Publications

2018
Alasmari F, Bell RL, Rao PSS, Hammad AM, Sari Y. Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats. Pharmacology Biochemistry and Behavior. 2018;170 (July 2018) :44-55.Abstract
Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats.
Blednov YA, Da Costa AJ, Harris RA, Messing RO. Apremilast alters behavioral responses to ethanol in mice: II. Increased sedation, intoxication, and reduced acute functional tolerance. Alcoholism: Clinical and Experimental Research. 2018;42 (5) :939-951.Abstract

BACKGROUND:

In our companion paper, we reported that the phosphodiesterase type 4 inhibitor apremilast reduced ethanol (EtOH) intake and preference in different drinking models in male and female C57BL/6J mice. In this study, we measured the effects of apremilast on other behaviors that are correlated with EtOH consumption.

METHODS:

The effects of apremilast (20 mg/kg) on the following behaviors were studied in male and female C57BL/6J mice: locomotor response to a novel situation; EtOH- and lithium chloride (LiCl)-induced conditioned taste aversion (CTA) to saccharin; conditioned place preference (CPP) and conditioned place avoidance (CPA) to EtOH; severity of handling-induced convulsions after EtOH administration; EtOH-induced anxiolytic-like behavior in the elevated plus maze; duration of EtOH-induced loss of righting reflex (LORR); recovery from EtOH-induced motor impairment on the rotarod; and acute functional tolerance (AFT) to EtOH's ataxic effects.

RESULTS:

Apremilast did not change the acquisition of EtOH-induced CPP, severity of acute withdrawal from EtOH, or EtOH's anxiolytic-like effect. Apremilast did not alter the extinction of EtOH- or LiCl-induced CTA, but may interfere with acquisition of CTA to EtOH. Apremilast increased the acquisition of CPA to EtOH, reduced locomotor responses to a novel situation, and prolonged the duration of LORR and the recovery from acute motor incoordination induced by EtOH. The longer recovery from the ataxic effect may be attributed to reduced development of AFT to EtOH.

CONCLUSIONS:

Our results suggest that apremilast increases the duration of EtOH intoxication by reducing AFT. Apremilast also reduces some aspects of general reward and increases EtOH's aversive properties, which might also contribute to its ability to reduce EtOH drinking.

Blednov YA, Da Costa AJ, Tarbox T, Ponomareva O, Messing RO, Harris RA. Apremilast alters behavioral responses to ethanol in mice: I. Reduced consumption and preference. Alcoholism: Clinical and Experimental Research. 2018;42 (5) :926-938.Abstract

BACKGROUND:

Phosphodiesterase type 4 (PDE4) inhibitors produce widespread anti-inflammatory effects and reduce ethanol (EtOH) consumption in several rodent models. These drugs are potential treatments for several diseases, including central nervous system disorders, but clinical use is limited by their emetic activity. Apremilast is a selective PDE4 inhibitor with fewer gastrointestinal side effects that is FDA-approved for the treatment of psoriasis.

METHODS:

We measured the acute and chronic effects of apremilast on EtOH consumption in male and female C57BL/6J mice using the continuous and intermittent 24-hour 2-bottle choice drinking models. We also studied the effects of apremilast on preference for sucrose or saccharin, spontaneous locomotor activity, and blood EtOH clearance. Finally, apremilast levels in plasma, liver, and brain were measured 1 or 2 hours after injection.

RESULTS:

In the continuous and intermittent drinking tests, apremilast (15 to 50 mg/kg, p.o.) dose dependently reduced EtOH intake and preference in male and female mice. Higher doses of apremilast (30 to 50 mg/kg) also reduced total fluid intake in these mice. Chronic administration of apremilast (20 mg/kg) produced a stable reduction in EtOH consumption in both drinking tests with no effect on total fluid intake. The drinking effects were reversible after drug treatment was replaced with vehicle administration (saline) for 2 to 4 days. Six daily apremilast injections did not alter preference for saccharin or sucrose in male or female mice. Apremilast (20 mg/kg) transiently decreased spontaneous locomotor activity and did not alter blood EtOH clearance. The highest levels of apremilast were found in liver followed by plasma and brain.

