Publications

2021
Grubisha MJ, Sun T, Eisenman L, Erickson SL, Chou SY, Helmer CD, Trudgen MT, Ding Y, Homanics GE, Penzes P, Wills ZP, and Sweet RA.A Kalirin missense mutation enhances dendritic RhoA signaling and leads to regression of cortical dendritic arbors across development.” Proc Natl Acad Sci U S A, 118, 49. Publisher's Version Abstract

Normally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wild-type KAL. In mice containing this missense mutation at the endogenous locus, there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Spine density per unit length of dendrite is unaffected. Early adult mice with these structural deficits exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.

Keywords: Kalirin; NGR1; adolescence; dendrite.

 

Saba LM, Hoffman PL, Homanics GE, Mahaffey S, Daulatabad SV, Janga SC, and Tabakoff B. “A long non-coding RNA (Lrap) modulates brain gene expression and levels of alcohol consumption in rats..” Genes, Brain and Behavior, 20, 2, Pp. e12698. Publisher's Version Abstract
LncRNAs are important regulators of quantitative and qualitative features of the transcriptome. We have used QTL and other statistical analyses to identify a gene coexpression module associated with alcohol consumption. The “hub gene” of this module, Lrap (Long non‐coding RNA for alcohol preference), was an unannotated transcript resembling a lncRNA. We used partial correlation analyses to establish that Lrap is a major contributor to the integrity of the coexpression module. Using CRISPR/Cas9 technology, we disrupted an exon of Lrap in Wistar rats. Measures of alcohol consumption in wild type, heterozygous and knockout rats showed that disruption of Lrap produced increases in alcohol consumption/alcohol preference. The disruption of Lrap also produced changes in expression of over 700 other transcripts. Furthermore, it became apparent that Lrap may have a function in alternative splicing of the affected transcripts. The GO category of “Response to Ethanol” emerged as one of the top candidates in an enrichment analysis of the differentially expressed transcripts. We validate the role of Lrap as a mediator of alcohol consumption by rats, and also implicate Lrap as a modifier of the expression and splicing of a large number of brain transcripts. A defined subset of these transcripts significantly impacts alcohol consumption by rats (and possibly humans). Our work shows the pleiotropic nature of non‐coding elements of the genome, the power of network analysis in identifying the critical elements influencing phenotypes, and the fact that not all changes produced by genetic editing are critical for the concomitant changes in phenotype.
Karatas M, Noblet V, Nasseef MT, Bienert T, Reisert M, Hennig J, Yalcin I, Kieffer BL, von Elverfeldt D, and Harsan LA. “Mapping the living mouse brain neural architecture: strain-specific patterns of brain structural and functional connectivity.” Brain Struct Funct , 226, 3, Pp. 647-669. Publisher's Version Abstract

Mapping the structural and functional brain connectivity fingerprints became an essential approach in neurology and experimental neuroscience because network properties can underlie behavioral phenotypes. In mouse models, revealing strain related patterns of brain wiring have a tremendous importance, since these animals are used to answer questions related to neurological or neuropsychiatric disorders. C57BL/6 and BALB/cJ inbred strains are primary “genetic backgrounds” for brain disease modelling and for testing therapeutic approaches. Nevertheless, extensive literature describes basal differences in the behavioral, neuroanatomical and neurochemical profiles of the two strains, which raises the question whether the observed effects are pathology specific or depend on the genetic background. Here we performed a systematic comparative exploration of brain structure and function of C57BL/6 and BALB/cJ mice via Magnetic Resonance Imaging (MRI). We combined voxel-based morphometry (VBM), diffusion MRI and high resolution fiber mapping (hrFM) and resting state functional MRI (rs-fMRI) and depicted brain-wide dissimilarities in the morphology and “connectome” features in the two strains. Particularly C57BL/6 animals show bigger and denser frontal cortical areas, cortico-striatal tracts and thalamic and midbrain pathways, and higher density of fibers in the genu and splenium of the corpus callosum. These features are fairly reflected in the functional connectograms that emphasize differences in “hubness”, frontal cortical and basal forbrain connectivity. We demonstrate strongly divergent reward-aversion circuitry patterns and some variations of the default mode network features. Inter-hemispherical functional connectivity showed flexibility and adjustment regarding the structural patterns in a strain specific manner. We further provide high-resolution tractograms illustrating also inter-individual variability across inter-hemispherical callosal pathways in the BALB/cJ strain.

