Publications

2006
L. Judson Chandler, Ezekiel Carpenter-Hyland, Adam W. Hendricson, Regina E. Maldve, Richard A. Morrisett, Feng C. Zhou, Youssef Sari, Richard Bell, and Karen K. Szumlinski. “Structural and functional modifications in glutamateric synapses following prolonged ethanol exposure.” Alcoholism, Clinical and Experimental Research, 30, 2, Pp. 368–376. Abstract
This article summarizes the proceedings of a symposium presented at the 2005 annual meeting of the Research Society on Alcoholism in Santa Barbara, California, USA. The organizer and chair was L. Judson Chandler. The presentations were (1) Chronic Ethanol Exposure, N-Methyl-D-Aspartate (NMDA) Receptor Dynamics, and Withdrawal Hyperexcitability, by Adam Hendricson, Regina Maldve, and Richard Morrisett; (2) Ethanol-Induced Synaptic Targeting of NMDA Receptors Is Associated With Enhanced Postsynaptic Density-95 Clustering and Spine Size, by Judson Chandler and Ezekiel Carpenter-Hyland; (3) Presynaptic and Postsynaptic Alterations in the Nucleus Accumbens Following Chronic Alcohol Exposure, by Feng Zhou, Youssef Sari, and Richard Bell; and (4) An Active Role for Accumbens Homer2 Expression in Alcohol-Induced Neural Plasticity, by Karen Szumlinski.
Megan K. Mulligan, Igor Ponomarev, Robert J. Hitzemann, John K. Belknap, Boris Tabakoff, R. Adron Harris, John C. Crabbe, Yuri A. Blednov, Nicholas J. Grahame, Tamara J. Phillips, Deborah A. Finn, Paula L. Hoffman, Vishwanath R. Iyer, George F. Koob, and Susan E. Bergeson. “Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis.” Proceedings of the National Academy of Sciences of the United States of America, 103, 16, Pp. 6368–6373. Publisher's Version Abstract
Much evidence from studies in humans and animals supports the hypothesis that alcohol addiction is a complex disease with both hereditary and environmental influences. Molecular determinants of excessive alcohol consumption are difficult to study in humans. However, several rodent models show a high or low degree of alcohol preference, which provides a unique opportunity to approach the molecular complexities underlying the genetic predisposition to drink alcohol. Microarray analyses of brain gene expression in three selected lines, and six isogenic strains of mice known to differ markedly in voluntary alcohol consumption provided \textgreater4.5 million data points for a meta-analysis. A total of 107 arrays were obtained and arranged into six experimental data sets, allowing the identification of 3,800 unique genes significantly and consistently changed between all models of high or low amounts of alcohol consumption. Several functional groups, including mitogen-activated protein kinase signaling and transcription regulation pathways, were found to be significantly overrepresented and may play an important role in establishing a high level of voluntary alcohol drinking in these mouse models. Data from the general meta-analysis was further filtered by a congenic strain microarray set, from which cis-regulated candidate genes for an alcohol preference quantitative trait locus on chromosome 9 were identified: Arhgef12, Carm1, Cryab, Cox5a, Dlat, Fxyd6, Limd1, Nicn1, Nmnat3, Pknox2, Rbp1, Sc5d, Scn4b, Tcf12, Vps11, and Zfp291 and four ESTs. The present study demonstrates the use of (i) a microarray meta-analysis to analyze a behavioral phenotype (in this case, alcohol preference) and (ii) a congenic strain for identification of cis regulation.
