Publications

2018
FP Varodayan, H Sidhu, M Kreifeldt, M Roberto, and C Contet. “Morphological and functional evidence of increased excitatory signaling in the prelimbic cortex during ethanol withdrawal..” Neuropharmacology, 133, Pp. 470-480. Publisher's Version Abstract
Excessive alcohol consumption in humans induces deficits in decision making and emotional processing, which indicates a dysfunction of the prefrontal cortex (PFC). The present study aimed to determine the impact of chronic intermittent ethanol (CIE) inhalation on mouse medial PFC pyramidal neurons. Data were collected 6-8 days into withdrawal from 7 weeks of CIE exposure, a time point when mice exhibit behavioral symptoms of withdrawal. We found that spine maturity in prelimbic (PL) layer 2/3 neurons was increased, while dendritic spines in PL layer 5 neurons or infralimbic (IL) neurons were not affected. Corroborating these morphological observations, CIE enhanced glutamatergic transmission in PL layer 2/3 pyramidal neurons, but not IL layer 2/3 neurons. Contrary to our predictions, these cellular alterations were associated with improved, rather than impaired, performance in reversal learning and strategy switching tasks in the Barnes maze at an earlier stage of chronic ethanol exposure (5-7 days withdrawal from 3 to 4 weeks of CIE), which could result from the anxiety-like behavior associated with ethanol withdrawal. Altogether, this study adds to a growing body of literature indicating that glutamatergic activity in the PFC is upregulated following chronic ethanol exposure, and identifies PL layer 2/3 pyramidal neurons as a sensitive target of synaptic remodeling. It also indicates that the Barnes maze is not suitable to detect deficits in cognitive flexibility in CIE-withdrawn mice.
Blasio A, Wang J, Wang D, Varodayan FP, Pomrenze MB, Miller J, Lee AM, McMahon T, Gyawali S, Wang HY, Roberto M, McHardy S, Pleiss MA, and Messing RO. “Novel small-molecule inhibitors of protein kinase C epsilon reduce ethanol consumption in mice..” Biological Psychiatry, 84, Pp. 193-201. Abstract

BACKGROUND:

Despite the high cost and widespread prevalence of alcohol use disorders, treatment options are limited, underscoring the need for new, effective medications. Previous results using protein kinase C epsilon (PKCε) knockout mice, RNA interference against PKCε, and peptide inhibitors of PKCε predict that small-molecule inhibitors of PKCε should reduce alcohol consumption in humans.

METHODS:

We designed a new class of PKCε inhibitors based on the Rho-associated protein kinase (ROCK) inhibitor Y-27632. In vitro kinase and binding assays were used to identify the most potent compounds. Their effects on ethanol-stimulated synaptic transmission; ethanol, sucrose, and quinine consumption; ethanol-induced loss of righting; and ethanol clearance were studied in mice.

RESULTS:

We identified two compounds that inhibited PKCε with Ki <20 nM, showed selectivity for PKCε over other kinases, crossed the blood-brain barrier, achieved effective concentrations in mouse brain, prevented ethanol-stimulated gamma-aminobutyric acid release in the central amygdala, and reduced ethanol consumption when administered intraperitoneally at 40 mg/kg in wild-type but not in Prkce-/- mice. One compound also reduced sucrose and saccharin consumption, while the other was selective for ethanol. Both transiently impaired locomotion through an off-target effect that did not interfere with their ability to reduce ethanol intake. One compound prolonged recovery from ethanol-induced loss of righting but this was also due to an off-target effect since it was present in Prkce-/- mice. Neither altered ethanolclearance.

CONCLUSIONS:

These results identify lead compounds for development of PKCε inhibitors that reduce alcohol consumption.

Darcq E and Kieffer BL. “Opioid receptors: drivers to addiction?.” Nature Reviews Neuroscience, 19, Pp. 499-514. Abstract
Drug addiction is a worldwide societal problem and public health burden, and results from recreational drug use that develops into a complex brain disorder. The opioid system, one of the first discovered neuropeptide systems in the history of neuroscience, is central to addiction. Recently, opioid receptors have been propelled back on stage by the rising opioid epidemics, revolutions in G protein-coupled receptor research and fascinating developments in basic neuroscience. This Review discusses rapidly advancing research into the role of opioid receptors in addiction, and addresses the key questions of whether we can kill pain without addiction using mu-opioid-receptor-targeting opiates, how mu- and kappa-opioid receptors operate within the neurocircuitry of addiction and whether we can bridge human and animal opioid research in the field of drug abuse.
R Satta, ER Hilderbrand, and AW Lasek. “Ovarian hormones contribute to high levels of binge-like drinking by female mice.” Alcoholism: Clinical and Experimental Research, 42, Pp. 286-294. Abstract