Fama R, Le Berre AP, Sassoon SA, Zahr NM, Pohl KM, Pfefferbaum A, and Sullivan EV.Memory impairment in alcohol use disorder is associated with regional frontal brain volumes.” Drug Alcohol Depend . Publisher's Version Abstract

Background: Episodic memory deficits occur in alcohol use disorder (AUD), but their anatomical substrates remain in question. Although persistent memory impairment is classically associated with limbic circuitry disruption, learning and retrieval of new information also relies on frontal systems. Despite AUD vulnerability of frontal lobe integrity, relations between frontal regions and memory processes have been under-appreciated.

Methods: Participants included 91 AUD (49 with a drug diagnosis history) and 36 controls. Verbal and visual episodic memory scores were age- and education-corrected. Structural magnetic resonance imaging (MRI) data yielded regional frontal lobe (precentral, superior, orbital, middle, inferior, supplemental motor, and medial) and total hippocampal volumes.

Results: AUD were impaired on all memory scores and had smaller precentral frontal and hippocampal volumes than controls. Orbital, superior, and inferior frontal volumes and lifetime alcohol consumption were independent predictors of episodic memory in AUD. Selectivity was established with a double dissociation, where orbital frontal volume predicted verbal but not visual memory, whereas inferior frontal volumes predicted visual but not verbal memory. Further, superior frontal volumes predicted verbal memory in AUD alone, whereas orbital frontal volumes predicted verbal memory in AUD+drug abuse history.

Conclusions: Selective relations among frontal subregions and episodic memory processes highlight the relevance of extra-limbic regions in mnemonic processes in AUD. Memory deficits resulting from frontal dysfunction, unlike the episodic memory impairment associated with limbic dysfunction, may be more amenable to recovery with cessation or reduction of alcohol misuse and may partially explain the heterogeneity in episodic memory abilities in AUD.

Keywords: Alcohol; Drug abuse; Episodic memory; Frontal volumes; MRI; Orbitofrontal.

Copyright © 2021 Elsevier B.V. All rights reserved.