Igor Ponomarev, Rajani Maiya, Mark T. Harnett, Gwen L. Schafer, Andrey E. Ryabinin, Yuri A. Blednov, Hitoshi Morikawa, Stephen L. Boehm, Gregg E. Homanics, Ari E. Berman, Ari Berman, Kerrie H. Lodowski, Susan E. Bergeson, and R. Adron Harris. “Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 21, Pp. 5673–5683. Abstract
GABAA receptors mediate the majority of inhibitory neurotransmission in the CNS. Genetic deletion of the alpha1 subunit of GABAA receptors results in a loss of alpha1-mediated fast inhibitory currents and a marked reduction in density of GABAA receptors. A grossly normal phenotype of alpha1-deficient mice suggests the presence of neuronal adaptation to these drastic changes at the GABA synapse. We used cDNA microarrays to identify transcriptional fingerprints of cellular plasticity in response to altered GABAergic inhibition in the cerebral cortex and cerebellum of alpha1 mutants. In silico analysis of 982 mutation-regulated transcripts highlighted genes and functional groups involved in regulation of neuronal excitability and synaptic transmission, suggesting an adaptive response of the brain to an altered inhibitory tone. Public gene expression databases permitted identification of subsets of transcripts enriched in excitatory and inhibitory neurons as well as some glial cells, providing evidence for cellular plasticity in individual cell types. Additional analysis linked some transcriptional changes to cellular phenotypes observed in the knock-out mice and suggested several genes, such as the early growth response 1 (Egr1), small GTP binding protein Rac1 (Rac1), neurogranin (Nrgn), sodium channel beta4 subunit (Scn4b), and potassium voltage-gated Kv4.2 channel (Kcnd2) as cell type-specific markers of neuronal plasticity. Furthermore, transcriptional activation of genes enriched in Bergman glia suggests an active role of these astrocytes in synaptic plasticity. Overall, our results suggest that the loss of alpha1-mediated fast inhibition produces diverse transcriptional responses that act to regulate neuronal excitability of individual neurons and stabilize neuronal networks, which may account for the lack of severe abnormalities in alpha1 null mutants.
A. Z. Weitemier and A. E. Ryabinin. “Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice.” Neuroscience, 137, 4, Pp. 1439–1445. Abstract
The midbrain-localized Edinger-Westphal nucleus is a major site of production of urocortin 1. Urocortin 1 is a neuropeptide related to corticotropin-releasing factor that has high affinity for corticotropin-releasing factor type-1 and corticotropin-releasing factor type-2 receptors. In several mouse models, the amount of urocortin 1 neurons within the Edinger-Westphal nucleus is positively associated with ethanol preference. Central administration of urocortin 1 exerts potent anorectic actions, and implicates endogenous urocortin 1 in the regulation of food intake. It is possible that brain areas such as the dorsal raphe, which receives urocortin 1 from the Edinger-Westphal nucleus and highly expresses corticotropin-releasing factor type-2 receptors, mediate the actions of urocortin 1 on feeding and ethanol preference. In this study the amount of food, water and ethanol consumed over the dark cycle by ethanol-preferring C57BL/6J mice was measured after injection of artificial cerebrospinal fluid vehicle, urocortin 1, corticotropin-releasing factor and the corticotropin-releasing factor type-2 receptor-selective antagonist antisauvagine-30 onto the dorsal raphe. Compared with vehicle, corticotropin-releasing factor and antisauvagine-30, urocortin 1 induced a significant reduction in the amount of food consumed overnight. Also, compared with antisauvagine-30 treatment, urocortin 1 significantly reduced the amount of weight gained during this time. Urocortin 1 also significantly reduced the total amount of fluid consumed, but did not alter ethanol preference, which was high during all treatments. These results suggest that the dorsal raphe is a neuroanatomical substrate of urocortin 1-induced reductions in feeding, possibly through modulation of serotonergic activity from this nucleus. In addition, it is suggested that endogenous urocortin 1 in this area, such as from the Edinger-Westphal nucleus, does not regulate ethanol preference in C57BL/6J mice.
Andrey E. Ryabinin and Adam Z. Weitemier. “The urocortin 1 neurocircuit: ethanol-sensitivity and potential involvement in alcohol consumption.” Brain Research Reviews, 52, 2, Pp. 368–380. Abstract
One of the hallmarks of alcoholism is continued excessive consumption of alcohol-containing beverages despite the negative consequences of such behavior. The neurocircuitry regulating alcohol consumption is not well understood. Recent studies have shown that the neuropeptide urocortin 1 (Ucn1), a member of the corticotropin-releasing factor (CRF) family of peptides, could be an important player in the regulation of alcohol consumption. This evidence is accumulated along three directions of research: (1) Ucn 1-containing neurons are extremely sensitive to alcohol; (2) the Ucn1 neurocircuit may contribute to the genetic predisposition to high alcohol intake in mice and rats; (3) manipulation of the Ucn1 system alters alcohol consumption and sensitivity. This paper reviews the current knowledge of the Ucn1 neurocircuit and the evidence for its involvement in alcohol-related behaviors, and proposes a mechanism for its involvement in the regulation of alcohol consumption.