CONCLUSIONS:

Apremilast produced stable reductions in voluntary EtOH consumption and was rapidly distributed to plasma and tissues (including the brain), suggesting that it may be an improved PDE4 inhibitor for medication development and repurposing efforts to treat alcohol abuse.

Darcq E, Kieffer BL. The control of reward seeking. Biological Psychiatry [Internet]. 2018;83 :981-983. Publisher's Version
Ferguson LB, Harris RA, Mayfield RD. From gene networks to drugs: systems pharmacology approaches for AUD. Psychopharmacology. 2018;235 :1635-1662.Abstract
The alcohol research field has amassed an impressive number of gene expression datasets spanning key brain areas for addiction, species (humans as well as multiple animal models), and stages in the addiction cycle (binge/intoxication, withdrawal/negative effect, and preoccupation/anticipation). These data have improved our understanding of the molecular adaptations that eventually lead to dysregulation of brain function and the chronic, relapsing disorder of addiction. Identification of new medications to treat alcohol use disorder (AUD) will likely benefit from the integration of genetic, genomic, and behavioral information included in these important datasets. Systems pharmacology considers drug effects as the outcome of the complex network of interactions a drug has rather than a single drug-molecule interaction. Computational strategies based on this principle that integrate gene expression signatures of pharmaceuticals and disease states have shown promise for identifying treatments that ameliorate disease symptoms (called in silico gene mapping or connectivity mapping). In this review, we suggest that gene expression profiling for in silico mapping is critical to improve drug repurposing and discovery for AUD and other psychiatric illnesses. We highlight studies that successfully apply gene mapping computational approaches to identify or repurpose pharmaceutical treatments for psychiatric illnesses. Furthermore, we address important challenges that must be overcome to maximize the potential of these strategies to translate to the clinic and improve healthcare outcomes.
Ferguson LB, Ozburn AR, Ponomarev I, Metten P, Reilly M, Crabbe JC, Harris RA, RD M. Genome-wide expression profiles drive discovery of novel compounds that reduce binge drinking in mice. Neuropharmacology. 2018;43 :1257–1266.Abstract
Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark (HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a molecular signature for genetic risk for high intensity, binge-like drinking. Using multiple computational methods, we queried LINCS-L1000 (Library of Integrated Network-Based Cellular Signatures), a database containing gene expression signatures of thousands of compounds, to predict candidate drugs with the greatest potential to decrease alcohol consumption. Our analyses predicted novel compounds for testing, many with anti-inflammatory properties, providing further support for a neuroimmune mechanism of excessive alcohol drinking. We validated the top 2 candidates in vivo as a proof-of-concept. Terreic acid (a Bruton's tyrosine kinase inhibitor) and pergolide (a dopamine and serotonin receptor agonist) robustly reduced alcohol intake and BALs in HDID-1 mice, providing the first evidence for transcriptome-based drug discovery to target an addiction trait. Effective drug treatments for many psychiatric diseases are lacking, and the emerging tools and approaches outlined here offer researchers studying complex diseases renewed opportunities to discover new or repurpose existing compounds and expedite treatment options.
Fernández-Calle R, Vicente-Rodríguez M, Pastor M, Gramage E, Di Geronimo B, Zapico JM, Coderch C, Pérez-García C, Lasek AW, de Pascual-Teresa B, et al. Pharmacological inhibition of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) modulates behavioral responses to ethanol. Neuropharmacology. 2018;137 (July 2018) :86-95.Abstract
Pleiotrophin (PTN) and Midkine (MK) are neurotrophic factors that are upregulated in the prefrontal cortex after alcohol administration and have been shown to reduce ethanol drinking and reward. PTN and MK are the endogenous inhibitors of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ (a.k.a. PTPRZ1, RPTPβ, PTPζ), suggesting a potential role for this phosphatase in the regulation of alcohol effects. To determine if RPTPβ/ζ regulates ethanol consumption, we treated mice with recently developed small-molecule inhibitors of RPTPβ/ζ (MY10, MY33-3) before testing them for binge-like drinking using the drinking in the dark protocol. Mice treated with RPTPβ/ζ inhibitors, particularly with MY10, drank less ethanol than controls. MY10 treatment blocked ethanol conditioned place preference, showed limited effects on ethanol-induced ataxia, and potentiated the sedative effects of ethanol. We also tested whether RPTPβ/ζ is involved in ethanol signaling pathways. We found that ethanol treatment of neuroblastoma cells increased phosphorylation of anaplastic lymphoma kinase (ALK) and TrkA, known substrates of RPTPβ/ζ. Treatment of neuroblastoma cells with MY10 or MY33-3 also increased levels of phosphorylated ALK and TrkA. However, concomitant treatment of neuroblastoma cells with ethanol and MY10 or MY33-3 prevented the increase in pTrkA and pALK. These results demonstrate for the first time that ethanol engages TrkA signaling and that RPTPβ/ζ modulates signaling pathways activated by alcohol and behavioral responses to this drug. The data support the hypothesis that RPTPβ/ζ might be a novel target of pharmacotherapy for reducing excessive alcohol consumption.
Maggio SE, Saunders MA, Baxter TA, Nixon K, Prendergast MA, Zheng G, Crooks P, LP D, Slack RD, Newman AH, et al. Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor (R)-modafinil on co-use of ethanol and nicotine in female P rats. Psychopharmacology. 2018;235 (5) :1439–1453.Abstract