BACKGROUND:

Recently, the incidence of binge drinking by women has increased. Binge drinking is detrimental to women's health, yet the biological mechanisms that promote excessive drinking by women are not well understood. One method of assessing binge-like ethanol (EtOH) consumption in mice is the drinking in the dark (DID) test, in which mice drink sufficient EtOH to achieve intoxication. In this study, we directly compared male, female, and ovariectomized (OVX) mice for DID and tested whether 17β-estradiol (E2) contributes to DID. We also measured whether DID varies throughout the estrous cycle and whether repeated intermittent DID impacts the estrous cycle.

METHODS:

Male, female, and OVX C57BL/6J mice were tested for DID for 2 hours per day on days 1 to 3 and for 4 hours on day 4 using a single bottle containing 20% EtOH. To measure the effects of E2 on DID, OVX mice were treated with estradiol benzoate (EB) or vehicle daily starting 2 weeks prior to the drinking test and throughout the DID procedure. In a separate group of experiments, EtOH consumption and estrous cycle phase were measured in freely cycling mice that were drinking EtOH or water 5 days per week for 2 or 6 weeks.

RESULTS:

Female mice consumed more EtOH than male and OVX mice. Treatment with EB increased EtOH consumption by OVX mice compared with vehicle-treated controls. However, EtOH intake did not vary across the estrous cycle, nor did long-term DID alter the estrous cycle.

CONCLUSIONS:

These results demonstrate that ovarian hormones, specifically E2, contribute to increased EtOH consumption by female mice in the DID test. Although ovarian hormones contribute to this behavior, EtOH consumption is not affected by estrous cycle phase in freely cycling mice. This study provides a framework for understanding the factors that contribute to binge drinking in females.

Stress-related psychiatric disorders such as major depression are strongly associated with alcohol abuse and alcohol use disorder. Recently, many epidemiological and preclinical studies suggest that chronic stress prior to conception has cross-generational effects on the behaviorand physiological response to stress in subsequent generations. Thus, we hypothesized that chronic stress may also affect ethanol drinkingbehaviors in the next generation. In the first cohort of mice, we found that paternal preconception chronic variable stress significantly reduced both two-bottle choice and binge-like ethanol drinking selectively in male offspring. However, these results were not replicated in a second cohort that were tested under experimental conditions that were nearly identical, except for one notable difference. Cohort 1 offspring were derived from in-house C57BL/6J sires that were born in the animal vivarium at the University of Pittsburgh whereas cohort 2 offspring were derived from C57BL/6J sires shipped directly from the vendor. Therefore, a third cohort that included both in-house and vendor born sires was analyzed. Consistent with the first two cohorts, we observed a significant interaction between chronic stress and sire-source with only stressed sires that were born in-house able to impart reduced ethanol drinking behaviors to male offspring. Overall, these results demonstrate that paternal preconception stress can impact ethanol drinking behavior in males of the next generation. These studies provide additional support for a recently recognized role of the paternal preconception environment in shaping ethanol drinking behavior.

