Herman MA, Varodayan FP, Oleata CS, Luu G, Kirson D, Heilig M, Ciccocioppo R, Roberto M. Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: Alcohol and CRF effects. Neuropharmacology. 2016;102 :21–31.Abstract
The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes.
Hernandez RV, Puro AC, Manos JC, Huitron-Resendiz S, Reyes KC, Liu K, Vo K, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103 :27–43.Abstract
A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence.
Risher M-L, Sexton HG, Risher WC, Wilson WA, Fleming RL, Madison RD, Moore SD, Eroglu C, Swartzwelder HS. Adolescent Intermittent Alcohol Exposure: Dysregulation of Thrombospondins and Synapse Formation are Associated with Decreased Neuronal Density in the Adult Hippocampus. Alcoholism, Clinical and Experimental Research. 2015;39 (12) :2403–2413.Abstract
BACKGROUND: Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored. We investigated the acute and enduring effects of AIE on astrocytic reactivity and signaling on synaptic expression in the hippocampus, including the impact of the thrombospondin (TSP) family of astrocyte-secreted synaptogenic factors and their neuronal receptor, alpha2delta-1 (α2δ-1). Our hypothesis is that some of the influences of AIE on neuronal function may be secondary to direct effects on astrocytes. METHODS: We conducted Western blot analysis on TSPs 1 to 4 and α2δ-1 from whole hippocampal lysates 24 hours after the 4th and 10th doses of AIE, then 24 days after the last dose (in adulthood). We used immunohistochemistry to assess astrocyte reactivity (i.e., morphology) and synaptogenesis (i.e., colocalization of pre- and postsynaptic puncta). RESULTS: Adolescent AIE reduced α2δ-1 expression, and colocalized pre- and postsynaptic puncta after the fourth ethanol (EtOH) dose. By the 10th dose, increased TSP2 levels were accompanied by an increase in colocalized pre- and postsynaptic puncta, while α2δ-1 returned to control levels. Twenty-four days after the last EtOH dose (i.e., adulthood), TSP2, TSP4, and α2δ-1 expression were all elevated. Astrocyte reactivity, indicated by increased astrocytic volume and area, was also observed at that time. CONCLUSIONS: Repeated EtOH exposure during adolescence results in long-term changes in specific astrocyte signaling proteins and their neuronal synaptogenic receptor. Continued signaling by these traditionally developmental factors in adulthood may represent a compensatory mechanism whereby astrocytes reopen the synaptogenic window and repair lost connectivity, and consequently contribute to the enduring maladaptive structural and functional abnormalities previously observed in the hippocampus after AIE.
Risher M-L, Fleming RL, Risher WC, Miller KM, Klein RC, Wills T, Acheson SK, Moore SD, Wilson WA, Eroglu C, et al. Adolescent intermittent alcohol exposure: persistence of structural and functional hippocampal abnormalities into adulthood. Alcoholism, Clinical and Experimental Research. 2015;39 (6) :989–997.Abstract
BACKGROUND: Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.e., intermittent EtOH exposure during adolescence [AIE]) in rats to determine whether adolescent exposure to alcohol leads to long-term structural and functional changes that are manifested in adult neuronal circuitry. METHODS: We specifically focused on hippocampal area CA1, a brain region associated with learning and memory. Using electrophysiological, immunohistochemical, and neuroanatomical approaches, we measured post-AIE changes in synaptic plasticity, dendritic spine morphology, and synaptic structure in adulthood. RESULTS: We found that AIE-pretreated adult rats manifest robust long-term potentiation, induced at stimulus intensities lower than those required in controls, suggesting a state of enhanced synaptic plasticity. Moreover, AIE resulted in an increased number of dendritic spines with characteristics typical of immaturity. Immunohistochemistry-based analysis of synaptic structures indicated a significant decrease in the number of co-localized pre- and postsynaptic puncta. This decrease is driven by an overall decrease in 2 postsynaptic density proteins, PSD-95 and SAP102. CONCLUSIONS: Taken together, these findings reveal that repeated alcohol exposure during adolescence results in enduring structural and functional abnormalities in the hippocampus. These synaptic changes in the hippocampal circuits may help to explain learning-related behavioral changes in adult animals preexposed to AIE.
