Publications

2013
Behrman KD, Kiniry JR, Winchell M, Juenger TE, Keitt TH. Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecol Appl. 23 (1) :73-85.Abstract
Evaluating the potential of alternative energy crops across large geographic regions, as well as over time, is a necessary component to determining if biofuel production is feasible and sustainable in the face of growing production demands and climatic change. Switchgrass (Panicum virgatum L.), a native perennial herbaceous grass, is a promising candidate for cellulosic feedstock production. In this study, current and future (from 2080 to 2090) productivity is estimated across the central and eastern United States using ALMANAC, a mechanistic model that simulates plant growth over time. The ALMANAC model was parameterized for representative ecotypes of switchgrass. Our results indicate substantial variation in switchgrass productivity both within regions and over time. States along the Gulf Coast, southern Atlantic Coast, and in the East North Central Midwest have the highest current biomass potential. However, these areas also contain critical wetland habitat necessary for the maintenance of biodiversity and agricultural lands necessary for food production. The southern United States is predicted to have the largest decrease in future biomass production. The Great Plains are expected to experience large increases in productivity by 2080-2090 due to climate change. In general, regions where future temperature and precipitation are predicted to increase are also where larger future biomass production is expected. In contrast, regions that show a future decrease in precipitation are associated with smaller future biomass production. Switchgrass appears to be a promising biofuel crop for the central and eastern United States, with local biomass predicted to be high (>10 Mg/ha) for approximately 50% of the area studied for each climate scenario. In order to minimize land conversion and loss of biodiversity, areas that currently have and maintain high productivity under climate change should be targeted for their long-term growth potential.
2012
Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol Ecol. 21 (22) :5512-29.Abstract
Arabidopsis thaliana inhabits diverse climates and exhibits varied phenology across its range. Although A. thaliana is an extremely well-studied model species, the relationship between geography, growing season climate and its genetic variation is poorly characterized. We used redundancy analysis (RDA) to quantify the association of genomic variation [214 051 single nucleotide polymorphisms (SNPs)] with geography and climate among 1003 accessions collected from 447 locations in Eurasia. We identified climate variables most correlated with genomic variation, which may be important selective gradients related to local adaptation across the species range. Climate variation among sites of origin explained slightly more genomic variation than geographical distance. Large-scale spatial gradients and early spring temperatures explained the most genomic variation, while growing season and summer conditions explained the most after controlling for spatial structure. SNP variation in Scandinavia showed the greatest climate structure among regions, possibly because of relatively consistent phenology and life history of populations in this region. Climate variation explained more variation among nonsynonymous SNPs than expected by chance, suggesting that much of the climatic structure of SNP correlations is due to changes in coding sequence that may underlie local adaptation.
Choo J, Juenger TE, Simpson BB. Consequences of frugivore-mediated seed dispersal for the spatial and genetic structures of a neotropical palm. Mol Ecol. 21 (4) :1019-31.Abstract
The idiosyncratic behaviours of seed dispersers are important contributors to plant spatial associations and genetic structures. In this study, we used a combination of field, molecular and spatial studies to examine the connections between seed dispersal and the spatial and genetic structures of a dominant neotropical palm Attalea phalerata. Field observation and genetic parentage analysis both indicated that the majority of A. phalerata seeds were dispersed locally over short distances (<30 m from the maternal tree). Spatial and genetic structures between adults and seedlings were consistent with localized and short-distance seed dispersal. Dispersal contributed to spatial associations among maternal sibling seedlings and strong spatial and genetic structures in both seedlings dispersed near (<10 m) and away (>10 m) from maternal palms. Seedlings were also spatially aggregated with juveniles. These patterns are probably associated with the dispersal of seeds by rodents and the survival of recruits at specific microsites or neighbourhoods over successive fruiting periods. Our cross-cohort analyses found palms in older cohorts and cohort pairs were associated with a lower proportion of offspring and sibling neighbours and exhibited weaker spatial and genetic structures. Such patterns are consistent with increased distance- and density-dependent mortality over time among palms dispersed near maternal palms or siblings. The integrative approaches used for this study allowed us to infer the importance of seed dispersal activities in maintaining the aggregated distribution and significant genetic structures among A. phalerata palms. We further conclude that distance- and density-dependent mortality is a key postdispersal process regulating this palm population.