Warden AS, Triplett TA, Lyu A, Grantham EK, Azzam MM, Da Costa A, Mason S, Blednov YA, Ehrlich LIR, Mayfield RD, and Harris RA. “Microglia depletion and alcohol: Transcriptome and behavioral profiles..” Addict Biology, 26, 2, Pp. e12889. Publisher's Version Abstract
Alcohol abuse induces changes in microglia morphology and immune function, but whether microglia initiate or simply amplify the harmful effects of alcohol exposure is still a matter of debate. Here, we determine microglia function in acute and voluntary drinking behaviors using a colony‐stimulating factor 1 receptor inhibitor (PLX5622). We show that microglia depletion does not alter the sedative or hypnotic effects of acute intoxication. Microglia depletion also does not change the escalation or maintenance of chronic voluntary alcohol consumption. Transcriptomic analysis revealed that although many immune genes have been implicated in alcohol abuse, downregulation of microglia genes does not necessitate changes in alcohol intake. Instead, microglia depletion and chronic alcohol result in compensatory upregulation of alcohol‐responsive, reactive astrocyte genes, indicating astrocytes may play a role in regulation of these alcohol behaviors. Taken together, our behavioral and transcriptional data indicate that microglia are not the primary effector cell responsible for regulation of acute and voluntary alcohol behaviors. Because microglia depletion did not regulate acute or voluntary alcohol behaviors, we hypothesized that these doses were insufficient to activate microglia and recruit them to an effector phenotype. Therefore, we used a model of repeated immune activation using polyinosinic:polycytidylic acid (poly(I:C)) to activate microglia. Microglia depletion blocked poly(I:C)‐induced escalations in alcohol intake, indicating microglia regulate drinking behaviors with sufficient immune activation. By testing the functional role of microglia in alcohol behaviors, we provide insight into when microglia are causal and when they are consequential for the transition from alcohol use to dependence.
Classical inflammation in response to bacterial, parasitic, or viral infections such as HIV includes local recruitment of neutrophils and macrophages and the production of proinflammatory cytokines and chemokines. Proposed biomarkers of organ integrity in Alcohol Use Disorders (AUD) include elevations in peripheral plasma levels of proinflammatory proteins. In testing this proposal, previous work included a group of human immunodeficiency virus (HIV)-infected individuals as positive controls and identified elevations in the soluble proteins TNFα and IP10; these cytokines were only elevated in AUD individuals seropositive for hepatitis C infection (HCV). The current observational, cross-sectional study evaluated whether higher levels of these proinflammatory cytokines would be associated with compromised brain integrity. Soluble protein levels were quantified in 86 healthy controls, 132 individuals with AUD, 54 individuals seropositive for HIV, and 49 individuals with AUD and HIV. Among the patient groups, HCV was present in 24 of the individuals with AUD, 13 individuals with HIV, and 20 of the individuals in the comorbid AUD and HIV group. Soluble protein levels were correlated to regional brain volumes as quantified with structural magnetic resonance imaging (MRI). In addition to higher levels of TNFα and IP10 in the 2 HIV groups and the HCV-seropositive AUD group, this study identified lower levels of IL1β in the 3 patient groups relative to the control group. Only TNFα, however, showed a relationship with brain integrity: in HCV or HIV infection, higher peripheral levels of TNFα correlated with smaller subcortical white matter volume. These preliminary results highlight the privileged status of TNFα on brain integrity in the context of infection.
Previous studies have shown the presence of several subunits of the inhibitory glycine receptor (GlyR) in the reward system, specifically in medium spiny neurons (MSNs) of the nucleus Accumbens (nAc). It was suggested that GlyR α1 subunits regulate nAc excitability and ethanol consumption. However, little is known about the role of the α2 subunit in the adult brain since it is a subunit highly expressed during early brain development. In this study, we used genetically modified mice with a mutation (KR389–390AA) in the intracellular loop of the GlyR α2 subunit which results in a heteromeric α2β receptor that is insensitive to ethanol. Using this mouse model denoted knock-in α2 (KI α2), our electrophysiological studies showed that neurons in the adult nAc expressed functional KI GlyRs that were rather insensitive to ethanol when compared with WT GlyRs. In behavioral tests, the KI α2 mice did not show any difference in basal motor coordination, locomotor activity, or conditioned place preference compared with WT littermate controls. In terms of ethanol response, KI α2 male mice recovered faster from the administration of ataxic and sedative doses of ethanol. Furthermore, KI α2 mice consumed higher amounts of ethanol in the first days of the drinking in the dark protocol, as compared with WT mice. These results show that the α2 subunit is important for the potentiation of GlyRs in the adult brain and this might result in reduced sedation and increased ethanol consumption.
Roberto M, Kirson D, and Khom S. “The Role of the Central Amygdala in Alcohol Dependence..” Cold Spring Harb Perspect Med. Publisher's Version Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central nucleus of the amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptive mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid (GABA)ergic transmission in the CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the CeA, whereas chronic alcohol up-regulates NMDA receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and antistress (e.g., nociceptin/orphanin FQ, oxytocin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Kirson D, Steinman MQ, Wolfe SA, Spierling Bagsic SR, Bajo M, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, and Roberto M.Sex and context differences in the effects of trauma on comorbid alcohol use and post-traumatic stress phenotypes in actively drinking rats.” J Neurosci Res , 99, 12, Pp. 3354-3372. Publisher's Version Abstract