2005
William J. McBride, Robnet T. Kerns, Zachary A. Rodd, Wendy N. Strother, Howard J. Edenberg, Joel G. Hashimoto, Kristine M. Wiren, and Michael F. Miles. “Alcohol effects on central nervous system gene expression in genetic animal models.” Alcoholism, Clinical and Experimental Research, 29, 2, Pp. 167–175. Abstract
This article summarizes the proceedings of a symposium presented at the 2004 annual meeting of the Research Society on Alcoholism in Vancouver, British Columbia, Canada. The organizers and chairs were William J. McBride and Michael F. Miles. The presentations were (1) Molecular Triangulation on Gene Expression Patterns in Behavioral Responses to Acute Ethanol, by Robnet T. Kerns; (2) Gene Expression in Limbic Regions After Ethanol Self-Infusion Into the Posterior Ventral Tegmental Area, by Zachary A. Rodd; (3) Microarray Analysis of CNS Limbic Regions of Inbred Alcohol-Preferring and -Nonpreferring rats and Effects of Alcohol Drinking, by Wendy N. Strother and Howard J. Edenberg; and (4) Microarray Analysis of Mouse Lines Selected for Chronic Ethanol Withdrawal Severity: The Convergence of Basal, Ethanol Regulated, and Proximity to Ethanol Quantitative Trait Loci to Identify Candidate Genes, by Joel G. Hashimoto and Kristine M. Wiren.
Hilary J. Little, David N. Stephens, Tamzon L. Ripley, Gilyana Borlikova, Theodora Duka, Manja Schubert, Doris Albrecht, Howard C. Becker, Marcello F. Lopez, Friedbert Weiss, Colin Drummond, Michelle Peoples, and Christopher Cunningham. “Alcohol withdrawal and conditioning.” Alcoholism, Clinical and Experimental Research, 29, 3, Pp. 453–464. Abstract
This review contains the proceedings from a symposium held at the RSA conference in 2003 on "Alcohol Withdrawal and Conditioning." The presentations covered a range of interactions between conditioning and alcohol withdrawal, in both animal behavior and the clinic. Dr. D.N. Stephens first described his studies exploring the consequences of alcohol dependence and repeated experience of withdrawal on the conditioning process. His data suggested that repeated withdrawal from moderate alcohol intake impairs amygdala-dependent mechanisms for learning about aversive events. Dr. H. Becker then detailed studies examining the consequences of repeated ethanol withdrawal experience on subsequent ethanol drinking behavior in mice, and conditions in which motivational properties of odor cues that are associated with different phases of ethanol withdrawal influence such relapse behavior. The data suggested that cues associated with acute withdrawal or "recovery" from withdrawal may serve as modulating factors in influencing subsequent ethanol drinking behavior, and that the timing of the cues determines their consequences. Dr. F. Weiss described recent findings from animal models of relapse that suggested the efficacy of alcohol-associated contextual stimuli in eliciting alcohol-seeking behavior resembles the endurance of conditioned cue reactivity and cue-induced cocaine craving in humans. The interactive effects of stress and ethanol-related environmental stimuli were found to be dependent on concurrent activation of endogenous opioid and corticotropin-releasing factor systems. Conditioning factors (i.e., exposure to drug-associated stimuli) and stress could therefore interact to augment vulnerability to relapse. Dr. C. Drummond then addressed the clinical aspects of conditioning during alcohol withdrawal and described studies showing exposure of alcoholics to alcohol-related cues elicited greater subjective and physiological responses than exposure to neutral cues. The former responsivity showed a relationship with a measure of motivation to drink alcohol. Finally, Dr. C. Cunningham provided a summary of the concepts involved in the presentations and discussed the conditioning processes that affect behavior during and after alcohol withdrawal.
Pamela Metten and John C. Crabbe. “Alcohol withdrawal severity in inbred mouse (Mus musculus) strains.” Behavioral Neuroscience, 119, 4, Pp. 911–925. Abstract
Male mice (Mus musculus) from 15 standard inbred strains were exposed to a nearly constant concentration of ethanol (EtOH) vapor for 72 hr, averaging 1.59 +/- 0.03 mg EtOH/mL blood at withdrawal. EtOH- and air-exposed groups were tested hourly for handling-induced convulsions for 10 hr and at Hours 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of control values), and by design these differences were independent of strain differences in EtOH metabolism. Correlation of strain mean withdrawal severity with other responses to EtOH supported previously reported genetic relationships of high EtOH withdrawal with low drinking, high conditioned taste aversion, low tolerance to EtOH-induced hypothermia, and high stimulated activity after low-dose EtOH. Also supported were the positive genetic correlations among EtOH, barbiturate, and benzodiazepine withdrawal. Sensitivity of naive mice to several chemical convulsant-induced seizures was also correlated with EtOH withdrawal.