F Alasmari, RL Bell, PSS Rao, AM Hammad, and Y Sari. “Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats.” Pharmacology Biochemistry and Behavior, 170, July 2018, Pp. 44-55. Abstract
Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats.
LB Ferguson, L Zhang, S Wang, C Bridges, RA Harris, and I Ponomarev. “Peroxisome proliferator activated receptor agonists modulate transposable element expression in brain and liver..” Frontiers in Molecular Neuroscience, 11, Pp. 331. Publisher's Version Abstract
Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors that act as transcription factors in response to endogenous lipid messengers. The fibrates and thiazolidinediones are synthetic PPAR agonists used clinically to treat dyslipidemia and Type 2 Diabetes Mellitus, respectively, but also improve symptoms of several other diseases. Transposable elements (TEs), repetitive sequences in mammalian genomes, are implicated in many of the same conditions for which PPAR agonists are therapeutic, including neurodegeneration, schizophrenia, and drug addiction. We tested the hypothesis that there is a link between actions of PPAR agonists and TE expression. We developed an innovative application of microarray data by mapping Illumina mouse WG-6 microarray probes to areas of the mouse genome that contain TEs. Using this information, we assessed the effects of systemic administration of three PPAR agonists with different PPAR subtype selectivity: fenofibrate, tesaglitazar, and bezafibrate, on TE probe expression in mouse brain [prefrontal cortex (PFC) and amygdala] and liver. We found that fenofibrate, and bezafibrate to a lesser extent, up-regulated probes mapped to retrotransposons: Short-Interspersed Elements (SINEs) and Long-Interspersed Elements (LINEs), in the PFC. Conversely, all PPAR agonists down-regulated LINEs and tesaglitazar and bezafibrate also down-regulated SINEs in liver. We built gene coexpression networks that partitioned the diverse transcriptional response to PPAR agonists into groups of probes with highly correlated expression patterns (modules). Most of the differentially expressed retrotransposons were within the same module, suggesting coordinated regulation of their expression, possibly by PPAR signaling. One TE module was conserved across tissues and was enriched with genes whose products participate in epigenetic regulation, suggesting that PPAR agonists affect TE expression via epigenetic mechanisms. Other enriched functional categories included phenotypes related to embryonic development and learning and memory, suggesting functional links between these biological processes and TE expression. In summary, these findings suggest mechanistic relationships between retrotransposons and PPAR agonists and provide a basis for future exploration of their functional roles in brain and liver.
RD Mayfield and RA. Harris. “Persistence of drug memories: melting transcriptomes.” Biological Psychiatry, 84, Pp. 860-861. Publisher's Version Abstract
One of the defining characteristics of drug dependence is relapse after a period of abstinence. Cue-induced drug craving and relapse risk not only persist during abstinence, but increase over time, a phenomenon termed incubation (1). This progressive increase in risk factors likely requires enduring “memory-like” changes in synaptic plasticity, but there has been little exploration of the underlying molecular mechanisms. It is assumed that this remodeling of the brain is initiated by changes in gene expression (2). The artwork by Salvador Dali titled The Disintegration of the Persistence of Memory offers a symbolic illustration of how extrinsic factors shape the transcriptome over time (https://www.wikiart.org/en/salvador-dali/the-disintegration-of-the-persistence-of-memory). Viewed from this perspective, the bricks in the painting evoke the assembly of RNA sequencing reads into a transcriptome in a surrealist landscape that implies a relationship to memories and time, while the water simulates the depth of changes by drugs of abuse. These persistent influences produce a transcriptome melting pot.
K Purohit, PK Parekh, J Kern, RW Logan, Z Liu, Y Huang, CA McClung, JC Crabbe, and AR Ozburn. “Pharmacogenetic Manipulation of the Nucleus Accumbens Alters Binge-Like Alcohol Drinking in Mice.” Alcoholism: Clinical and Experimental Research, 42, 5, Pp. 879-888. Abstract

BACKGROUND:

Chronic alcohol intake leads to long-lasting changes in reward- and stress-related neuronal circuitry. The nucleus accumbens (NAc) is an integral component of this circuitry. Here, we investigate the effects of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) on neuronal activity in the NAc and binge-like drinking.

METHODS:

C57BL/6J mice were stereotaxically injected with AAV2 hSyn-HA hM3Dq, -hM4Di, or -eGFP bilaterally into NAc [core + shell, core or shell]. We measured clozapine-n-oxide (CNO)-induced changes in NAc activity and assessed binge-like ethanol (EtOH) or tastant/fluid intake in a limited access Drinking in the Dark (DID) schedule.

RESULTS:

We found that CNO increased NAc firing in hM3Dq positive cells and decreased firing in hM4Di cells, confirming the efficacy of these channels to alter neuronal activity both spatially and temporally. Increasing NAc core + shell activity decreased binge-like drinking without altering intake of other tastants. Increasing activity specifically in the NAc core reduced binge-like drinking, and decreasing activity in the NAc core increased drinking. Manipulation of NAc shell activity did not alter DID. Thus, we find that increasing activity in the entire NAc, or just the NAc core is sufficient to decrease binge drinking.

CONCLUSIONS:

We conclude that the reduction in EtOH drinking is not due to general malaise, altered perception of taste, or reduced calorie-seeking. Furthermore, we provide the first evidence for bidirectional control of NAc core and binge-like drinking. These findings could have promising implications for treatment.

