Publications

2020
Bordia T and Zahr NM. “The inferior colliculus in alcoholism and beyond.” Front. Syst. Neurosci, 14, Pp. 606345-606345. Publisher's Version Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys—including our neuroimaging studies in rats—has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Zamudio PA, Smothers TC, Homanics GE, and Woodward JJ. “Knock‐in Mice Expressing an Ethanol‐Resistant GluN2A NMDA Receptor Subunit Show Altered Responses to Ethanol.” Alcoholism: Clinical and Experimental Research, 44, 2, Pp. 479-491. Publisher's Version Abstract

Background

N‐methyl‐D‐aspartate receptors (NMDARs) are glutamate‐activated, heterotetrameric ligand‐gated ion channels critically important in virtually all aspects of glutamatergic signaling. Ethanol (EtOH) inhibition of NMDARs is thought to mediate specific actions of EtOH during acute and chronic exposure. Studies from our laboratory, and others, identified EtOH‐sensitive sites within specific transmembrane (TM) domains involved in channel gating as well as those in subdomains of extracellular and intracellular regions of GluN1 and GluN2 subunits that affect channel function. In this study, we characterize for the first time the physiological and behavioral effects of EtOH on knock‐in mice expressing a GluN2A subunit that shows reduced sensitivity to EtOH.

Methods

A battery of tests evaluating locomotion, anxiety, sedation, motor coordination, and voluntary alcohol intake were performed in wild‐type mice and those expressing the GluN2A A825W knock‐in mutation. Whole‐cell patch‐clamp electrophysiological recordings were used to confirm reduced EtOH sensitivity of NMDAR‐mediated currents in 2 separate brain regions (mPFC and the cerebellum) where the GluN2A subunit is known to contribute to NMDAR‐mediated responses.

Results

Male and female mice homozygous for the GluN2A(A825W) knock‐in mutation showed reduced EtOH inhibition of NMDAR‐mediated synaptic currents in mPFC and cerebellar neurons as compared to their wild‐type counterparts. GluN2A(A825W) male but not female mice were less sensitive to the sedative and motor‐incoordinating effects of EtOH and showed a rightward shift in locomotor‐stimulating effects of EtOH. There was no effect of the mutation on EtOH‐induced anxiolysis or voluntary EtOH consumption in either male or female mice.

Conclusions

These findings show that expression of EtOH‐resistant GluN2A NMDARs results in selective and sex‐specific changes in the behavioral sensitivity to EtOH.

Warden AS, Wolfe SA, Khom S, Varodayan FP, Patel RR, Steinman MQ, Bajo M, Montgomery SE, Vlkolinsky R, Nadav T, Polis I, Roberts AJ, Mayfield RD, Harris RA, and Roberto M. “Microglia Control Escalation of Drinking in Alcohol-Dependent Mice: Genomic and Synaptic Drivers..” Biological Psychiatry. Publisher's Version Abstract

Background

Microglia, the primary immune cells of the brain, are implicated in alcohol use disorder. However, it is not known if microglial activation contributes to the transition from alcohol use to alcohol use disorder or is a consequence of alcohol intake.

Methods

We investigated the role of microglia in a mouse model of alcohol dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex and CeA from the same animals used for behavioral studies.

Results

PLX5622 prevented escalations in voluntary alcohol intake and decreased anxiety-like behavior associated with alcohol dependence. PLX5622 also reversed expression changes in inflammatory-related genes and glutamatergic and GABAergic (gamma-aminobutyric acidergic) genes in the medial prefrontal cortex and CeA. At the cellular level in these animals, microglia depletion reduced inhibitory GABA A and excitatory glutamate receptor-mediated synaptic transmission in the CeA, supporting the hypothesis that microglia regulate dependence-induced changes in neuronal function.

Conclusions

Our multifaceted approach is the first to link microglia to the molecular, cellular, and behavioral changes associated with the development of alcohol dependence, suggesting that microglia may also be critical for the development and progression of alcohol use disorder.