Fulton T. Crews, Tracey Buckley, Peter R. Dodd, Gabriele Ende, Nina Foley, Clive Harper, Jun He, David Innes, El-Wui Loh, Adolph Pfefferbaum, Jian Zou, and Edith V. Sullivan. “Alcoholic neurobiology: changes in dependence and recovery.” Alcoholism, Clinical and Experimental Research, 29, 8, Pp. 1504–1513. Abstract
This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery form dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.
Amanda L. Sharpe, Natalia O. Tsivkovskaia, and Andrey E. Ryabinin. “Ataxia and c-Fos expression in mice drinking ethanol in a limited access session.” Alcoholism, Clinical and Experimental Research, 29, 8, Pp. 1419–1426. Abstract
BACKGROUND: Although previous murine studies have demonstrated ethanol self-administration resulting in blood ethanol concentrations (BECs) believed to be pharmacologically relevant, to our knowledge, no study reported to date has demonstrated intoxication via ataxia after self-administration. Thus, the goal of this study was to demonstrate ataxia and to examine changes in c-Fos expression in mice after self-administration of intoxicating doses of ethanol. METHODS: Male C57BL/6J mice were trained to drink a 10% ethanol solution during daily 30-min limited access sessions. Mice were exposed to increasing concentrations of ethanol until a 10% ethanol solution was reached. BEC and ataxia, measured as foot slips off of a balance beam, were examined after the limited access self-administration session. In a separate experiment, various brain structures from mice drinking water or ethanol were examined for changes in c-Fos expression two hr after the limited access session. RESULTS: Mice drank between 1.5 and 2 g/kg of 10% ethanol during the daily 30-min session. BECs for these mice 15 min after the limited access session ranged between 0.52 and 2.13 mg/ml. A significant increase in foot slips off a balance beam was seen immediately after ethanol consumption during the limited access session. Among mice drinking ethanol, an increase in c-Fos expression was seen in the Edinger-Westphal nucleus, and a decrease in c-Fos expression was seen in the cingulate cortex, ventral tegmental area, lateral and medial septum, CA1 region of the hippocampus, and basolateral amygdala. CONCLUSIONS: After this procedure in mice, BECs are achieved that are in a range considered pharmacologically relevant and intoxicating. Significant ataxia was observed after ethanol self-administration. Brain regions showing changes in c-Fos expression after voluntary intoxication were similar to those previously reported, suggesting that these brain regions are involved in regulating behavioral effects of alcohol intoxication.
Adam Z. Weitemier and Andrey E. Ryabinin. “Brain Region–Specific Regulation of Urocortin 1 Innervation and Corticotropin-Releasing Factor Receptor Type 2 Binding by Ethanol Exposure.” Alcoholism: Clinical and Experimental Research, 29, 9, Pp. 1610–1620. Publisher's Version Abstract
Background: Ethanol administration and consumption selectively activates the urocortin 1 (Ucn1)-expressing neurons of the Edinger-Westphal nucleus. We investigated whether repeated ethanol exposure affects Ucn1 and Ucn1-responsive corticotropin-releasing factor type-2 receptors (CRF2). Methods: Male C57BL/6J and DBA/2J mice were exposed to 2 g/kg ethanol via intraperitoneal injection once per day for 14, seven, or zero days. Ucn1 immunoreactivity was measured in the lateral septum, dorsal raphe, and Edinger-Westphal nucleus. In a separate experiment, C57BL/6J mice were exposed to ethanol for seven, one, or zero days, and CRF2 receptor binding was measured in the lateral septum and dorsal raphe by receptor autoradiography. Results: Ethanol exposure induced parallel changes in Ucn1 immunoreactive terminal fibers in the lateral septum and dorsal raphe of both strains. Seven ethanol exposures but not one ethanol exposure significantly increased CRF2 receptor binding in the dorsal raphe and slightly increased CRF2 receptor binding in the lateral septum. Conclusions: These results provide evidence that the Ucn1/CRF2 receptor system can be modified by ethanol exposure. They additionally suggest that this system may be involved in behavioral changes during alcoholism.