RATIONALE:

Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use.

OBJECTIVES:

Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, two-bottle choice), (2) nicotine alone (0.03 mg/kg/infusion, active vs. inactive lever), and (3) concurrent access to both EtOH and nicotine. Using this model, we examined the effects of (1) varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist with high affinity for the α4β2* subtype; (2) r-bPiDI, a subtype-selective antagonist at α6β2* nAChRs; and (3) (R)-modafinil, an atypical inhibitor of the dopamine transporter (DAT).

RESULTS:

In phases 1 and 2, pharmacologically relevant intake of EtOH and nicotine was achieved. In the concurrent access phase (phase 3), EtOH consumption decreased while nicotine intake increased relative to phases 1 and 2. For drug pretreatments, in the EtOH access phase (phase 1), (R)-modafinil (100 mg/kg) decreased EtOH consumption, with no effect on water consumption. In the concurrent access phase, varenicline (3 mg/kg), r-bPiDI (20 mg/kg), and (R)-modafinil (100 mg/kg) decreased nicotine self-administration but did not alter EtOH consumption, water consumption, or inactive lever pressing.

CONCLUSIONS:

These results indicate that therapeutics which may be useful for smoking cessation via selective inhibition of α4β2* or α6β2* nAChRs, or DAT inhibition, may not be sufficient to treat EtOH and nicotine co-use.

McCarthy GM, Warden AS, Bridges CR, Blednov YA, RA H. Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addiction Biology. 2018;23 (3) :889-903.Abstract
Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll-like receptor (TLR) activation plays a key role in ethanol-induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR-domain-containing adapter-inducing interferon-β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every-other-day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF-dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF-related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF-dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF-dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF-dependent pathway in ethanol-induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders.
Purohit K, Parekh PK, Kern J, Logan RW, Liu Z, Huang Y, McClung CA, Crabbe JC, Ozburn AR. Pharmacogenetic Manipulation of the Nucleus Accumbens Alters Binge-Like Alcohol Drinking in Mice. Alcoholism: Clinical and Experimental Research. 2018;42 (5) :879-888.Abstract

BACKGROUND:

Chronic alcohol intake leads to long-lasting changes in reward- and stress-related neuronal circuitry. The nucleus accumbens (NAc) is an integral component of this circuitry. Here, we investigate the effects of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) on neuronal activity in the NAc and binge-like drinking.