LJ Boulos, S Ben Hamida, J Bailly, M Maitra, AT Ehrlich, C Gavériaux-Ruff, E Darcq, and BL Kieffer. “Mu opioid receptors in the medial habenula contribute to naloxone aversion..” Neuropsychopharmacology, 45, 2, Pp. 247–255. Publisher's Version Abstract
The medial habenula (MHb) is considered a brain center regulating aversive states. The mu opioid receptor (MOR) has been traditionally studied at the level of nociceptive and mesolimbic circuits, for key roles in pain relief and reward processing. MOR is also densely expressed in MHb, however, MOR function at this brain site is virtually unknown. Here we tested the hypothesis that MOR in the MHb (MHb-MOR) also regulates aversion processing. We used chnrb4-Cre driver mice to delete the Oprm1 gene in chnrb4-neurons, predominantly expressed in the MHb. Conditional mutant (B4MOR) mice showed habenula-specific reduction of MOR expression, restricted to chnrb4-neurons (50% MHb-MORs). We tested B4MOR mice in behavioral assays to evaluate effects of MOR activation by morphine, and MOR blockade by naloxone. Locomotor, analgesic, rewarding, and motivational effects of morphine were preserved in conditional mutants. In contrast, conditioned place aversion (CPA) elicited by naloxone was reduced in both naïve (high dose) and morphine-dependent (low dose) B4MOR mice. Further, physical signs of withdrawal precipitated by either MOR (naloxone) or nicotinic receptor (mecamylamine) blockade were attenuated. These data suggest that MORs expressed in MHb B4-neurons contribute to aversive effects of naloxone, including negative effect and aversive effects of opioid withdrawal. MORs are inhibitory receptors, therefore we propose that endogenous MOR signaling normally inhibits chnrb4-neurons of the MHb and moderates their known aversive activity, which is unmasked upon receptor blockade. Thus, in addition to facilitating reward at several brain sites, tonic MOR activity may also limit aversion within the MHb circuitry.
Boulos LJ, Ben Hamida S, Bailly J, Maitra M, Ehrlich AT, Gavériaux-Ruff C, Darcq E, and Kieffer BL.Mu opioid receptors in the medial habenula contribute to naloxone aversion..” Neuropsychopharmacology, 45, Pp. 247-255. Publisher's Version Abstract
The medial habenula (MHb) is considered a brain center regulating aversive states. The mu opioid receptor (MOR) has been traditionally studied at the level of nociceptive and mesolimbic circuits, for key roles in pain relief and reward processing. MOR is also densely expressed in MHb, however, MOR function at this brain site is virtually unknown. Here we tested the hypothesis that MOR in the MHb (MHb-MOR) also regulates aversion processing. We used chnrb4-Cre driver mice to delete the Oprm1 gene in chnrb4-neurons, predominantly expressed in the MHb. Conditional mutant (B4MOR) mice showed habenula-specific reduction of MOR expression, restricted to chnrb4-neurons (50% MHb-MORs). We tested B4MOR mice in behavioral assays to evaluate effects of MOR activation by morphine, and MOR blockade by naloxone. Locomotor, analgesic, rewarding, and motivational effects of morphine were preserved in conditional mutants. In contrast, conditioned place aversion (CPA) elicited by naloxone was reduced in both naïve (high dose) and morphine-dependent (low dose) B4MOR mice. Further, physical signs of withdrawal precipitated by either MOR (naloxone) or nicotinic receptor (mecamylamine) blockade were attenuated. These data suggest that MORs expressed in MHb B4-neurons contribute to aversive effects of naloxone, including negative effect and aversive effects of opioid withdrawal. MORs are inhibitory receptors, therefore we propose that endogenous MOR signaling normally inhibits chnrb4-neurons of the MHb and moderates their known aversive activity, which is unmasked upon receptor blockade. Thus, in addition to facilitating reward at several brain sites, tonic MOR activity may also limit aversion within the MHb circuitry.
A generally accepted framework derived predominately from animal models asserts that repeated cycles of chronic intermittent ethanol (EtOH; CIE) exposure cause progressive brain adaptations associated with anxiety and stress that promote voluntary drinking, alcohol dependence, and further brain changes that contribute to the pathogenesis of alcoholism. The current study used CIE exposure via vapor chambers to test the hypothesis that repeated episodes of withdrawals from chronic EtOH would be associated with accrual of brain damage as quantified using in vivo magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and MR spectroscopy (MRS). The initial study group included 16 male (~325g) and 16 female (~215g) wild-type Wistar rats exposed to 3 cycles of 1-month in vapor chambers + 1 week of abstinence. Half of each group (n = 8) was given vaporized EtOH to blood alcohol levels approaching 250 mg/dL. Blood and behavior markers were also quantified. There was no evidence for dependence (i.e., increased voluntary EtOH consumption), increased anxiety, or an accumulation of pathology. Neuroimaging brain responses to exposure included increased cerebrospinal fluid (CSF) and decreased gray matter volumes, increased Choline/Creatine, and reduced fimbria-fornix fractional anisotropy (FA) with recovery seen after one or more cycles and effects in female more prominent than in male rats. These results show transient brain integrity changes in response to CIE sufficient to induce acute withdrawal but without evidence for cumulative or escalating damage. Together, the current study suggests that nutrition, age, and sex should be considered when modeling human alcoholism.
FP Varodayan, MA Minnig, MS Steinman, CS Oleata, MW Riley, V Sabino, and M Roberto. “PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress..” Neuropharmacology, 168, Pp. 107752. Publisher's Version Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors.
Varodayan FP, Minnig MA, Steinman MQ, Oleata CS, Riley MW, Sabino V, and Roberto M. “PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress..” Neuropharmacology, 168, Pp. 107752. Publisher's Version Abstract