Truitt WA, Hauser SR, Deehan GA, Toalston JE, Wilden JA, Bell RL, McBride WJ, Rodd ZA. Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell. Psychopharmacology. 2015;232 (3) :639–649.Abstract
RATIONALE: Ethanol and nicotine are frequently co-abused. The biological basis for the high co-morbidity rate is not known. Alcohol-preferring (P) rats will self-administer EtOH or nicotine directly into the posterior ventral tegmental area (pVTA). OBJECTIVE: The current experiments examined whether sub-threshold concentrations of EtOH and nicotine would support the development of self-administration behaviors if the drugs were combined. METHODS: Rats were implanted with a guide cannula aimed at the pVTA. Rats were randomly assigned to groups that self-administered sub-threshold concentrations of EtOH (50 mg%) or nicotine (1 μM) or combinations of ethanol (25 or 50 mg%) and nicotine (0.5 or 1.0 μM). Alterations in gene expression downstream projections areas (nucleus accumbens shell, AcbSh) were assessed following a single, acute exposure to EtOH (50 mg%), nicotine (1 μM), or ethanol and nicotine (50 mg% + 1 μM) directly into the pVTA. RESULTS: The results indicated that P rats would co-administer EtOH and nicotine directly into the pVTA at concentrations that did not support individual self-administration. EtOH and nicotine directly administered into the pVTA resulted in alterations in gene expression in the AcbSh (50.8-fold increase in brain-derived neurotrophic factor (BDNF), 2.4-fold decrease in glial cell line-derived neurotrophic factor (GDNF), 10.3-fold increase in vesicular glutamate transporter 1 (Vglut1)) that were not observed following microinjections of equivalent concentrations/doses of ethanol or nicotine. CONCLUSION: The data indicate that ethanol and nicotine act synergistically to produce reinforcement and alter gene expression within the mesolimbic dopamine system. The high rate of co-morbidity of alcoholism and nicotine dependence could be the result of the interactions of EtOH and nicotine within the mesolimbic dopamine system.
Schmeichel BE, Barbier E, Misra KK, Contet C, Schlosburg JE, Grigoriadis D, Williams JP, Karlsson C, Pitcairn C, Heilig M, et al. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2015;40 (5) :1123–1129.Abstract
The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence.
Smith ML, Li J, Ryabinin AE. Increased alcohol consumption in urocortin 3 knockout mice is unaffected by chronic inflammatory pain. Alcohol and Alcoholism (Oxford, Oxfordshire). 2015;50 (2) :132–139.Abstract
AIMS: Stress neurocircuitry may modulate the relationship between alcohol drinking and chronic pain. The corticotropin-releasing factor (CRF) system is crucial for regulation of stress responses. The current study aimed to elucidate the role of the endogenous CRF ligand Urocortin 3 (Ucn3) in the relationship between alcohol drinking behavior and chronic pain using a genetic approach. METHODS: Ucn3 (KO) and wildtype (WT) littermates were subjected to a 24-h access drinking procedure prior to and following induction of chronic inflammatory pain. RESULTS: Ucn3 KO mice displayed significantly increased ethanol intake and preference compared with WT across the time course. There were no long-term effects of chronic pain on alcohol drinking behavior, regardless of genotype, nor any evidence for alcohol-induced analgesia. CONCLUSION: The increased drinking in Ucn3 KO supports a role for this peptide in alcohol-related behavior. These data suggest the necessity for more research exploring the relationship between alcohol drinking, chronic pain and the CRF system in rodent models.
Vanderlinden LA, Saba LM, Bennett B, Hoffman PL, Tabakoff B. Influence of sex on genetic regulation of "drinking in the dark" alcohol consumption. Mammalian Genome: Official Journal of the International Mammalian Genome Society. 2015;26 (1-2) :43–56.Abstract
The ILSXISS (LXS) recombinant inbred (RI) panel of mice is a valuable resource for genetic mapping studies of complex traits, due to its genetic diversity and large number of strains. Male and female mice from this panel were used to investigate genetic influences on alcohol consumption in the "drinking in the dark" (DID) model. Male mice (38 strains) and female mice (36 strains) were given access to 20% ethanol during the early phase of their circadian dark cycle for four consecutive days. The first principal component of alcohol consumption measures on days 2, 3, and 4 was used as a phenotype (DID phenotype) to calculate QTLs, using a SNP marker set for the LXS RI panel. Five QTLs were identified, three of which included a significant genotype by sex interaction, i.e., a significant genotype effect in males and not females. To investigate candidate genes associated with the DID phenotype, data from brain microarray analysis (Affymetrix Mouse Exon 1.0 ST Arrays) of male LXS RI strains were combined with RNA-Seq data (mouse brain transcriptome reconstruction) from the parental ILS and ISS strains in order to identify expressed mouse brain transcripts. Candidate genes were determined based on common eQTL and DID phenotype QTL regions and correlation of transcript expression levels with the DID phenotype. The resulting candidate genes (in particular, Arntl/Bmal1) focused attention on the influence of circadian regulation on the variation in the DID phenotype in this population of mice.