O'Connell MJ, Doyle AM, Juenger TE, Donoghue MTA, Keshavaiah C, Tuteja R, Spillane C. In Arabidopsis thaliana codon volatility scores reflect GC3 composition rather than selective pressure. BMC Res Notes. 5 :359.Abstract
BACKGROUND: Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. RESULTS: We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). CONCLUSIONS: Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection.
Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen Y-JC, Liu T-W, Lin W, Juenger TE, Verslues PE. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proc Natl Acad Sci U S A. 109 (23) :9197-202.Abstract
Drought-induced proline accumulation is widely observed in plants but its regulation and adaptive value are not as well understood. Proline accumulation of the Arabidopsis accession Shakdara (Sha) was threefold less than that of Landsberg erecta (Ler) and quantitative trait loci mapping identified a reduced function allele of the proline synthesis enzyme Δ(1)-pyrroline-5-carboxylate synthetase1 (P5CS1) as a basis for the lower proline of Sha. Sha P5CS1 had additional TA repeats in intron 2 and a G-to-T transversion in intron 3 that were sufficient to promote alternative splicing and production of a nonfunctional transcript lacking exon 3 (exon 3-skip P5CS1). In Sha, and additional accessions with the same intron polymorphisms, the nonfunctional exon 3-skip P5CS1 splice variant constituted as much as half of the total P5CS1 transcript. In a larger panel of Arabidopsis accessions, low water potential-induced proline accumulation varied by 10-fold and variable production of exon 3-skip P5CS1 among accessions was an important, but not the sole, factor underlying variation in proline accumulation. Population genetic analyses suggest that P5CS1 may have evolved under positive selection, and more extensive correlation of exon 3-skip P5CS1 production than proline abundance with climate conditions of natural accessions also suggest a role of P5CS1 in local adaptation to the environment. These data identify a unique source of alternative splicing in plants, demonstrate a role of exon 3-skip P5CS1 in natural variation of proline metabolism, and suggest an association of P5CS1 and its alternative splicing with environmental adaptation.
Lowry DB, Sheng CC, Zhu Z, Juenger TE, Lahner B, Salt DE, Willis JH. Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS One. 7 (1) :e30730.Abstract
Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake.
Lowry DB, Purmal CT, Meyer E, Juenger TE. Microsatellite markers for the native Texas perennial grass, Panicum hallii (Poaceae). Am J Bot. 99 (3) :e114-6.Abstract
PREMISE OF THE STUDY: We developed microsatellites for Panicum hallii for studies of gene flow, population structure, breeding experiments, and genetic mapping. METHODS AND RESULTS: Next-generation (454) genomic sequence data were used to design markers. Eighteen robust markers were discovered, 15 of which were polymorphic across six accessions of P. hallii var. hallii. Fourteen of the markers cross-amplified in a P. capillare accession. For the 15 polymorphic markers, the total number of alleles per locus ranged from two to 26 (mean: 11.0) across six populations (11-19 individuals per population). Observed heterozygosity (mean: 0.031) was 13.7 times lower than the expected heterozygosity (mean: 0.426). CONCLUSIONS: The deficit of heterozygous individuals is consistent with P. hallii having a high rate of self-fertilization. These markers will be useful for studies in P. hallii and related species.