The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors. This article is part of the special issue on 'Neuropeptides'.

Keywords: Anxiety; GABA; PAC1; PACAP-38; Pituitary adenylate cyclase-activating polypeptide; Synaptic transmission; sIPSC.

One of the most pernicious characteristics of alcohol use disorder is the compulsion to drink despite negative consequences. The insular cortex controls decision making under conditions of risk or conflict. Cortical activity is tightly controlled by inhibitory interneurons that are often enclosed by specialized extracellular matrix structures known as perineuronal nets (PNNs), which regulate neuronal excitability and plasticity. The density of PNNs in the insula increases after repeated bouts of binge drinking, suggesting that they may play a role in the transition from social to compulsive, or aversion-resistant, drinking. Here, we investigated whether insular PNNs play a role in aversion-resistant alcohol drinking using a mouse model in which ethanol was adulterated with the bitter tastant quinine. Disrupting PNNs in the insula rendered mice more sensitive to quinine-adulterated ethanol but not ethanol alone. Activation of the insula, as measured by c-fos expression, occurred during aversion-resistant drinking and was further enhanced by elimination of PNNs. These results demonstrate that PNNs control the activation of the insula during aversion-resistant drinking and suggest that proper excitatory/inhibitory balance is important for decision making under conditions of conflict. Disrupting PNNs in the insula or optimizing insula activation may be a novel strategy to reduce aversion-resistant drinking.
Of the more than 100 studies that have examined relationships between excessive ethanol consumption and the brain transcriptome, few rodent studies have examined chronic consumption. Heterogeneous stock collaborative cross mice freely consumed ethanol vs. water for 3 months. Transcriptional differences were examined for the central nucleus of the amygdala, a brain region known to impact ethanol preference. Early preference was modestly predictive of final preference and there was significant escalation of preference in females only. Genes significantly correlated with female preference were enriched in annotations for the primary cilium and extracellular matrix. A single module in the gene co-expression network was enriched in genes with an astrocyte annotation. The key hub node was the master regulator, orthodenticle homeobox 2 (Otx2). These data support an important role for the extracellular matrix, primary cilium and astrocytes in ethanol preference and consumption differences among individual female mice of a genetically diverse population.
The receptor tyrosine kinases (RTKs) are a large family of proteins that transduce extracellular signals to the inside of the cell to ultimately affect important cellular functions such as cell proliferation, survival, apoptosis, differentiation, and migration. They are expressed in the nervous system and can regulate behavior through modulation of neuronal and glial function. As a result, RTKs are implicated in neurodegenerative and psychiatric disorders such as depression and addiction. Evidence has emerged that 5 RTKs (tropomyosin-related kinase B (TrkB), RET proto-oncogene (RET), anaplastic lymphoma kinase (ALK), fibroblast growth factor receptor (FGFR), and epidermal growth factor receptor (EGFR)) modulate alcohol drinking and other behaviors related to alcohol addiction. RTKs are considered highly "druggable" targets and small-molecule inhibitors of RTKs have been developed for the treatment of various conditions, particularly cancer. These kinases are therefore attractive targets for the development of new pharmacotherapies to treat alcohol use disorder (AUD). This review will examine the preclinical evidence describing TrkB, RET, ALK, FGFR, and EGFR modulation of alcohol drinking and other behaviors relevant to alcohol abuse.