METHODS:

C57BL/6J mice were stereotaxically injected with AAV2 hSyn-HA hM3Dq, -hM4Di, or -eGFP bilaterally into NAc [core + shell, core or shell]. We measured clozapine-n-oxide (CNO)-induced changes in NAc activity and assessed binge-like ethanol (EtOH) or tastant/fluid intake in a limited access Drinking in the Dark (DID) schedule.

RESULTS:

We found that CNO increased NAc firing in hM3Dq positive cells and decreased firing in hM4Di cells, confirming the efficacy of these channels to alter neuronal activity both spatially and temporally. Increasing NAc core + shell activity decreased binge-like drinking without altering intake of other tastants. Increasing activity specifically in the NAc core reduced binge-like drinking, and decreasing activity in the NAc core increased drinking. Manipulation of NAc shell activity did not alter DID. Thus, we find that increasing activity in the entire NAc, or just the NAc core is sufficient to decrease binge drinking.

CONCLUSIONS:

We conclude that the reduction in EtOH drinking is not due to general malaise, altered perception of taste, or reduced calorie-seeking. Furthermore, we provide the first evidence for bidirectional control of NAc core and binge-like drinking. These findings could have promising implications for treatment.

Hilderbrand ER, Lasek AW. Estradiol enhances ethanol reward in female mice through activation of ERα and ERβ. Hormones and Behavior. 2018;98 :159-164.Abstract
Alcohol use disorder (AUD) manifests differently in men and women, but little is known about sex differences in the brain's response to ethanol. It is known that the steroid hormone 17β-estradiol (E2) regulates voluntary ethanol consumption in female rodents. However, the role of E2 as a regulator of ethanol reward has not been investigated. In this study, we tested for the effects of E2 and agonists selective for the classical estrogen receptors, ERα and ERβ, on ethanol reward in ovariectomized (OVX) mice using the conditioned place preference (CPP) test. E2 enhanced ethanol CPP and, while specific activation of either receptor alone had no effect, co-activation of ERα and ERβ also enhanced ethanol CPP, suggesting that E2 enhances ethanol reward in female mice through actions at both ERα and ERβ. These results have implications for sex differences in the development of AUD, suggesting that women may find ethanol more rewarding than men because of higher circulating E2 levels.
Huitron-Resendiz S, Nadav T, Krause S, Cates-Gatto C, Polis I, Roberts AJ. Effects of withdrawal from chronic intermittent ethanol exposure on sleep characteristics of female and male mice. Alcoholism: Clinical and Experimental Research. 2018;42 :540-550.Abstract

BACKGROUND:

Sleep disruptions are an important consequence of alcohol use disorders. There is a dearth of preclinical studies examining sex differences in sleep patterns associated with ethanol (EtOH) dependence despite documented sex differences in alcohol-related behaviors and withdrawal symptoms. The purpose of this study was to investigate the effects of chronic intermittent EtOH on sleep characteristics in female and male mice.

METHODS:

Female and male C57BL6/J mice had access to EtOH/water 2-bottle choice (2BC) 2 h/d for 3 weeks followed by exposure to EtOH vapor (vapor-2BC) or air for 5 cycles of 4 days. An additional group never experienced EtOH (naïve). Mice were implanted with electroencephalographic (EEG) electrodes, and vigilance states were recorded across 24 hours on the fourth day of withdrawal. The amounts of wakefulness, slow-wave sleep (SWS), and rapid eye movement sleep were calculated, and spectral analysis was performed by fast Fourier transformation.