Toalston JE, Deehan GA, Hauser SR, Engleman EA, Bell RL, Murphy JM, McBride WJ, Rodd ZA. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats. Alcohol (Fayetteville, N.Y.). 2015;49 (5) :513–518.Abstract
Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood.
Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, et al. The sequenced rat brain transcriptome–its use in identifying networks predisposing alcohol consumption. The FEBS journal. 2015;282 (18) :3556–3578.Abstract
A quantitative genetic approach, which involves correlation of transcriptional networks with the phenotype in a recombinant inbred (RI) population and in selectively bred lines of rats, and determination of coinciding quantitative trait loci for gene expression and the trait of interest, has been applied in the present study. In this analysis, a novel approach was used that combined DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat strains and six pairs of rat lines selectively bred for high and low alcohol preference, and RNA-Seq data (including rat brain transcriptome reconstruction) to quantify transcript expression levels, generate co-expression modules and identify biological functions that contribute to the predisposition of consuming varying amounts of alcohol. A gene co-expression module was identified in the RI rat strains that contained both annotated and unannotated transcripts expressed in the brain, and was associated with alcohol consumption in the RI panel. This module was found to be enriched with differentially expressed genes from the selected lines of rats. The candidate genes within the module and differentially expressed genes between high and low drinking selected lines were associated with glia (microglia and astrocytes) and could be categorized as being related to immune function, energy metabolism and calcium homeostasis, as well as glial-neuronal communication. The results of the present study show that there are multiple combinations of genetic factors that can produce the same phenotypic outcome. Although no single gene accounts for predisposition to a particular level of alcohol consumption in every animal model, coordinated differential expression of subsets of genes in the identified pathways produce similar phenotypic outcomes. DATABASE: The datasets supporting the results of the present study are available at
Zheng CL, Wilmot B, Walter NAR, Oberbeck D, Kawane S, Searles RP, McWeeney SK, Hitzemann R. Splicing landscape of the eight collaborative cross founder strains. BMC genomics. 2015;16 :52.Abstract
BACKGROUND: The Collaborative Cross (CC) is a large panel of genetically diverse recombinant inbred mouse strains specifically designed to provide a systems genetics resource for the study of complex traits. In part, the utility of the CC stems from the extensive genome-wide annotations of founder strain sequence and structural variation. Still missing, however, are transcriptome-specific annotations of the CC founder strains that could further enhance the utility of this resource. RESULTS: We provide a comprehensive survey of the splicing landscape of the 8 CC founder strains by leveraging the high level of alternative splicing within the brain. Using deep transcriptome sequencing, we found that a majority of the splicing landscape is conserved among the 8 strains, with \textasciitilde65% of junctions being shared by at least 2 strains. We, however, found a large number of potential strain-specific splicing events as well, with an average of \textasciitilde3000 and \textasciitilde500 with ≥3 and ≥10 sequence read coverage, respectively, within each strain. To better understand strain-specific splicing within the CC founder strains, we defined criteria for and identified high-confidence strain-specific splicing events. These splicing events were defined as exon-exon junctions 1) found within only one strain, 2) with a read coverage ≥10, and 3) defined by a canonical splice site. With these criteria, a total of 1509 high-confidence strain-specific splicing events were identified, with the majority found within two of the wild-derived strains, CAST and PWK. Strikingly, the overwhelming majority, 94%, of these strain-specific splicing events are not yet annotated. Strain-specific splicing was also located within genomic regions recently reported to be over- and under-represented within CC populations. CONCLUSIONS: Phenotypic characterization of CC populations is increasing; thus these results will not only aid in further elucidating the transcriptomic architecture of the individual CC founder strains, but they will also help in guiding the utilization of the CC populations in the study of complex traits. This report is also the first to establish guidelines in defining and identifying strain-specific splicing across different mouse strains.