Alcohol use disorder (AUD) and affective disorders are frequently comorbid and share underlying mechanisms that could be targets for comprehensive treatment. Post-traumatic stress disorder (PTSD) has high comorbidity with AUD, but comprehensive models of this overlap are nascent. We recently characterized a model of comorbid AUD and PTSD-like symptoms, wherein stressed rats receive an inhibitory avoidance (IA)-related footshock on two occasions followed by two-bottle choice (2BC) voluntary alcohol drinking. Stressed rats received the second footshock in a familiar (FAM, same IA box as the first footshock) or novel context (NOV, single-chambered apparatus); the FAM paradigm more effectively increased alcohol drinking in males and the NOV paradigm in females. During abstinence, stressed males displayed avoidance-like PTSD symptoms, and females showed hyperarousal-like PTSD symptoms. Rats in the model had altered spontaneous action potential-independent GABAergic transmission in the central amygdala (CeA), a brain region key in alcohol dependence and stress-related signaling. However, PTSD sufferers may have alcohol experience prior to their trauma. Here, we therefore modified our AUD/PTSD comorbidity model to provide 3 weeks of intermittent extended alcohol access before footshock and then studied the effects of NOV and FAM stress on drinking and PTSD phenotypes. NOV stress suppressed the escalation of alcohol intake and preference seen in male controls, but no stress effects were seen on drinking in females. Additionally, NOV males had decreased action potential-independent presynaptic GABA release and delayed postsynaptic GABAA receptor kinetics in the CeA compared to control and FAM males. Despite these changes to alcohol intake and CeA GABA signaling, stressed rats showed broadly similar anxiogenic-like behaviors to our previous comorbid model, suggesting decoupling of the PTSD symptoms from the AUD vulnerability for some of these animals. The collective results show the importance of alcohol history and trauma context in vulnerability to comorbid AUD/PTSD-like symptoms.

Keywords: GABA; alcohol use disorder (AUD); central amygdala; post-traumatic stress disorder (PTSD); sex differences; stress; trauma.

Kirson D, Khom S, Rodriguez L, Wolfe SA, Varodayan FP, Gandhi PJ, Patel RR, Vlkolinsky R, Bajo M, and Roberto M. “Sex Differences in Acute Alcohol Sensitivity of Naïve and Alcohol Dependent Central Amygdala GABA Synapses.” Alcohol Alcohol , 56, 5, Pp. 581-588. Publisher's Version Abstract

Aims: Alcohol use disorder (AUD) is linked to hyperactivity of brain stress systems, leading to withdrawal states which drive relapse. AUD differs among the sexes, as men are more likely to have AUD than women, but women progress from casual use to binge and heavy alcohol use more quickly and are more likely to relapse into repetitive episodes of heavy drinking. In alcohol dependence animal models of AUD, the central amygdala (CeA) functions as a hub of stress and anxiety processing and gamma-Aminobutyric acid (GABA)ergic signaling within the CeA is involved in dependence-induced increases in alcohol consumption. We have shown dysregulation of CeA GABAergic synaptic signaling in alcohol dependence animal models, but previous studies have exclusively used males.

Methods: Here, we used whole-cell patch clamp electrophysiology to examine basal CeA GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) and the effects of acute alcohol in both naïve and alcohol dependent rats of both sexes.

Results: We found that sIPSC kinetics differ between females and males, as well as between naïve and alcohol-dependent animals, with naïve females having the fastest current kinetics. Additionally, we find differences in baseline current kinetics across estrous cycle stages. In contrast to the increase in sIPSC frequency routinely found in males, acute alcohol (11-88 mM) had no effect on sIPSCs in naïve females, however the highest concentration of alcohol increased sIPSC frequency in dependent females.

Conclusion: These results provide important insight into sex differences in CeA neuronal function and dysregulation with alcohol dependence and highlight the need for sex-specific considerations in the development of effective AUD treatment.