RESULTS:

Overall, vapor-2BC mice showed a decrease in the amount of SWS 4 days into withdrawal as well as a decrease in the power density of slow waves, indicating disruptions in both the amount and quality of sleep in EtOH-dependent mice. This was associated with a decrease in duration and an increase in number of SWS episodes in males and an increase in latency to sleep in females.

CONCLUSIONS:

Our results revealed overall deficits in sleep regulation in EtOH-dependent mice of both sexes. Female mice appeared to be more affected with regard to the triggering of sleep, while male mice appeared more sensitive to disruptions in the maintenance of sleep.

Iancu OD, Colville A, Walter NAR, Darakjian P, Oberbeck DL, Daunais JB, Zheng CL, Searles RP, McWeeney SK, Grant KA, et al. On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome. Addiction Biology. 2018;23 :196-205.Abstract
This is the first description of the relationship between chronic ethanol self-administration and the brain transcriptome in a non-human primate (rhesus macaque). Thirty-one male animals self-administered ethanol on a daily basis for over 12 months. Gene transcription was quantified with RNA-Seq in the central nucleus of the amygdala (CeA) and cortical Area 32. We constructed coexpression and cosplicing networks, and we identified areas of preservation and areas of differentiation between regions and network types. Correlations between intake and transcription included largely distinct gene sets and annotation categories across brain regions and between expression and splicing; positive and negative correlations were also associated with distinct annotation groups. Membrane, synaptic and splicing annotation categories were over-represented in the modules (gene clusters) enriched in positive correlations (CeA); our cosplicing analysis further identified the genes affected only at the exon inclusion level. In the CeA coexpression network, we identified Rab6b, Cdk18 and Igsf21 among the intake-correlated hubs, while in the Area 32, we identified a distinct hub set that included Ppp3r1 and Myeov2. Overall, the data illustrate that excessive ethanol self-administration is associated with broad expression and splicing mechanisms that involve membrane and synapse genes.
Kirson D, Oleata CS, Parsons LH, Ciccocioppo R, Roberto M. CB(1) and ethanol effects on glutamatergic transmission in the central amygdala of male and female msP and Wistar rats. Addiction Biology. 2018;Mar;23(2) :676-68.Abstract
The central amygdala (CeA) is involved in the processing of anxiety and stress and plays a role in ethanol consumption. Chronic ethanol recruits stress systems in the CeA, leading to aversive withdrawal symptoms. Although primarily GABAergic, CeA contains glutamatergic afferents, and we have reported inhibitory effects of ethanol on locally evoked glutamatergic responses in CeA of Wistar and Marchigian Sardinian alcohol-preferring (msP) rats. Notably, msP rats display enhanced anxiety, stress and alcohol drinking, simulating the alcohol-dependent phenotype. Endocannabinoids are also involved in regulation of stress, and we previously demonstrated that cannabinoid receptor type 1 (CB1 ) activation decreases CeA GABAergic signaling and blocks ethanol enhancement of GABAergic signaling. Here, we sought to investigate the effects of CB1 activation (WIN 55,212-2; Win) and antagonism (AM251) with and without acute ethanol on glutamatergic synapses in CeA of female and male Wistar and msP rats. Using intracellular sharp pipette electrophysiology, we examined the effects of CB1 compounds on locally evoked excitatory postsynaptic potentials (EPSPs) in CeA and compared effects between strains, gender and estrous cycle. Acute ethanol decreased EPSP amplitudes in Wistars, and in male but not female msPs. Win decreased EPSP amplitudes in msPs, and in male but not female Wistars. Combined application of Win and ethanol resulted in strain-specific effects in female rats. We found no tonic CB1 signaling at glutamatergic synapses in CeA of any groups, and no interaction with ethanol. Collectively, these observations demonstrate sex-strain-specific differences in ethanol and endocannabinoid effects on CeA glutamatergic signaling.
Osterndorff-Kahanek EA, Tiwari GR, Lopez MF, Becker HC, Harris RA, Mayfield RD. . Long-term ethanol exposure: temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One. 2018;13 ((1) :e0190841.Abstract
Long-term alcohol use can result in lasting changes in brain function, ultimately leading to alcohol dependence. These functional alterations arise from dysregulation of complex gene networks, and growing evidence implicates microRNAs as key regulators of these networks. We examined time- and brain region-dependent changes in microRNA expression after chronic intermittent ethanol (CIE) exposure in C57BL/6J mice. Animals were sacrificed at 0, 8, and 120h following the last exposure to four weekly cycles of CIE vapor and we measured microRNA expression in prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY). The number of detected (395–419) and differentially expressed (DE, 42–47) microRNAs was similar within each brain region. However, the DE microRNAs were distinct among brain regions and across time within each brain region. DE microRNAs were linked with their DE mRNA targets across each brain region. In all brain regions, the greatest number of DE mRNA targets occurred at the 0 or 8h time points and these changes were associated with microRNAs DE at 0 or 8h. Two separate approaches (discrete temporal association and hierarchical clustering) were combined with pathway analysis to further characterize the temporal relationships between DE microRNAs and their 120h DE targets. We focused on targets dysregulated at 120h as this time point represents a state of protracted withdrawal known to promote an increase in subsequent ethanol consumption. Discrete temporal association analysis identified networks with highly connected genes including ERK1/2 (mouse equivalent Mapk3, Mapk1), Bcl2 (in AMY networks) and Srf (in PFC networks). Similarly, the cluster-based analysis identified hub genes that include Bcl2 (in AMY networks) and Srf in PFC networks, demonstrating robust microRNA-mRNA network alterations in response to CIE exposure. In contrast, datasets utilizing targets from 0 and 8h microRNAs identified NF-kB-centered networks (in NAC and PFC), and Smad3-centered networks (in AMY). These results demonstrate that CIE exposure results in dynamic and complex temporal changes in microRNA-mRNA gene network structure.