Reno JM, Thakore N, Gonzales R, Schallert T, Bell RL, Maddox WT, Duvauchelle CL. Alcohol-preferring P rats emit spontaneous 22-28 kHz ultrasonic vocalizations that are altered by acute and chronic alcohol experience. Alcoholism, Clinical and Experimental Research. 2015;39 (5) :843–852.Abstract
BACKGROUND: Emotional states are often thought to drive excessive alcohol intake and influence the development of alcohol use disorders. To gain insight into affective properties associated with excessive alcohol intake, we utilized ultrasonic vocalization (USV) detection and analyses to characterize the emotional phenotype of selectively bred alcohol-preferring (P) rats; an established animal model of excessive alcohol intake. USVs emitted by rodents have been convincingly associated with positive (50-55 kHz frequency-modulated [FM]) and negative (22-28 kHz) affective states. Therefore, we hypothesized that 50-55 and 22-28 kHz USV emission patterns in P rats would reveal a unique emotional phenotype sensitive to alcohol experience. METHODS: 50-55 kHz FM and 22-28 kHz USVs elicited from male P rats were assessed during access to water, 15 and 30% EtOH (v/v). Ethanol (EtOH; n = 12) or water only (Control; n = 4) across 8 weeks of daily drinking-in-the-dark (DID) sessions. RESULTS: Spontaneous 22-28 kHz USVs are emitted by alcohol-naïve P rats and are enhanced by alcohol experience. During DID sessions when alcohol was not available (e.g., "EtOH OFF" intervals), significantly more 22-28 kHz than 50-55 kHz USVs were elicited, while significantly more 50-55 kHz FM than 22-28 kHz USVs were emitted when alcohol was available (e.g., "EtOH ON" intervals). In addition, USV acoustic property analyses revealed chronic effects of alcohol experience on 22-28 kHz USV mean frequency, indicative of lasting alcohol-mediated alterations to neural substrates underlying emotional response. CONCLUSIONS: Our findings demonstrate that acute and chronic effects of alcohol exposure are reflected in changes in 22-28 and 50-55 kHz FM USV counts and acoustic patterns. These data support the notion that initiation and maintenance of alcohol intake in P rats may be due to a unique, alcohol-responsive emotional phenotype and further suggest that spontaneous 22-28 kHz USVs serve as behavioral markers for excessive drinking vulnerability.
Pina MM, Young EA, Ryabinin AE, Cunningham CL. The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice. Neuropharmacology. 2015;99 :627–638.Abstract
Drug-associated stimuli are considered important factors in relapse to drug use. In the absence of drug, these cues can trigger drug craving and drive subsequent drug seeking. One structure that has been implicated in this process is the bed nucleus of the stria terminalis (BNST), a chief component of the extended amygdala. Previous studies have established a role for the BNST in cue-induced cocaine seeking. However, it is unclear if the BNST underlies cue-induced seeking of other abused drugs such as ethanol. In the present set of experiments, BNST involvement in ethanol-seeking behavior was assessed in male DBA/2J mice using the conditioned place preference procedure (CPP). The BNST was inhibited during CPP expression using electrolytic lesions (Experiment 1), co-infusion of GABAA and GABAB receptor agonists muscimol and baclofen (M+B; Experiment 2), and activation of inhibitory designer receptors exclusively activated by designer drugs (hM4Di-DREADD) with clozapine-N-oxide (CNO; Experiment 3). The magnitude of ethanol CPP was reduced significantly by each of these techniques. Notably, infusion of M+B (Exp. 2) abolished CPP altogether. Follow-up studies to Exp. 3 showed that ethanol cue-induced c-Fos immunoreactivity in the BNST was reduced by hM4Di activation (Experiment 4) and in the absence of hM4Di, CNO did not affect ethanol CPP (Experiment 5). Combined, these findings demonstrate that the BNST is involved in the modulation of cue-induced ethanol-seeking behavior.
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs. Alcoholism, Clinical and Experimental Research. 2015;39 (10) :1863–1877.Abstract
BACKGROUND: Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS: In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS: While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS: For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.
Pfefferbaum A, Sullivan EV. Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies. Neurobiology of Aging. 2015;36 (9) :2563–2567.Abstract
The healthy adult brain undergoes tissue volume decline with age, but contradictory findings abound regarding rate of change. To identify a source of this discrepancy, we present contrasting statistical approaches to estimate hippocampal volume change with age based on 200 longitudinally-acquired magnetic resonance imaging in 70 healthy adults, age 20-70 years, who had 2-5 magnetic resonance imaging collected over 6 months to 8 years. Linear mixed-effects modeling using volume trajectories over age for each subject revealed significantly negative slopes with aging after a linear decline with a suggestion of acceleration in older individuals. By contrast, general linear modeling using either the first observation only of each subject or all observations treated independently (thereby disregarding trajectories) indicated no significant correlation between volume and age. Entering a quadratic term into the linear model yielded a biologically plausible function that was not supported by longitudinal analysis. The results underscore the importance of analyses that incorporate the trajectory of individuals in the study of brain aging.