Bloomer RH, Juenger TE, Symonds VV. Natural variation in GL1 and its effects on trichome density in Arabidopsis thaliana. Mol Ecol. 21 (14) :3501-15.Abstract
The ultimate understanding of how biological diversity arises, is maintained, and lost depends on identifying the genes responsible. Although a good deal has been discovered about gene function over the past few decades, far less is understood about gene effects, that is, how natural variation in a gene contributes to natural variation in phenotypes. Trichome density in Arabidopsis thaliana is an ideal trait for studies of natural molecular and phenotypic variation, as trichome initiation is genetically well-characterized and trichome density is highly variable in and among natural populations. Here, we show that variation at GLABRA1 (GL1), an R2R3 MYB transcription factor gene, which has a role in trichome initiation, has qualitative and likely quantitative effects on trichome density in natural accessions of A. thaliana. Specifically, we characterize four independent loss-of-function alleles for GL1, each of which yields a glabrous phenotype. Further, we find that a pattern of common polymorphisms confined to the GL1 locus is associated with quantitative variation for trichome density. While mutations resulting in a glabrous phenotype are primarily coding changes, the pattern resulting in quantitative variation spans both coding and regulatory regions. These data show that GL1 is an important source of trichome density variation within A. thaliana and, along with recent reports, suggest that the TTG1 epidermal cell fate pathway generally may be the key molecular genetic source of natural trichome density variation and an important model for the study of molecular evolution.
Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE. Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell. 24 (3) :893-914.Abstract
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.
Meyer E, Logan TL, Juenger TE. Transcriptome analysis and gene expression atlas for Panicum hallii var. filipes, a diploid model for biofuel research. Plant J. 70 (5) :879-90.Abstract
Panicum hallii is an emerging model for genetic studies of agronomic traits in Panicum, presenting a tractable diploid alternative study system to the tetra- or octaploid biofuel crop switchgrass (Panicum virgatum). To characterize the gene complement in P. hallii var. filipes and enable gene expression analysis in this system we sequenced, assembled, and annotated the transcriptome. Over 300 Mb of normalized cDNA prepared from multiple tissues and treatments was sequenced using 454-Titanium, producing an annotated assembly including 15 422 unique gene names. Comparison with other grass genomes identified putative P. hallii homologs for >14 000 previously characterized genes. We also developed an atlas of gene expression across tissues and stages using RNA-Seq (the quantitative analysis of short cDNA reads). SOLiD sequencing and quantitative analysis of more than 40 million cDNA tags identified substantial variation in expression profiles among tissues, consistent with known functional differences. Putative homologs were found for all enzymes in the phenylpropanoid pathway leading to lignin biosynthesis, including genes with known effects on biomass conversion efficiency. The resources developed here will enable studies of the genes underlying variation in cell wall composition, drought tolerance, and biomass production in Panicum.
2011
Verslues PE, Juenger TE. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol. 14 (3) :240-5.Abstract
Drought elicits substantial changes in plant metabolism and it remains a challenge to determine which of these changes represent adaptive responses and which of them are merely neutral effects or even symptoms of damage. Arabidopsis primarily uses low water potential/dehydration avoidance strategies to respond to water limitation. The large variation in evolved stress responses among accessions can be a powerful tool to identify ecologically important and adaptive traits; however, collection of relevant phenotype data under controlled water stress is often a limiting factor. Quantitative genetics of Arabidopsis has great potential to find the genes underlying variation in drought-affected metabolic traits, for example proline metabolism, as well as overall adaptation.
Pantel JH, Juenger TE, Leibold MA. Environmental gradients structure Daphnia pulex × pulicaria clonal distribution. J Evol Biol. 24 (4) :723-32.Abstract
The rarity of eukaryotic asexual reproduction is frequently attributed to the disadvantage of reduced genetic variation relative to sexual reproduction. However, parthenogenetic lineages that evolved repeatedly from sexual ancestors can generate regional pools of phenotypically diverse clones. Various theories to explain the maintenance of this genetic diversity as a result of environmental and spatial heterogeneity [frozen niche variation (FNV), general-purpose genotype] are conceptually similar to community ecological explanations for the maintenance of regional species diversity. We employed multivariate statistics common in community ecological research to study population genetic structure in the freshwater crustacean, Daphnia pulex × pulicaria. This parthenogenetic hybrid arose repeatedly from sexual ancestors. Daphnia pulex × pulicaria populations harboured substantial genetic variation among populations and the clonal composition at each pond corresponded to nutrient levels and invertebrate predator densities. The interclonal selection process described by the FNV hypothesis likely structured our D. pulex × pulicaria populations.