Renteria R, Buske TR, Morrisett RA. Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens. Addiction Biology. 2018;23 :689-698.Abstract
While the risks of maternal alcohol abuse during pregnancy are well-established, several preclinical studies suggest that chronic preconception alcohol consumption by either parent may also have significance consequences for offspring health and development. Notably, since isogenic male mice used in these studies are not involved in gestation or rearing of offspring, the cross-generational effects of paternal alcohol exposure suggest a germline-based epigenetic mechanism. Many recent studies have demonstrated that the effects of paternal environmental exposures such as stress or malnutrition can be transmitted to the next generation via alterations to small noncoding RNAs in sperm. Therefore, we used high throughput sequencing to examine the effect of preconception ethanol on small noncoding RNAs in sperm. We found that chronic intermittent ethanol exposure altered several small noncoding RNAs from three of the major small RNA classes in sperm, tRNA-derived small RNA (tDR), mitochondrial small RNA, and microRNA. Six of the ethanol-responsive small noncoding RNAs were evaluated with RT-qPCR on a separate cohort of mice and five of the six were confirmed to be altered by chronic ethanol exposure, supporting the validity of the sequencing results. In addition to altered sperm RNA abundance, chronic ethanol exposure affected post-transcriptional modifications to sperm small noncoding RNAs, increasing two nucleoside modifications previously identified in mitochondrial tRNA. Furthermore, we found that chronic ethanol reduced epididymal expression of a tRNA methyltransferase, Nsun2, known to directly regulate tDR biogenesis. Finally, ethanol-responsive sperm tDR are similarly altered in extracellular vesicles of the epididymis (i.e., epididymosomes), supporting the hypothesis that alterations to sperm tDR emerge in the epididymis and that epididymosomes are the primary source of small noncoding RNAs in sperm. These results add chronic ethanol to the growing list of paternal exposures that can affect small noncoding RNA abundance and nucleoside modifications in sperm. As small noncoding RNAs in sperm have been shown to causally induce heritable phenotypes in offspring, additional research is warranted to understand the potential effects of ethanol-responsive sperm small noncoding RNAs on offspring health and development.
Rompala GR, Mounier A, Wolfe CM, Lin Q, Lefterov I, Homanics GE. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Frontiers in Genetics. 2018;9 :32.Abstract
While the risks of maternal alcohol abuse during pregnancy are well-established, several preclinical studies suggest that chronic preconception alcohol consumption by either parent may also have significance consequences for offspring health and development. Notably, since isogenic male mice used in these studies are not involved in gestation or rearing of offspring, the cross-generational effects of paternal alcohol exposure suggest a germline-based epigenetic mechanism. Many recent studies have demonstrated that the effects of paternal environmental exposures such as stress or malnutrition can be transmitted to the next generation via alterations to small noncoding RNAs in sperm. Therefore, we used high throughput sequencing to examine the effect of preconception ethanol on small noncoding RNAs in sperm. We found that chronic intermittent ethanol exposure altered several small noncoding RNAs from three of the major small RNA classes in sperm, tRNA-derived small RNA (tDR), mitochondrial small RNA, and microRNA. Six of the ethanol-responsive small noncoding RNAs were evaluated with RT-qPCR on a separate cohort of mice and five of the six were confirmed to be altered by chronic ethanol exposure, supporting the validity of the sequencing results. In addition to altered sperm RNA abundance, chronic ethanol exposure affected post-transcriptional modifications to sperm small noncoding RNAs, increasing two nucleoside modifications previously identified in mitochondrial tRNA. Furthermore, we found that chronic ethanol reduced epididymal expression of a tRNA methyltransferase, Nsun2, known to directly regulate tDR biogenesis. Finally, ethanol-responsive sperm tDR are similarly altered in extracellular vesicles of the epididymis (i.e., epididymosomes), supporting the hypothesis that alterations to sperm tDR emerge in the epididymis and that epididymosomes are the primary source of small noncoding RNAs in sperm. These results add chronic ethanol to the growing list of paternal exposures that can affect small noncoding RNA abundance and nucleoside modifications in sperm. As small noncoding RNAs in sperm have been shown to causally induce heritable phenotypes in offspring, additional research is warranted to understand the potential effects of ethanol-responsive sperm small noncoding RNAs on offspring health and development.
Satta R, Hilderbrand ER, Lasek AW. Ovarian hormones contribute to high levels of binge-like drinking by female mice. Alcoholism: Clinical and Experimental Research. 2018;42 :286-294.Abstract