R Fernández-Calle, M Vicente-Rodríguez, M Pastor, E Gramage, B Di Geronimo, JM Zapico, C Coderch, C Pérez-García, AW Lasek, B de Pascual-Teresa, A Ramos, and G Herradón. “Pharmacological inhibition of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) modulates behavioral responses to ethanol.” Neuropharmacology, 137, July 2018, Pp. 86-95. Abstract
Pleiotrophin (PTN) and Midkine (MK) are neurotrophic factors that are upregulated in the prefrontal cortex after alcohol administration and have been shown to reduce ethanol drinking and reward. PTN and MK are the endogenous inhibitors of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ (a.k.a. PTPRZ1, RPTPβ, PTPζ), suggesting a potential role for this phosphatase in the regulation of alcohol effects. To determine if RPTPβ/ζ regulates ethanol consumption, we treated mice with recently developed small-molecule inhibitors of RPTPβ/ζ (MY10, MY33-3) before testing them for binge-like drinking using the drinking in the dark protocol. Mice treated with RPTPβ/ζ inhibitors, particularly with MY10, drank less ethanol than controls. MY10 treatment blocked ethanol conditioned place preference, showed limited effects on ethanol-induced ataxia, and potentiated the sedative effects of ethanol. We also tested whether RPTPβ/ζ is involved in ethanol signaling pathways. We found that ethanol treatment of neuroblastoma cells increased phosphorylation of anaplastic lymphoma kinase (ALK) and TrkA, known substrates of RPTPβ/ζ. Treatment of neuroblastoma cells with MY10 or MY33-3 also increased levels of phosphorylated ALK and TrkA. However, concomitant treatment of neuroblastoma cells with ethanol and MY10 or MY33-3 prevented the increase in pTrkA and pALK. These results demonstrate for the first time that ethanol engages TrkA signaling and that RPTPβ/ζ modulates signaling pathways activated by alcohol and behavioral responses to this drug. The data support the hypothesis that RPTPβ/ζ might be a novel target of pharmacotherapy for reducing excessive alcohol consumption.
AM Colville, OD Iancu, DR Lockwood, P Darakjian, SK McWeeney, R Searles, C Zheng, and R Hitzemann. “Regional differences and similarities in the brain transcriptome for mice selected for ethanol preference from HS-CC founders.,” 9, Pp. 300. Publisher's Version Abstract
The high genetic complexity found in heterogeneous stock (HS-CC) mice, together with selective breeding, can be used to detect new pathways and mechanisms associated with ethanol preference and excessive ethanol consumption. We predicted that these pathways would provide new targets for therapeutic manipulation. Previously (Colville et al., 2017), we observed that preference selection strongly affected the accumbens shell (SH) genes associated with synaptic function and in particular genes associated with synaptic tethering. Here we expand our analyses to include substantially larger sample sizes and samples from two additional components of the "addiction circuit," the central nucleus of the amygdala (CeA) and the prelimbic cortex (PL). At the level of differential expression (DE), the majority of affected genes are region-specific; only in the CeA did the DE genes show a significant enrichment in GO annotation categories, e.g., neuron part. In all three brain regions the differentially variable genes were significantly enriched in a single network module characterized by genes associated with cell-to-cell signaling. The data point to glutamate plasticity as being a key feature of selection for ethanol preference. In this context the expression of Dlg2 which encodes for PSD-93 appears to have a key role. It was also observed that the expression of the clustered protocadherins was strongly associated with preference selection.