© The Author(s) 2021. Medical Council on Alcohol and Oxford University Press. All rights reserved.

Chen WY, Chen H, Hamada K, Gatta E, Chen Y, Zhang H, Drnevich J, Krishnan HR, Maienschein-Cline M, Grayson DR, Pandey SC, and Lasek AW. “Transcriptomics identifies STAT3 as a key regulator of hippocampal gene expression and anhedonia during withdrawal from chronic alcohol exposure.” Translational Psychiatry, 11, Pp. 298. Publisher's Version Abstract
Alcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.
Hamada K, Ferguson LB, Mayfield RD, Krishnan HR, Maienschein-Cline M, and Lasek AW. “Binge-Like Ethanol Drinking Activates ALK Signaling and Increases the Expression of STAT3 Target Genes in the Mouse Hippocampus and Prefrontal Cortex.” Genes Brain Behav, 28, Pp. e12729. Publisher's Version Abstract
Alcohol use disorder (AUD) has a complex pathogenesis, making it a difficult disorder to treat. Identifying relevant signaling pathways in the brain may be useful for finding new pharmacological targets to treat AUD. The receptor tyrosine kinase anaplastic lymphoma kinase (ALK) activates the transcription factor STAT3 in response to ethanol in cell lines. Here, we show ALK activation and upregulation of known STAT3 target genes (Socs3Gfap and Tnfrsf1a) in the prefrontal cortex (PFC) and ventral hippocampus (HPC) of mice after 4 days of binge‐like ethanol drinking. Mice treated with the STAT3 inhibitor stattic drank less ethanol than vehicle‐treated mice, demonstrating the behavioral importance of STAT3. To identify novel ethanol‐induced target genes downstream of the ALK and STAT3 pathway, we analyzed the NIH LINCS L1000 database for gene signature overlap between ALK inhibitor (alectinib and NVP‐TAE684) and STAT3 inhibitor (niclosamide) treatments on cell lines. These genes were then compared with differentially expressed genes in the PFC of mice after binge‐like drinking. We found 95 unique gene candidates, out of which 57 had STAT3 binding motifs in their promoters. We further showed by qPCR that expression of the putative STAT3 genes Nr1h2Smarcc1Smarca4 and Gpnmb were increased in either the PFC or HPC after binge‐like drinking. Together, these results indicate activation of the ALK‐STAT3 signaling pathway in the brain after binge‐like ethanol consumption, identify putative novel ethanol‐responsive STAT3 target genes, and suggest that STAT3 inhibition may be a potential method to reduce binge drinking in humans.
Steinman MQ, Kirson D, Wolfe SA, Khom S, D'Ambrosio SR, Spierling Bagsic SR, Bajo M, Vlkolinský R, Hoang NK, Singhal A, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, and Roberto M. “Importance of sex and trauma context on circulating cytokines and amygdalar GABAergic signaling in a comorbid model of posttraumatic stress and alcohol use disorders.” Molecular Psychiatry, 26, 7, Pp. 3093-3107. Publisher's Version Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based “2-hit” rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.
2020
Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology.
Gruol DL, Melkonian C, Ly K, Sisouvanthong J, Tan Y, and Roberts AJ. “Alcohol and IL-6 alter expression of synaptic proteins in cerebellum of transgenic mice with increased astrocyte expression of IL-6..” Neuroscience, 442, Pp. 124-137. Publisher's Version Abstract
Recent studies indicate that neuroimmune factors, including the cytokine interleukin-6 (IL-6), play a role in the CNS actions of alcohol. The cerebellum is a sensitive target of alcohol, but few studies have examined a potential role for neuroimmune factors in the actions of alcohol on this brain region. A number of studies have shown that synaptic transmission, and in particular inhibitory synaptic transmission, is an important cerebellar target of alcohol. IL-6 also alters synaptic transmission, although it is unknown if IL-6 targets are also targets of alcohol. This is an important issue because alcohol induces glial production of IL-6, which could then covertly influence the actions of alcohol. The persistent cerebellar effects of both IL-6 and alcohol typically involve chronic exposure and, presumably, altered gene and protein expression. Thus, in the current studies we tested the possibility that proteins involved in inhibitory and excitatory synaptic transmission in the cerebellum are common targets of alcohol and IL-6. We used transgenic mice that express elevated levels of astrocyte produced IL-6 to model persistently elevated expression of IL-6, as would occur in alcohol use disorders, and a chronic intermittent alcohol exposure/withdrawal paradigm (CIE/withdrawal) that is known to produce alcohol dependence. Multiple cerebellar synaptic proteins were assessed by Western blot. Results show that IL-6 and CIE/withdrawal have both unique and common actions that affect synaptic protein expression. These common targets could provide sites for IL-6/alcohol exposure/withdrawal interactions and play an important role in cerebellar symptoms of alcohol use such as ataxia.
Khom S, Wolfe SA, Patel RR, Kirson D, Hedges DM, Varodayan FP, Bajo M, and Roberto M. “Alcohol dependence and withdrawal impair serotonergic regulation of GABA transmission in the rat central nucleus of the amygdala..” Journal of Neuroscience, 40, Pp. 6842-6853. Publisher's Version Abstract