Mueller UG, Mikheyev AS, Hong E, Sen R, Warren DL, Solomon SE, Ishak HD, Cooper M, Miller JL, Shaffer KA, et al. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proc Natl Acad Sci U S A. 108 (10) :4053-6.Abstract
The obligate mutualism between leafcutter ants and their Attamyces fungi originated 8 to 12 million years ago in the tropics, but extends today also into temperate regions in South and North America. The northernmost leafcutter ant Atta texana sustains fungiculture during winter temperatures that would harm the cold-sensitive Attamyces cultivars of tropical leafcutter ants. Cold-tolerance of Attamyces cultivars increases with winter harshness along a south-to-north temperature gradient across the range of A. texana, indicating selection for cold-tolerant Attamyces variants along the temperature cline. Ecological niche modeling corroborates winter temperature as a key range-limiting factor impeding northward expansion of A. texana. The northernmost A. texana populations are able to sustain fungiculture throughout winter because of their cold-adapted fungi and because of seasonal, vertical garden relocation (maintaining gardens deep in the ground in winter to protect them from extreme cold, then moving gardens to warmer, shallow depths in spring). Although the origin of leafcutter fungiculture was an evolutionary breakthrough that revolutionized the food niche of tropical fungus-growing ants, the original adaptations of this host-microbe symbiosis to tropical temperatures and the dependence on cold-sensitive fungal symbionts eventually constrained expansion into temperate habitats. Evolution of cold-tolerant fungi within the symbiosis relaxed constraints on winter fungiculture at the northern frontier of the leafcutter ant distribution, thereby expanding the ecological niche of an obligate host-microbe symbiosis.
Pantel JH, Leibold MA, Juenger TE. Population differentiation in Daphnia alters community assembly in experimental ponds. Am Nat. 177 (3) :314-22.Abstract
Most studies of community assembly ignore how genetic differentiation within species affects their colonization and extinction. However, genetic differentiation in ecologically relevant traits may be substantial enough to alter the colonization and extinction processes that drive community assembly. We measured significant molecular genetic and quantitative trait differentiation among three Daphnia pulex × pulicaria populations in southwestern Michigan ponds and investigated whether this differentiation could alter the assembly of pond zooplankton communities in experimental mesocosms. In this study, we monitored the invasion success of different D. pulex × pulicaria populations after their introduction into an established zooplankton community. We also monitored the invasion success of a diverse array of zooplankton species into different D. pulex × pulicaria populations. Zooplankton community composition depended on the D. pulex × pulicaria source population. Daphnia pulex × pulicaria from one population failed to invade zooplankton communities, while those from other populations successfully invaded similar communities. If population differentiation in other species plays a role in community assembly similar to that demonstrated in our study, assembly may be more sensitive to evolutionary processes than has been previously generally considered.