The LIM domain only protein LMO3 is a transcriptional regulator that has been shown to regulate several behavioral responses to alcohol. Specifically, Lmo3 null (Lmo3Z) mice consume more ethanol in a binge-drinking test and show enhanced ethanol-induced sedation. Due to the high comorbidity of alcohol use and anxiety, we investigated anxiety-like behavior in Lmo3Z mice. Lmo3Z mice spent more time in the open arms of the elevated plus maze compared with their wild-type littermates, but the effect was confounded by reduced locomotor activity. To verify the anxiety phenotype in the Lmo3Z mice, we tested them for novelty-induced hypophagia and found that they also showed reduced anxiety in this test. We next explored the mechanism by which LMO3 might regulate anxiety by measuring mRNA and protein levels of corticotropin releasing factor (encoded by the Crh gene) and its receptor type 1 (Crhr1) in Lmo3Z mice. Reduced Crhr1 mRNA and protein was evident in the basolateral amygdala (BLA) of Lmo3Z mice. To examine whether Lmo3 in the amygdala is important for anxiety-like behavior, we locally reduced Lmo3 expression in the BLA of wild type mice using a lentiviral vector expressing a short hairpin RNA targeting the Lmo3 transcript. Mice with Lmo3 knockdown in the BLA exhibited decreased anxiety-like behavior relative to control mice. These results suggest that Lmo3 promotes anxiety-like behavior specifically in the BLA, possibly by altering Crhr1 expression. This study is the first to support a role for Lmo3 in anxiety-like behavior.
OD Iancu, A Colville, NAR Walter, P Darakjian, DL Oberbeck, JB Daunais, CL Zheng, RP Searles, SK McWeeney, KA Grant, and R Hitzemann. “On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome.” Addiction Biology, 23, Pp. 196-205. Abstract
This is the first description of the relationship between chronic ethanol self-administration and the brain transcriptome in a non-human primate (rhesus macaque). Thirty-one male animals self-administered ethanol on a daily basis for over 12 months. Gene transcription was quantified with RNA-Seq in the central nucleus of the amygdala (CeA) and cortical Area 32. We constructed coexpression and cosplicing networks, and we identified areas of preservation and areas of differentiation between regions and network types. Correlations between intake and transcription included largely distinct gene sets and annotation categories across brain regions and between expression and splicing; positive and negative correlations were also associated with distinct annotation groups. Membrane, synaptic and splicing annotation categories were over-represented in the modules (gene clusters) enriched in positive correlations (CeA); our cosplicing analysis further identified the genes affected only at the exon inclusion level. In the CeA coexpression network, we identified Rab6b, Cdk18 and Igsf21 among the intake-correlated hubs, while in the Area 32, we identified a distinct hub set that included Ppp3r1 and Myeov2. Overall, the data illustrate that excessive ethanol self-administration is associated with broad expression and splicing mechanisms that involve membrane and synapse genes.
AW Lasek, H Chen, and WY Chen. “Releasing addiction memories trapped in perineuronal nets..” Trends in Genetics, 34, Pp. 197-208. Publisher's Version Abstract
Drug addiction can be conceptualized on a basic level as maladaptive learning and memory. Addictive substances elicit changes in brain circuitry involved in reward, cognition, and emotional state, leading to the formation and persistence of strong drug-associated memories that lead to craving and relapse. Recently, perineuronal nets (PNNs), extracellular matrix structures surrounding neurons, have emerged as regulators of learning, memory, and addiction behaviors. PNNs do not just provide structural support to neurons, but are dynamically remodeled in an experience-dependent manner by metalloproteinases. They function in various brain regions through constituent proteins such as brevican that are implicated in neural plasticity. Understanding the function of PNN components in memory processes may lead to new therapeutic approaches to treating addiction.
FP Varodayan, S Khom, RR Patel, Steinman MQ, DM Hedges, CS Oleata, GE Homanics, M Roberto, and M. Bajo. “Role of TLR4 in the modulation of central amygdala GABA transmission by CRF following restraint stress..” Alcohol and Alcoholism, 53, Pp. 642-649. Publisher's Version Abstract