Excessive serotonin (5-HT) signaling plays a critical role in the etiology of alcohol use disorder. The central nucleus of the amygdala (CeA) is a key player in alcohol-dependence associated behaviors. The CeA receives dense innervation from the dorsal raphe nucleus, the major source of 5-HT, and expresses 5-HT receptor subtypes (e.g., 5-HT2C and 5-HT1A) critically linked to alcohol use disorder. Notably, the role of 5-HT regulating rat CeA activity in alcohol dependence is poorly investigated. Here, we examined neuroadaptations of CeA 5-HT signaling in adult, male Sprague Dawley rats using an established model of alcohol dependence (chronic intermittent alcohol vapor exposure), ex vivo slice electrophysiology and ISH. 5-HT increased frequency of sIPSCs without affecting postsynaptic measures, suggesting increased CeA GABA release in naive rats. In dependent rats, this 5-HT-induced increase of GABA release was attenuated, suggesting blunted CeA 5-HT sensitivity, which partially recovered in protracted withdrawal (2 weeks). 5-HT increased vesicular GABA release in naive and dependent rats but had split effects (increase and decrease) after protracted withdrawal indicative of neuroadaptations of presynaptic 5-HT receptors. Accordingly, 5-HT abolished spontaneous neuronal firing in naive and dependent rats but had bidirectional effects in withdrawn. Alcohol dependence and protracted withdrawal did not alter either 5-HT1A-mediated decrease of CeA GABA release or Htr1a expression but disrupted 5-HT2C-signaling without affecting Htr2c expression. Collectively, our study provides detailed insights into modulation of CeA activity by the 5-HT system and unravels the vulnerability of the CeA 5-HT system to chronic alcohol and protracted withdrawal.

SIGNIFICANCE STATEMENT Elevated GABA signaling in the central nucleus of the amygdala (CeA) underlies key behaviors associated with alcohol dependence. The CeA is reciprocally connected with the dorsal raphe nucleus, the main source of serotonin (5-HT) in the mammalian brain, and excessive 5-HT signaling is critically implicated in the etiology of alcohol use disorder. Our study, using a well-established rat model of alcohol dependence, ex vivo electrophysiology and ISH, provides mechanistic insights into how both chronic alcohol exposure and protracted withdrawal dysregulate 5-HT signaling in the CeA. Thus, our study further expands our understanding of CeA cellular mechanisms involved in the pathophysiology of alcohol dependence and withdrawal.

