgenics. We further demonstrate that natural alleles at AtMPK12 differ in their response to cellular and environmental cues, with the allele from the Cape Verde Islands (CVI) being less responsive to hormonal inhibition of stomatal opening and more responsive to short-term changes in vapor pressure deficit. We also show that the CVI allele results in constitutively larger stomata. Together, these differences cause higher stomatal conductance and lower WUE compared with the common allele. These physiological changes resulted in reduced whole-plant transpiration efficiency and reduced fitness under water-limited compared with well-watered conditions. Our work demonstrates how detailed analysis of naturally segregating functional variation can uncover the molecular and physiological basis of a key trait associated with plant performance in ecological and agricultural settings.
2013
Fletcher RS, Mullen JL, Yoder S, Bauerle WL, Reuning G, Sen S, Meyer E, Juenger TE, McKay JK.
Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genomics. 14 :655.
AbstractBACKGROUND: The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery.
RESULTS: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait.
CONCLUSIONS: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.
Scarpino SV, Hunt PJ, Garcia-De-Leon FJ, Juenger TE, Schartl M, Kirkpatrick M.
Evolution of a genetic incompatibility in the genus Xiphophorus. Mol Biol Evol. 30 (10) :2302-10.
AbstractGenetic incompatibilities are commonly observed between hybridizing species. Although this type of isolating mechanism has received considerable attention, we have few examples describing how genetic incompatibilities evolve. We investigated the evolution of two loci involved in a classic example of a Bateson-Dobzhansky-Muller (BDM) incompatibility in Xiphophorus, a genus of freshwater fishes from northern Central America. Hybrids develop a lethal melanoma due to the interaction of two loci, an oncogene and its repressor. We cloned and sequenced the putative repressor locus in 25 Xiphophorus species and an outgroup species, and determined the status of the oncogene in those species from the literature. Using phylogenetic analyses, we find evidence that a repeat region in the proximal promoter of the repressor is coevolving with the oncogene. The data support a hypothesis that departs from the standard BDM model: it appears the alleles that cause the incompatibilities have coevolved simultaneously within lineages, rather than in allopatric or temporal isolation.
Lowry DB, Logan TL, Santuari L, Hardtke CS, Richards JH, DeRose-Wilson LJ, McKay JK, Sen S, Juenger TE.
Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis. Plant Cell. 25 (9) :3266-79.
AbstractThe regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.
Duszynska D, McKeown PC, Juenger TE, Pietraszewska-Bogiel A, Geelen D, Spillane C.
Gamete fertility and ovule number variation in selfed reciprocal F1 hybrid triploid plants are heritable and display epigenetic parent-of-origin effects. New Phytol. 198 (1) :71-81.
AbstractPolyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessions to a tetraploid Ler-0 line. All F1 hybrid triploid genotypes exhibited dramatically reduced ovule fertility, while variation in ovule number per silique was observed across different F1 triploid genotypes. These two reproductive traits were negatively correlated suggesting a trade-off between increased ovule number and ovule fertility. Furthermore, the ovule fertility of the F1 hybrid triploids displayed both hybrid dysgenesis and hybrid advantage (heterosis) effects. Strikingly, both reproductive traits (ovule fertility, ovule number) displayed epigenetic parent-of-origin effects between genetically identical reciprocal F1 hybrid triploid pairs. In some F1 triploid genotypes, the maternal genome excess F1 hybrid triploid was more fertile, whilst for other accessions the paternal genome excess F1 hybrid triploid was more fertile. Male gametogenesis was not significantly disrupted in F1 triploids. Fertility variation in the F1 triploid A. thaliana is mainly the result of disrupted ovule development. Overall, we demonstrate that in F1 triploid plants both ovule fertility and ovule number are subject to parent-of-origin effects that are genome dosage-dependent.
Aspinwall MJ, Lowry DB, Taylor SH, Juenger TE, Hawkes CV, Johnson M-VV, Kiniry JR, Fay PA.
Genotypic variation in traits linked to climate and aboveground productivity in a widespread C₄ grass: evidence for a functional trait syndrome. New Phytol. 199 (4) :966-80.
AbstractExamining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios.
Juenger TE.
Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol. 16 (3) :274-81.
AbstractDrought is a central abiotic stress for both natural plant populations and agricultural crops. Substantial natural genetic variation in drought resistance traits has been identified in plant populations, crop species, and laboratory model systems. In particular, studies in Arabidopsis thaliana have discovered variation in a number of key physiological traits involved in plant-water relations that may underlie evolved drought stress responses among accessions. Despite this abundant variation, we still know little about the complex genetic architecture of drought tolerance or its role in constraining evolution. Unfortunately, few natural allelic variants have been cloned for drought related traits--progress cloning QTL, the use of RNA-sequencing methods for evaluating gene expression responses to soil drying, and improved methodology for exploring complex multivariate data all hold promise for moving the field forward. In particular, a better understanding of the molecular nature of pleiotropic gene action and the genetics of phenotypic plasticity will give insight into local adaptation in plants and provide new avenues for improving crops.
Lovell JT, Juenger TE, Michaels SD, Lasky JR, Platt A, Richards JH, Yu X, Easlon HM, Sen S, McKay JK.
Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Proc Biol Sci. 280 (1763) :20131043.
AbstractAn evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, 'antagonistic' pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits 'adaptive' pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a 'drought escape' strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch.
Lowry DB, Purmal CT, Juenger TE.
A population genetic transect of Panicum hallii (Poaceae). Am J Bot. 100 (3) :592-601.
AbstractUNLABELLED: •
PREMISE OF STUDY: Understanding the relationship between climate, adaptation, and population structure is of fundamental importance to botanists because these factors are crucial for the evolution of biodiversity and the response of species to future climate change. Panicum hallii is an emerging model system for perennial grass and bioenergy research, yet very little is known about the relationship between climate and population structure in this system. •
METHODS: We analyzed geographic population differentiation across 39 populations of P. hallii along a longitudinal transect from the savannas of central Texas through the deserts of Arizona and New Mexico. A combination of morphological and genetic (microsatellite) analysis was used to explore patterns of population structure. •
KEY RESULTS: We found strong differentiation between high elevation western desert populations and lower elevation eastern populations of P. hallii, with a pronounced break in structure occurring in western Texas. In addition, we confirmed that there are high levels of morphological and genetic structure between previous recognized varieties (var. hallii and var. filipes) within this species. •
CONCLUSIONS: The results of this study suggest that patterns of population structure within P. hallii may be driven by climatic variation over space. Overall, this study lays the groundwork for future studies on the genetics of local adaptation and reproductive isolation in this system.