BACKGROUND:

Recently, the incidence of binge drinking by women has increased. Binge drinking is detrimental to women's health, yet the biological mechanisms that promote excessive drinking by women are not well understood. One method of assessing binge-like ethanol (EtOH) consumption in mice is the drinking in the dark (DID) test, in which mice drink sufficient EtOH to achieve intoxication. In this study, we directly compared male, female, and ovariectomized (OVX) mice for DID and tested whether 17β-estradiol (E2) contributes to DID. We also measured whether DID varies throughout the estrous cycle and whether repeated intermittent DID impacts the estrous cycle.

METHODS:

Male, female, and OVX C57BL/6J mice were tested for DID for 2 hours per day on days 1 to 3 and for 4 hours on day 4 using a single bottle containing 20% EtOH. To measure the effects of E2 on DID, OVX mice were treated with estradiol benzoate (EB) or vehicle daily starting 2 weeks prior to the drinking test and throughout the DID procedure. In a separate group of experiments, EtOH consumption and estrous cycle phase were measured in freely cycling mice that were drinking EtOH or water 5 days per week for 2 or 6 weeks.

RESULTS:

Female mice consumed more EtOH than male and OVX mice. Treatment with EB increased EtOH consumption by OVX mice compared with vehicle-treated controls. However, EtOH intake did not vary across the estrous cycle, nor did long-term DID alter the estrous cycle.