Pfefferbaum A, Zahr NM, Mayer D, Rohlfing T, Sullivan EV. Dynamic responses of selective brain white matter fiber tracts to binge alcohol and recovery in the rat. PloS One. 2015;10 (4) :e0124885.Abstract
To determine the dynamics of white matter vulnerability to excessive alcohol consumption, diffusion tensor imaging (DTI) was used in an animal model of alcohol exposure. Quantitative, in vivo fiber tracking results are presented from rats with DTI conducted at 3 time points: baseline; after 4 days of intragastric alcohol to blood alcohol levels of \textasciitilde250 mg/dL; and after one week of recovery. Binge alcohol followed by a week of sobriety resulted in rapidly reversible decreases in fractional anisotropy (FA), a measure of the coherence of fiber tracts, in callosal genu and fimbria-fornix but not splenium; and increases in mean diffusivity (MD), an index of freely diffusing water in tissue, selective to the fimbria-fornix. These effects were confirmed with tract-based spatial statistics (TBSS). The directionality of changes in DTI metrics reproduce those observed in human alcoholism. That a single exposure to binge alcohol can cause substantial transient changes detectable in DTI metrics demonstrates the potential for rapid neuroplasticity.
Rao PSS, Goodwani S, Bell RL, Wei Y, Boddu SHS, Sari Y. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience. 2015;295 :164–174.Abstract
Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1.
Repunte-Canonigo V, Shin W, Vendruscolo LF, Lefebvre C, van der Stap L, Kawamura T, Schlosburg JE, Alvarez M, Koob GF, Califano A, et al. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks. Genome Biology. 2015;16 :68.Abstract
BACKGROUND: A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. RESULTS: Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. CONCLUSIONS: Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.
Repunte-Canonigo V, Herman MA, Kawamura T, Kranzler HR, Sherva R, Gelernter J, Farrer LA, Roberto M, Sanna PP. Nf1 regulates alcohol dependence-associated excessive drinking and gamma-aminobutyric acid release in the central amygdala in mice and is associated with alcohol dependence in humans. Biological Psychiatry. 2015;77 (10) :870–879.Abstract
BACKGROUND: The neurofibromatosis type 1 (Nf1) gene encodes a GTPase activating protein that negatively regulates small GTPases of the Ras family. METHODS: We assessed alcohol-related behaviors including alcohol sensitivity, dependent and nondependent drinking, and basal and alcohol-induced gamma-aminobutyric acid (GABA) release in the central nucleus of the amygdala (CeA) in Nf1 heterozygous null mice (Nf1(+/-)). We also investigated the associations of NF1 polymorphisms with alcohol dependence risk and severity in humans. RESULTS: Nf1(+/-) mice do not differ from wild-type mice in nondependent drinking, such as 24-hour, 2-bottle choice drinking in the dark binge drinking or limited access 2-bottle choice. However, Nf1(+/-) mice failed to escalate alcohol drinking following chronic intermittent ethanol vapor exposure (CIE) to induce dependence. Alcohol acutely increases GABA release in the CeA and alcohol dependence is characterized by increased baseline GABA release in CeA. Interestingly, GABA release in Nf1(+/-) mice is greater at baseline than wild-type mice, is not elevated by induction of dependence by CIE, and failed to show alcohol-induced facilitation both before and after CIE. Additionally, we observed that multiple variants in the human NF1 gene are associated with a quantitative measure of alcohol dependence in both African Americans and European Americans. CONCLUSIONS: In this translational investigation, we found that Nf1 activity regulates excessive drinking and basal and ethanol-stimulated GABA release in the mouse central amygdala. We also found that genetic variation in NF1 may confer an inherent susceptibility to the transition from nondependent to dependent drinking in humans.
Park H-J, Ran Y, Jung JI, Holmes O, Price AR, Smithson L, Ceballos-Diaz C, Han C, Wolfe MS, Daaka Y, et al. The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity. The EMBO journal. 2015;34 (12) :1674–1686.Abstract
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase.