Publications by Year: In Press

In Press
Cruz B, Vozella V, Borgonetti V, Bullard R, Bianchi PC, Kirson D, Bertotto LB, Bajo M, Vlkolinsky R, Messing RO, Zorrilla EP, and Roberto M. “Chemogenetic inhibition of central amygdala CRF-expressing neurons decreases alcohol intake but not trauma-related behaviors in a rat model of post-traumatic stress and alcohol use disorder.” Molecular psychiatry. Publisher's Version Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are often comorbid. Few treatments exist to reduce comorbid PTSD/AUD. Elucidating the mechanisms underlying their comorbidity could reveal new avenues for therapy. Here, we employed a model of comorbid PTSD/AUD, in which rats were subjected to a stressful shock in a familiar context followed by alcohol drinking. We then examined fear overgeneralization and irritability in these rats. Familiar context stress elevated drinking, increased fear overgeneralization, increased alcohol-related aggressive signs, and elevated peripheral stress hormones. We then examined transcripts of stress- and fear-relevant genes in the central amygdala (CeA), a locus that regulates stress-mediated alcohol drinking. Compared with unstressed rats, stressed rats exhibited increases in CeA transcripts for Crh and Fkbp5 and decreases in transcripts for Bdnf and Il18. Levels of Nr3c1 mRNA, which encodes the glucocorticoid receptor, increased in stressed males but decreased in stressed females. Transcripts of Il18 binding protein (Il18bp), Glp-1r, and genes associated with calcitonin gene-related peptide signaling (Calca, Ramp1, Crlr-1, and Iapp) were unaltered. Crh, but not Crhr1, mRNA was increased by stress; thus, we tested whether inhibiting CeA neurons that express corticotropin-releasing factor (CRF) suppress PTSD/AUD-like behaviors. We used Crh-Cre rats that had received a Cre-dependent vector encoding hM4D(Gi), an inhibitory Designer Receptors Exclusively Activated by Designer Drugs. Chemogenetic inhibition of CeA CRF neurons reduced alcohol intake but not fear overgeneralization or irritability-like behaviors. Our findings suggest that CeA CRF modulates PTSD/AUD comorbidity, and inhibiting CRF neural activity is primarily associated with reducing alcohol drinking but not trauma-related behaviors that are associated with PTSD/AUD.
Hitzemann R, Ozburn AR, Lockwood D, and Phillips TJ. “Modeling Brain Gene Expression in Alcohol UseDisorder with Genetic Animal Models.” Current topics in behavioral neurosciences. Publisher's Version Abstract

Animal genetic models have and will continue to provide important new information about the behavioral and physiological adaptations associated with alcohol use disorder (AUD). This chapter focuses on two models, ethanol preference and drinking in the dark (DID), their usefulness in interrogating brain gene expression data and the relevance of the data obtained to interpret AUD-related GWAS and TWAS studies. Both the animal and human data point to the importance for AUD of changes in synaptic transmission (particularly glutamate and GABA transmission), of changes in the extracellular matrix (specifically including collagens, cadherins and protocadherins) and of changes in neuroimmune processes. The implementation of new technologies (e.g., cell type-specific gene expression) is expected to further enhance the value of genetic animal models in understanding AUD.

Keywords: Alcohol use disorder; Animal genetic models; Brain gene expression; Drinking in the dark; Ethanol preference; GWAS; RNA sequencing; TWAS.

Lovinger DM and Roberto M.Synaptic Effects Induced by Alcohol..” Current Topics in Behavioral Neurosciences. Publisher's Version Abstract

Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31–86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.