AIMS:

Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) followingrestraint stress.

METHODS:

Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraintstress (1 h per day for 3 consecutive days). After 1 h recovery from the final stress session, whole-cell patch-clamp electrophysiology was used to investigate the effects of CRF (200 nM) on CeA GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs).

RESULTS:

TLR4 does not regulate baseline GABAergic transmission in the CeA of naive and stress-treated animals. However, CRFsignificantly increased the mean sIPSC frequencies (indicating enhanced GABA release) across all genotypes and stress treatments, except for the Tlr4 KO rats that experienced repeated restraint stress.

CONCLUSIONS:

Overall, our results suggest a limited role for TLR4 in CRF's modulation of CeA GABAergic synapses in naïve and single stress rats, though TLR4-deficient rats that experienced repeated psychological stress exhibit a blunted CRF cellular response.

SHORT SUMMARY:

TLR4 has a limited role in CRF's activation of the CeA under basal conditions, but interacts with the CRF system to regulate GABAergic synapse function in animals that experience repeated psychological stress.

RATIONALE:

There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls.

OBJECTIVES:

The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption.

METHODS:

The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotineadministered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines.

RESULTS:

The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming ratsshifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of α2 and β4.

CONCLUSION:

Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotinereinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets.

ER Hilderbrand and AW Lasek. “Studying sex differences in animal models of addiction: an emphasis on alcohol-related behaviors..” ACS Chemical Neuroscience, 9, Pp. 1907-1916. Publisher's Version Abstract
Animal models are essential for understanding the biological factors that contribute to drug and alcohol addiction and discovering new pharmacotherapies to treat these disorders. Alcohol (ethanol) is the most commonly abused drug in the world, and as the prevalence of alcohol use disorder (AUD) increases, so does the need for effective pharmacotherapies. In particular, treatments with high efficacy in the growing number of female AUD sufferers are needed. Female animals remain underrepresented in biomedical research and sex differencesin the brain's response to alcohol are poorly understood. To help bridge the gender gap in addiction research, this Review discusses strategies that researchers can use to examine sex differences in the context of several common animal models of AUD. Self-administration, two-bottle choice, drinking in the dark, and conditioned place preference are discussed, with a focus on the role of estrogen as a mediator of sex differences in alcohol-related behaviors.
AM Savarese and AW Lasek. “Transcriptional regulators as targets for alcohol pharmacotherapies..” Handbook of Experimental Pharmacology, 248, Pp. 505-533. Publisher's Version Abstract

Alcohol use disorder (AUD) is a chronic relapsing brain disease that currently afflicts over 15 million adults in the United States. Despite its prevalence, there are only three FDA-approved medications for AUD treatment, all of which show limited efficacy. Because of their ability to alter expression of a large number of genes, often with great cell-type and brain-region specificity, transcription factors and epigenetic modifiers serve as promising new targets for the development of AUD treatments aimed at the neural circuitry that underlies chronic alcoholabuse. In this chapter, we will discuss transcriptional regulators that can be targeted pharmacologically and have shown some efficacy in attenuating alcohol consumption when targeted. Specifically, the transcription factors cyclic AMP-responsive element binding protein (CREB), peroxisome proliferator-activated receptors (PPARs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and glucocorticoid receptor (GR), as well as the epigenetic enzymes, the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), will be discussed.

2017
PP Sanna, T Kawamura, J Chen, GF Koob, AJ Roberts, LF Vendruscolo, and V Repunte-Canonigo. “11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse.” Translational Psychiatry, March 15, 6:e760. Abstract
The identification of new and more effective treatments for alcohol abuse remains a priority. Alcohol intake activates glucocorticoids, which have a key role in alcohol's reinforcing properties. Glucocorticoid effects are modulated in part by the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD) acting as pre-receptors. Here, we tested the effects on alcohol intake of the 11β-HSD inhibitor carbenoxolone (CBX, 18β-glycyrrhetinic acid 3β-O-hemisuccinate), which has been extensively used in the clinic for the treatment of gastritis and peptic ulcer and is active on both 11β-HSD1 and 11β-HSD2 isoforms. We observed that CBX reduces both baseline and excessive drinking in rats and mice. The CBX diastereomer 18α-glycyrrhetinic acid 3β-O-hemisuccinate (αCBX), which we found to be selective for 11β-HSD2, was also effective in reducing alcohol drinking in mice. Thus, 11β-HSD inhibitors may be a promising new class of candidate alcohol abuse medications, and existing 11β-HSD inhibitor drugs may be potentially re-purposed for alcohol abuse treatment.
FP Varodayan, G de Guglielmo, ML Logrip, O George, and M Roberto. “Alcohol dependence disrupts amygdalar L-type voltage-gated calcium channel mechanisms.” Journal of Neuroscience, 37, Pp. 4593-4603. Abstract
L-type voltage-gated calcium channels (LTCCs) are implicated in several psychiatric disorders that are comorbid with alcoholism and involve amygdala dysfunction. Within the amygdala, the central nucleus (CeA) is critical in acute alcohol's reinforcing actions, and its dysregulation in human alcoholics drives their negative emotional state and motivation to drink. Here we investigated the specific role of CeA LTCCs in the effects of acute alcohol at the molecular, cellular physiology, and behavioral levels, and their potential neuroadaptation in alcohol-dependent rats. Alcohol increases CeA activity (neuronal firing rates and GABA release) in naive rats by engaging LTCCs, and intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence reduces CeA LTCC membrane abundance and disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohol's effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. Collectively, our data indicate that alcohol dependence functionally alters the molecular mechanisms underlying the CeA's response to alcohol (from LTCC- to CRF1-driven). This mechanistic switch contributes to and reflects the prominent role of the CeA in the negative emotional state that drives excessive drinking.SIGNIFICANCE STATEMENT The central amygdala (CeA) plays a critical role in the development of alcohol dependence. As a result, much preclinical alcohol research aims to identify relevant CeA neuroadaptions that promote the transition to dependence. Here we report that acute alcohol increases CeA neuronal activity in naive rats by engaging L-type calcium channels (LTCCs) and that intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohol's effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. This switch reflects the important role of the CeA in the pathophysiology of alcohol dependence and represents a new potential avenue for therapeutic intervention during the transition period.

Pages