Rationale and objectives: Binge-like alcohol consumption during adolescence associates with several deleterious consequences during adulthood including an increased risk for developing alcohol use disorder (AUD) and other addictions. Replicated preclinical data has indicated that adolescent exposure to binge-like levels of alcohol results in a reduction of choline acetyltransferase (ChAT) and an upregulation in the α7 nicotinic receptor (α7). From this information, we hypothesized that the α7 plays a critical role in mediating the effects of adolescent alcohol exposure.

Methods: Male and female P rats were injected with the α7 agonist AR-R17779 (AR) once during 6 time points between post-natal days (PND) 29-37. Separate groups were injected with the α7 negative allosteric modulator (NAM) dehydronorketamine (DHNK) 2 h before administration of 4 g/kg EtOH (14 total exposures) during PND 28-48. On PND 75, all rats were given access to water and ethanol (15 and 30%) for 6 consecutive weeks (acquisition). All rats were then deprived of EtOH for 2 weeks and then, alcohol was returned (relapse).

Results: Administration of AR during adolescence significantly increased acquisition of alcohol consumption during adulthood and prolonged relapse drinking in P rats. In contrast, administration of DHNK prior to binge-like EtOH exposure during adolescence prevented the increase in alcohol consumption observed during acquisition of alcohol consumption and the enhancement of relapse drinking observed during adulthood.

Discussion: The data indicate that α7 mediates the effects of alcohol during adolescence. The data also indicate that α7 NAMs are potential prophylactic agents to reduce the deleterious effects of adolescent alcohol abuse.

Keywords: Acquisition; Addiction; Adolescence; Alcohol; Alcohol-preferring (P) rats; Ethanol; Relapse.

Knight CP, Hauser SR, Waeiss RA, Molosh AI, Johnson PL, Truitt WA, McBride WJ, Bell RL, Shekhar A, and Rodd ZA. “The rewarding and anxiolytic properties of ethanol within the central nucleus of the amygdala: mediated by genetic background and nociceptin..” Journal of Pharmacology and Experimental Therapeutics, 374, Pp. 366-375. Publisher's Version Abstract

In humans, alcohol is consumed for its rewarding and anxiolytic effects. The Central Nucleus of the Amygdala (CeA) is considered a neuronal nexus that regulates fear, anxiety and drug self-administration. Manipulations of the CeA alter ethanol (EtOH) consumption under numerous EtOH self-administration models. The experiments determined if EtOH is reinforcing/anxiolytic within the CeA, if selective breeding for high alcohol consumption alters the rewarding properties of EtOH in the CeA, and if the reinforcing/anxiolytic effects of EtOH in the CeA are mediated by the neuropeptides corticotropin-releasing factor (CRF) and nociceptin. The reinforcing properties of EtOH were determined by having male Wistar and Taconic Alcohol-Preferring (tP) rats self-administer EtOH directly into the CeA. The expression of anxiety-like behaviors was assessed through multiple behavioral models (social interaction, acoustic startle, open field). Co-administration of EtOH and a CRF1 antagonist (NBI 35965) or nociceptin on self-administration into the CeA and anxiety-like behaviors was determined. EtOH was self-administered directly into the lateral CeA and tP rats self-administered a lower concentration of EtOH than Wistar rats. EtOH microinjected into the lateral CeA reduced the expression of anxiety-like behaviors, indicating an anxiolytic effect. The co-administration of NBI 35965 failed to alter the rewarding/anxiolytic properties of EtOH in the CeA. In contrast, co-administration of the nociceptin enhanced both EtOH reward and anxiolysis in the CeA. The data indicate that the lateral CeA is a key anatomical location that mediates the rewarding and anxiolytic effects of EtOH and activation of nociceptin receptors augment the effects of EtOH in this region.

SIGNIFICANCE STATEMENT Alcohol is consumed for the stimulatory, rewarding, and anxiolytic properties of the drug of abuse. The current data are the first to establish that alcohol is reinforcing and anxiolytic within the lateral central nucleus of the amygdala (CeA), and that the Nociceptin system regulates these effects of alcohol within the CeA.

Grantham EK, Warden AS, McCarthy GS, Da Costa A, Mason S, Blednov Y, Mayfield RD, and Harris RA. “Role of toll-like receptor 7 (TLR7) in voluntary alcohol consumption..” Brain Behavior and Immunity, 89, Pp. 423-432. Publisher's Version Abstract
Overactivation of neuroimmune signaling has been linked to excessive ethanol consumption. Toll-like receptors (TLRs) are a major component of innate immune signaling and initiate anti- and pro-inflammatory responses via intracellular signal transduction cascades. TLR7 is upregulated in post-mortem brain tissue from humans with alcohol use disorder (AUD) and animals with prior exposure to ethanol. Despite this evidence, the role of TLR7 in the regulation of voluntary ethanol consumption has not been studied. We test the hypothesis that TLR7 activation regulates voluntary ethanol drinking behavior by administering a TLR7 agonist (R848) during an intermittent access drinking procedure in mice. Acute activation of TLR7 reduced ethanol intake, preference, and total fluid intake due, at least in part, to an acute sickness response. However, chronic pre-treatment with R848 resulted in tolerance to the adverse effects of the drug and a subsequent increase in ethanol consumption. To determine the molecular machinery that mediates these behavioral changes, we evaluated gene expression after acute and chronic TLR7 activation. We found that acute TLR7 activation produces brain region specific changes in expression of immune pathway genes, whereas chronic TLR7 activation causes downregulation of TLRs and blunted cytokine induction, suggesting molecular tolerance. Our results demonstrate a novel role for TLR7 signaling in regulating voluntary ethanol consumption. Taken together, our findings suggest TLR7 may be a viable target for development of therapies to treat AUD.
Grantham EK, Warden AS, McCarthy GS, Da Costa A, Mason S, Blednov Y, Mayfield RD, and Harris RA.Role of toll-like receptor 7 (TLR7) in voluntary alcohol consumption.” Brain, Behavior, and Immunity, 89, Pp. 423-432. Publisher's Version Abstract
Overactivation of neuroimmune signaling has been linked to excessive ethanol consumption. Toll-like receptors (TLRs) are a major component of innate immune signaling and initiate anti- and pro-inflammatory responses via intracellular signal transduction cascades. TLR7 is upregulated in post-mortem brain tissue from humans with alcohol use disorder (AUD) and animals with prior exposure to ethanol. Despite this evidence, the role of TLR7 in the regulation of voluntary ethanol consumption has not been studied. We test the hypothesis that TLR7 activation regulates voluntary ethanol drinking behavior by administering a TLR7 agonist (R848) during an intermittent access drinking procedure in mice. Acute activation of TLR7 reduced ethanol intake, preference, and total fluid intake due, at least in part, to an acute sickness response. However, chronic pre-treatment with R848 resulted in tolerance to the adverse effects of the drug and a subsequent increase in ethanol consumption. To determine the molecular machinery that mediates these behavioral changes, we evaluated gene expression after acute and chronic TLR7 activation. We found that acute TLR7 activation produces brain region specific changes in expression of immune pathway genes, whereas chronic TLR7 activation causes downregulation of TLRs and blunted cytokine induction, suggesting molecular tolerance. Our results demonstrate a novel role for TLR7 signaling in regulating voluntary ethanol consumption. Taken together, our findings suggest TLR7 may be a viable target for development of therapies to treat AUD.
Hauser SR, Katner SN, Waeiss RA, Truitt WA, Bell RL, McBride WJ, and Rodd ZA. “Selective breeding for high alcohol preference is associated with increased sensitivity to cannabinoid reward within the nucleus accumbens shell..” Pharmacology Biochemistry and Behavior, 197, Pp. 173002. Publisher's Version Abstract

Rationale

The rate of cannabinoid intake by those with alcohol use disorder (AUD) exceeds that of the general public. The high prevalence of co-abuse of alcohol and cannabis has been postulated to be predicated upon both a common predisposing genetic factor and the interaction of the drugs within the organism. The current experiments examined the effects of cannabinoids in an animal model of AUD.

Objectives

The present study assessed the reinforcing properties of a cannabinoid receptor 1 (CB1) agonist self-administered directly into the nucleus accumbens shell (AcbSh) in female Wistar and alcohol-preferring (P) rats.

Methods

Following guide cannulae surgery aimed at AcbSh, subjects were placed in an operant box equipped with an ‘active lever’ (fixed ratio 1; FR1) that caused the delivery of the infusate and an ‘inactive lever’ that did not. Subjects were arbitrarily assigned to one of seven groups that self-administered either artificial cerebrospinal fluid (aCSF), or 3.125, 6.25, 12.5, or 25 pmol/100 nl of O-1057, a water-soluble CB1 agonist, dissolved in aCSF. The first four sessions of acquisition are followed by aCSF only infusates in sessions 5 and 6 during extinction, and finally the acquisition dose of infusate during session 7 as reinstatement.

Results

The CB1 agonist was self-administered directly into the AcbSh. P rats self-administered the CB1 agonist at lower concentrations and at higher rates compared to Wistar rats.

Conclusions

Overall, the data indicate selective breeding for high alcohol preference has produced rats divergent in response to cannabinoids within the brain reward pathway. The data support the hypothesis that there can be common genetic factors influencing drug addiction.

Brenner E, Tiwari GR, Kapoor M, Liu Y, Brock A, and Mayfield RD. “Single cell transcriptome profiling of the human alcohol-dependent brain.” Human Molecular Genetics, 29, 7, Pp. 1144–1153. Publisher's Version Abstract
Alcoholism remains a prevalent health concern throughout the world. Previous studies have identified transcriptomic patterns in the brain associated with alcohol dependence in both humans and animal models. But none of these studies have systematically investigated expression within the unique cell types present in the brain. We utilized single nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of over 16 000 nuclei isolated from the prefrontal cortex of alcoholic and control individuals. Each nucleus was assigned to one of seven major cell types by unsupervised clustering. Cell type enrichment patterns varied greatly among neuroinflammatory-related genes, which are known to play roles in alcohol dependence and neurodegeneration. Differential expression analysis identified cell type-specific genes with altered expression in alcoholics. The largest number of differentially expressed genes (DEGs), including both protein-coding and non-coding, were detected in astrocytes, oligodendrocytes and microglia. To our knowledge, this is the first single cell transcriptome analysis of alcohol-associated gene expression in any species and the first such analysis in humans for any addictive substance. These findings greatly advance the understanding of transcriptomic changes in the brain of alcohol-dependent individuals.
Mayfield RD, Zhu L, Smith TA, Tiwari GR, and Tucker HO.The SMYD1 and skNAC transcription factors contribute to neurodegenerative diseases. .” Brain, behavior, & immunity - health, 9. Abstract

SMYD1 and the skNAC isoform of the NAC transcription factor have both previously been characterized as transcription factors in hematopoiesis and cardiac/skeletal muscle. Here we report that comparative analysis of genes deregulated by SMYD1 or skNAC knockdown in differentiating C2C12 myoblasts identified transcripts characteristic of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's Diseases (AD, PD, and HD). This led us to determine whether SMYD1 and skNAC function together or independently within the brain. Based on meta-analyses and direct experimentation, we observed SMYD1 and skNAC expression within cortical striata of human brains, mouse brains and transgenic mouse models of these diseases. We observed some of these features in mouse myoblasts induced to differentiate into neurons. Finally, several defining features of Alzheimer's pathology, including the brain-specific, axon-enriched microtubule-associated protein, Tau, are deregulated upon SMYD1 loss.

Keywords: Neuroinflammatory disease; SMYD1 and skNAC; Transcriptional regulation.

Hauser SR, Smith RJ, Toalston JE, Rodd ZA, McBride WJ, and Bell RL. “Spontaneous early withdrawal behaviors after chronic 24-hour free-choice access to ethanol..” Alcohol and Alcoholism, 55, Pp. 480-488. Publisher's Version Abstract

Aims

Abstinence after chronic alcohol consumption leads to withdrawal symptoms, which are exacerbated after repeated cycles of relapse. This study examined withdrawal-like behaviors after chronic ethanol drinking, with or without repeated cycles of deprivation.

Methods

Male alcohol-preferring (P) rats had access to continuous ethanol (CE), chronic ethanol with repeated deprivation (RD), or remained ethanol naïve (EN). The RD group experienced seven cycles of 2 weeks of deprivation and 2 weeks of re-exposure to ethanol after an initial 6 weeks of ethanol access. Withdrawal was measured after an initial 24 h of ethanol re-exposure in the RD group, which coincided with the same day of ethanol access in the CE group. Withdrawal-like behavior was measured by (a) ethanol intake during the initial 24 h of re-exposure, (b) locomotor activity (LMA) in a novel field 9–13 h after removal of ethanol at the beginning of the fifth re-exposure cycle and (c) acoustic startle responding (ASR) 8–15 h after removal of ethanol at the beginning of the sixth re-exposure cycle.

Results

The RD rats displayed a 1-h alcohol deprivation effect (ADE) (temporary ethanol increase), relative to CE rats, during the first to fourth and seventh re-exposure cycles. RD and CE rats displayed significant increases in LMA than EN rats. Regarding ASR, RD rats displayed significantly greater ASR relative to EN rats.

Conclusion

This study confirms that P rats meet the animal model criterion for ethanol-associated dependence, without a reliance on either behavioral (limited fluid access) or pharmacological (seizure threshold manipulation) challenges.

Hauser SR, Smith RJ, Toalston JE, Rodd ZA, McBride WJ, and Bell RL. “Spontaneous early withdrawal behaviors after chronic 24-hour free-choice access to ethanol.” Alcohol and Alcoholism, 55, 5, Pp. 480-488. Publisher's Version Abstract

Aims: Abstinence after chronic alcohol consumption leads to withdrawal symptoms, which are exacerbated after repeated cycles of relapse. This study examined withdrawal-like behaviors after chronic ethanol drinking, with or without repeated cycles of deprivation.

Methods: Male alcohol-preferring (P) rats had access to continuous ethanol (CE), chronic ethanol with repeated deprivation (RD), or remained ethanol naïve (EN). The RD group experienced seven cycles of 2 weeks of deprivation and 2 weeks of re-exposure to ethanol after an initial 6 weeks of ethanol access. Withdrawal was measured after an initial 24 h of ethanol re-exposure in the RD group, which coincided with the same day of ethanol access in the CE group. Withdrawal-like behavior was measured by (a) ethanol intake during the initial 24 h of re-exposure, (b) locomotor activity (LMA) in a novel field 9-13 h after removal of ethanol at the beginning of the fifth re-exposure cycle and (c) acoustic startle responding (ASR) 8-15 h after removal of ethanol at the beginning of the sixth re-exposure cycle.

Results: The RD rats displayed a 1-h alcohol deprivation effect (ADE) (temporary ethanol increase), relative to CE rats, during the first to fourth and seventh re-exposure cycles. RD and CE rats displayed significant increases in LMA than EN rats. Regarding ASR, RD rats displayed significantly greater ASR relative to EN rats.

Conclusion: This study confirms that P rats meet the animal model criterion for ethanol-associated dependence, without a reliance on either behavioral (limited fluid access) or pharmacological (seizure threshold manipulation) challenges.

Pages