Kunte K, Shea C, Aardema ML, Scriber MJ, Juenger TE, Gilbert LE, Kronforst MR. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet. 7 (9) :e1002274.Abstract
Hybrid speciation, or the formation of a daughter species due to interbreeding between two parental species, is a potentially important means of diversification, because it generates new forms from existing variation. However, factors responsible for the origin and maintenance of hybrid species are largely unknown. Here we show that the North American butterfly Papilio appalachiensis is a hybrid species, with genomic admixture from Papilio glaucus and Papilio canadensis. Papilio appalachiensis has a mosaic phenotype, which is hypothesized to be the result of combining sex-linked traits from P. glaucus and P. canadensis. We show that P. appalachiensis' Z-linked genes associated with a cooler thermal habitat were inherited from P. canadensis, whereas its W-linked mimicry and mitochondrial DNA were inherited from P. glaucus. Furthermore, genome-wide AFLP markers showed nearly equal contributions from each parental species in the origin of P. appalachiensis, indicating that it formed from a burst of hybridization between the parental species, with little subsequent backcrossing. However, analyses of genetic differentiation, clustering, and polymorphism based on molecular data also showed that P. appalachiensis is genetically distinct from both parental species. Population genetic simulations revealed P. appalachiensis to be much younger than the parental species, with unidirectional gene flow from P. glaucus and P. canadensis into P. appalachiensis. Finally, phylogenetic analyses, combined with ancestral state reconstruction, showed that the two traits that define P. appalachiensis' mosaic phenotype, obligatory pupal diapause and mimicry, evolved uniquely in P. canadensis and P. glaucus, respectively, and were then recombined through hybridization to form P. appalachiensis. These results suggest that natural selection and sex-linked traits may have played an important role in the origin and maintenance of P. appalachiensis as a hybrid species. In particular, ecological barriers associated with a steep thermal cline appear to maintain the distinct, mosaic genome of P. appalachiensis despite contact and occasional hybridization with both parental species.
2010
Juenger TE, Sen S, Bray E, Stahl E, Wayne T, McKay J, Richards JH. Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana. Plant Cell Environ. 33 (8) :1268-84.Abstract
Recent studies have documented remarkable genetic variation among Arabidopsis thaliana accessions collected from diverse habitats. Of particular interest are accessions with putatively locally adapted phenotypes - that is, accessions with attributes that are likely adaptive at their sites of origin. These genotypes may provide insight into the genetic basis of adaptive evolution as well as allow the discovery of genes of ecological importance. We studied the physiology, genome content and gene expression of two physiologically extreme accessions (Tsu-1 from Tsushima, Japan and Kas-1 from Kashmir, India). Our study was conducted under two levels of soil moisture and accompanied by physiological measurements to characterize early responses to soil drying. Genomic hybridizations identified 42,503 single feature polymorphisms (SFP) between accessions, providing an initial screen for genetic differences. Transcript profiling identified a large number (5996) of genes exhibiting constitutive differences in expression including genes involved in many biological pathways. Mild soil drying resulted in only subtle physiological responses but resulted in gene expression changes in hundreds of transcripts, including 352 genes exhibiting differential responses between accessions. Our results highlight the value of genomic studies of natural accessions as well as identify a number of candidate genes underlying physiological differences between Tsu-1 and Kas-1.
Des Marais DL, Juenger TE. Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann N Y Acad Sci. 1206 :56-79.Abstract
Progress in understanding the mechanisms of adaptive plant abiotic stress response has historically come from two separate fields. Molecular biologists employ mutagenic screens, experimental manipulations, and controlled stress treatment to identify genes that, when perturbed, have fairly large effects on phenotype. By contrast, quantitative and evolutionary geneticists generally study naturally occurring variants to inform multigenic models of trait architecture in an effort to predict, for example, the evolutionary response to selection. We discuss five emerging themes from the molecular study of osmotic stress response: the multigenic nature of adaptive response, the modular organization of response to specific cues, the pleiotropic effects of key signaling proteins, the integration of many environmental signals, and the abundant cross-talk between signaling pathways. We argue that these concepts can be incorporated into existing models of trait evolution and provide examples of what may constitute the molecular basis of plasticity and evolvability of abiotic stress response. We conclude by considering future directions in the study of the functional molecular evolution of abiotic stress response that may facilitate new discoveries in molecular biology, evolutionary studies, and plant breeding.
Santuari L, Pradervand S, Amiguet-Vercher A-M, Thomas J, Dorcey E, Harshman K, Xenarios I, Juenger TE, Hardtke CS. Substantial deletion overlap among divergent Arabidopsis genomes revealed by intersection of short reads and tiling arrays. Genome Biol. 11 (1) :R4.Abstract
Identification of small polymorphisms from next generation sequencing short read data is relatively easy, but detection of larger deletions is less straightforward. Here, we analyzed four divergent Arabidopsis accessions and found that intersection of absent short read coverage with weak tiling array hybridization signal reliably flags deletions. Interestingly, individual deletions were frequently observed in two or more of the accessions examined, suggesting that variation in gene content partly reflects a common history of deletion events.
2009
Walker DM, Juenger TE, Gore AC. Developmental profiles of neuroendocrine gene expression in the preoptic area of male rats. Endocrinology. 150 (5) :2308-16.Abstract
Reproductive function is controlled by GnRH cells and their steroid-sensitive regulatory inputs. The proper maturation of this system is critical to sexual development and maintenance of adult function. However, the molecular mechanisms underlying these developmental changes, and the potential roles of gonadal hormones in sculpting these processes, have not been fully explored. We performed a developmental profile from postnatal day (P) 1 through P60 of a network of five genes in the preoptic area (POA) that are critical to reproduction in male Sprague Dawley rats. GnRH, estrogen receptors-alpha, and -beta, androgen receptor (AR), and progesterone receptor (PR) mRNAs in the POA were assayed, and serum hormones were measured, in developing male rats. We also used a Taqman low-density array to identify candidate genes that may be important in development. Of the five targeted genes, only AR and PR changed robustly (7- and 3- to 4-fold increases, respectively) during development. All of the gonadal serum hormones changed markedly and with very different patterns from their receptor mRNAs: testosterone decreased from P1 to P30 and then increased to P60; progesterone peaked on P30; and estradiol decreased from P1 to P30. Using the Taqman low-density array, we identified several genes that changed dramatically in the POA with development, particularly G protein-coupled receptor 30, IGF-I, vitamin D receptor, estrogen-related receptor-alpha, and thyroid receptor-alpha. Our data demonstrate developmental stage-specific changes in neuroendocrine genes, particularly AR and PR. Moreover, the relationships between hormones and their corresponding receptors undergo dynamic changes across development in male rats.
2008
Steinberg RM, Walker DM, Juenger TE, Woller MJ, Gore AC. Effects of perinatal polychlorinated biphenyls on adult female rat reproduction: development, reproductive physiology, and second generational effects. Biol Reprod. 78 (6) :1091-101.Abstract
Perinatal exposures to endocrine-disrupting chemicals, such as polychlorinated biphenyls (PCBs), can cause latent effects on reproductive function. Here, we tested whether PCBs administered during late pregnancy would compromise reproductive physiology in both the fetally exposed female offspring (F1 generation), as well as in their female offspring (F2 generation). Pregnant Sprague-Dawley rats were treated with the PCB mixture, Aroclor 1221 (A1221; 0, 0.1, 1, or 10 mg/kg), on Embryonic Days 16 and 18. Somatic and reproductive development of F1 and their F2 female offspring were monitored, including ages of eye opening, pubertal landmarks, and serum reproductive hormones. The results showed that low doses of A1221 given during this critical period of neuroendocrine development caused differential effects of A1221 on F1 and F2 female rats. In both generations, litter sex ratio was skewed toward females. In the F1 generation, additional effects were found, including a significant alteration of serum LH in the 1 mg/kg A1221 group. The F2 generation showed more profound alterations, particularly with respect to fluctuations in hormones and reproductive tract tissues across the estrous cycle. On proestrus, the day of the preovulatory GnRH/gonadotropin surge, F2 females whose mothers had been exposed perinatally to A1221 exhibited substantially suppressed LH and progesterone concentrations, and correspondingly smaller uterine and ovarian weights on estrus, compared with F2 descendants of control rats. These latter changes suggest a dysregulation of reproductive physiology. Thus, low levels of exposure to PCBs during late fetal development cause significant effects on the maturation and physiology of two generations of female offspring. These findings have implications for reproductive health and fertility of wildlife and humans.

Pages