CONCLUSIONS:

These results demonstrate that ovarian hormones, specifically E2, contribute to increased EtOH consumption by female mice in the DID test. Although ovarian hormones contribute to this behavior, EtOH consumption is not affected by estrous cycle phase in freely cycling mice. This study provides a framework for understanding the factors that contribute to binge drinking in females.

Varodayan FP, Sidhu H, Kreifeldt M, Roberto M, Contet C. Morphological and functional evidence of increased excitatory signaling in the prelimbic cortex during ethanol withdrawal. Neuropharmacology. 2018;133 :470-480.Abstract
Excessive alcohol consumption in humans induces deficits in decision making and emotional processing, which indicates a dysfunction of the prefrontal cortex (PFC). The present study aimed to determine the impact of chronic intermittent ethanol (CIE) inhalation on mouse medial PFC pyramidal neurons. Data were collected 6–8 days into withdrawal from 7 weeks of CIE exposure, a time point when mice exhibit behavioral symptoms of withdrawal. We found that spine maturity in prelimbic (PL) layer 2/3 neurons was increased, while dendritic spines in PL layer 5 neurons or infralimbic (IL) neurons were not affected. Corroborating these morphological observations, CIE enhanced glutamatergic transmission in PL layer 2/3 pyramidal neurons, but not IL layer 2/3 neurons. Contrary to our predictions, these cellular alterations were associated with improved, rather than impaired, performance in reversal learning and strategy switching tasks in the Barnes maze at an earlier stage of chronic ethanol exposure (5–7 days withdrawal from 3 to 4 weeks of CIE), which could result from the anxiety-like behavior associated with ethanol withdrawal. Altogether, this study adds to a growing body of literature indicating that glutamatergic activity in the PFC is upregulated following chronic ethanol exposure, and identifies PL layer 2/3 pyramidal neurons as a sensitive target of synaptic remodeling. It also indicates that the Barnes maze is not suitable to detect deficits in cognitive flexibility in CIE-withdrawn mice.
2017
Mangieri RA, Maier EY, Buske TR, Lasek AW, Morrisett RA. Anaplastic lymphoma kinase is a regulator of alcohol consumption and excitatory synaptic plasticity in the nucleus accumbens shell. Frontiers in Pharmacology. 2017;2017 (8) :533.Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase recently implicated in biochemical, physiological, and behavioral responses to ethanol. Thus, manipulation of ALK signaling may represent a novel approach to treating alcohol use disorder (AUD). Ethanol induces adaptations in glutamatergic synapses onto nucleus accumbens shell (NAcSh) medium spiny neurons (MSNs), and putative targets for treating AUD may be validated for further development by assessing how their manipulation modulates accumbal glutamatergic synaptic transmission and plasticity. Here, we report that Alk knockout (AlkKO) mice consumed greater doses of ethanol, relative to wild-type (AlkWT) mice, in an operant self-administration model. Using ex vivo electrophysiology to examine excitatory synaptic transmission and plasticity at NAcSh MSNs that express dopamine D1 receptors (D1MSNs), we found that the amplitude of spontaneous excitatory post-synaptic currents (EPSCs) in NAcSh D1MSNs was elevated in AlkKO mice and in the presence of an ALK inhibitor, TAE684. Furthermore, when ALK was absent or inhibited, glutamatergic synaptic plasticity - long-term depression of evoked EPSCs - in D1MSNs was attenuated. Thus, loss of ALK activity in mice is associated with elevated ethanol consumption and enhanced excitatory transmission in NAcSh D1MSNs. These findings add to the mounting evidence of a relationship between excitatory synaptic transmission onto NAcSh D1MSNs and ethanol consumption, point toward ALK as one important molecular mediator of this interaction, and further validate ALK as a target for therapeutic intervention in the treatment of AUD.

Pages