Khom S, Steinkellner T, Hnasko TS, and Roberto M. “Alcohol dependence potentiates substance P/neurokinin-1 receptor signaling in the rat central nucleus of amygdala.” Science Advances, 6, 12, Pp. eaaz1050. Publisher's Version Abstract
Behavioral and clinical studies suggest a critical role of substance P (SP)/neurokinin-1 receptor (NK-1R) signaling in alcohol dependence. Here, we examined regulation of GABA transmission in the medial subdivision of the central amygdala (CeM) by the SP/NK-1R system, and its neuroadaptation following chronic alcohol exposure. In naïve rats, SP increased action potential–dependent GABA release, and the selective NK-1R antagonist L822429 decreased it, demonstrating SP regulation of CeM activity under basal conditions. SP induced a larger GABA release in alcohol-dependent rats accompanied by decreased NK-1R expression compared to naïve controls, suggesting NK-1R hypersensitivity which persisted during protracted alcohol withdrawal. The NK-1R antagonist blocked acute alcohol-induced GABA release in alcohol-dependent and withdrawn but not in naïve rats, indicating that dependence engages the SP/NK-1R system to mediate acute effects of alcohol. Collectively, we report long-lasting CeA NK-1R hypersensitivity corroborating that NK-1Rs are promising targets for the treatment of alcohol use disorder.
Frank K, Abeynaike S, Nikzad R, Patel RR, Roberts AJ, Roberto M, and Paust S. “Alcohol dependence promotes systemic IFN-γ and IL-17 responses in mice.” PLoS One , 15, 12, Pp. p.e0239246. Publisher's Version Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences. AUD is associated with a variety of physiological changes and is a substantial risk factor for numerous diseases. We aimed to characterize systemic alterations in immune responses using a well-established mouse model of chronic intermittent alcohol exposure to induce alcohol dependence. We exposed mice to chronic intermittent ethanol vapor for 4 weeks and analyzed the expression of cytokines IFN-γ, IL-4, IL-10, IL-12 and IL-17 by different immune cells in the blood, spleen and liver of alcohol dependent and non-dependent control mice through multiparametric flow cytometry. We found increases in IFN-γ and IL-17 expression in a cell type- and organ-specific manner. Often, B cells and neutrophils were primary contributors to increased IFN-γ and IL-17 levels while other cell types played a secondary role. We conclude that chronic alcohol exposure promotes systemic pro-inflammatory IFN-γ and IL-17 responses in mice. These responses are likely important in the development of alcohol-related diseases, but further characterization is necessary to understand the initiation and effects of systemic inflammatory responses to chronic alcohol exposure.
Recent studies show that alcohol exposure can induce glial production of neuroimmune factors in the CNS. Of these, IL-6 has gained attention because it is involved in a number of important physiological and pathophysiological processes that could be affected by alcohol-induced CNS production of IL-6, particularly under conditions of excessive alcohol use. For example, IL-6 has been shown to play a role in hippocampal behaviors and synaptic plasticity (long-term potentiation; LTP) associated with memory and learning. Surprisingly, in our in vitro studies of LTP at the Schaffer collateral to CA1 pyramidal neuron synapse in hippocampus from transgenic mice that express elevated levels of astrocyte produced IL-6 (TG), LTP was not altered by the increased levels of IL-6. However, exposure to acute alcohol revealed neuroadaptive changes that served to protect LTP against the alcohol-induced reduction of LTP observed in hippocampus from non-transgenic control mice (WT). Here we examined the induction phase of LTP to assess if presynaptic neuroadaptive changes occurred in the hippocampus of TG mice that contributed to the resistance of LTP to alcohol. Results are consistent with a role for IL-6-induced neuroadaptive effects on presynaptic mechanisms involved in transmitter release in the resistance of LTP to alcohol in hippocampus from the TG mice. These actions are important with respect to a role for IL-6 in physiological and pathophysiological processes in the CNS and in CNS actions of alcohol, especially when excessive alcohol used is comorbid with conditions associated with elevated levels of IL-6 in the CNS.

Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.

Keywords: ethanol, AMP/SUL, GLT-1, NMDA, neuroinflammation

Pages