Zachary A. Rodd, Richard L. Bell, Victoria K. McQueen, Michelle R. Davids, Cathleen C. Hsu, James M. Murphy, Ting-Kai Li, Lawrence Lumeng, and William J. McBride. “Chronic ethanol drinking by alcohol-preferring rats increases the sensitivity of the posterior ventral tegmental area to the reinforcing effects of ethanol.” Alcoholism, Clinical and Experimental Research, 29, 3, Pp. 358–366. Abstract
BACKGROUND: The ventral tegmental area (VTA) is involved in regulating ethanol drinking, and the posterior VTA seems to be a neuroanatomical substrate that mediates the reinforcing effects of ethanol in ethanol-naive Wistar and ethanol-naive alcohol-preferring (P) rats. The objective of this study was to test the hypothesis that chronic ethanol drinking increases the sensitivity of the posterior VTA to the reinforcing effects of ethanol. METHODS: Two groups of female P rats (one given water as its sole source of fluid and the other given 24-hr free-choice access to 15% ethanol and water for at least 8 weeks) were stereotaxically implanted with guide cannulae aimed at the posterior VTA. One week after surgery, rats were placed in standard two-lever (active and inactive) operant chambers and connected to the microinfusion system. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol. The ethanol-naive and chronic ethanol-drinking groups were assigned to subgroups to receive artificial CSF or 25, 50, 75, or 125 mg/dl of ethanol (n = 6-9/dose/group) to self-infuse (FR1 schedule) during the 4-hr sessions given every other day. RESULTS: Compared with the infusions of artificial CSF, the control group reliably (p \textless 0.05) self-infused 75 and 125 mg/dl of ethanol but not the lower concentrations. The ethanol-drinking group had significantly (p \textless 0.05) higher self-infusions of 50, 75, and 125 mg/dl of ethanol than artificial CSF during the four acquisition sessions; the number of infusions of all three doses was higher in the ethanol-drinking group than in the ethanol-naive group. Both groups decreased responding on the active lever when artificial CSF was substituted for ethanol, and both groups demonstrated robust reinstatement of responding on the active lever when ethanol was restored. CONCLUSIONS: Chronic ethanol drinking by P rats increased the sensitivity of the posterior VTA to the reinforcing effects of ethanol.
Marisa Roberto, Michal Bajo, Elena Crawford, Samuel G. Madamba, and George R. Siggins. “Chronic Ethanol Exposure and Protracted Abstinence Alter NMDA Receptors in Central Amygdala.” Neuropsychopharmacology, 31, 5, Pp. 988–996. Publisher's Version Abstract
We recently reported that chronic ethanol treatment (CET) and early withdrawal (2–8 h) altered glutamatergic transmission at both pre- and postsynaptic sites in central nucleus of the amygdala (CeA). Acute ethanol (44 mM) inhibited the NMDA receptor (NMDAR)-mediated EPSCs (NMDA-EPSCs) more in CeA neurons from CET rats than from naïve rats and also decreased paired-pulse facilitation (PPF) of NMDA-EPSCs only in CET rats. To determine whether these CET effects persisted after prolonged withdrawal, we recorded intracellularly in rat CeA slices and measured mRNA and protein expression of CeA NMDAR subunits from CET rats and those withdrawn from ethanol for 1 or 2 weeks. At 1 week withdrawal, acute ethanol decreased evoked NMDA-EPSC amplitudes and NMDA currents induced by exogenous NMDA (20%) equally to that in naïve rats, indicating that CET effects on postsynaptic mechanisms reversed 1 week after CET cessation. However, acute ethanol still decreased PPF of NMDA-EPSCs, indicating that the acute ethanol-induced increase in glutamate release in CeA seen in CET rats was still present at this time. CET also significantly increased mRNA levels of NR1 and NR2B NMDAR subunits compared to control rats. At 1 week withdrawal, mRNA levels for NR1 and NR2B subunits were significantly decreased. These changes reversed at 2 weeks withdrawal. In Western blots, a significant increase in protein for all three subunits occurred in CeA from CET rats, but not after 1 and 2 weeks of withdrawal. These data indicate that CET induces reversible neuroadaptations in synaptic function, gene expression, and protein composition of NMDAR at CeA synapses.
Douglas B. Matthews, Sanjiv V. Bhave, John K. Belknap, Cynthia Brittingham, Elissa J. Chesler, Robert J. Hitzemann, Paula L. Hoffmann, Lu Lu, Shannon McWeeney, Michael F. Miles, Boris Tabakoff, and Robert W. Williams. “Complex genetics of interactions of alcohol and CNS function and behavior.” Alcoholism, Clinical and Experimental Research, 29, 9, Pp. 1706–1719. Abstract
This work summarizes the proceedings of a symposium at the 2004 RSA Meeting in Vancouver, Canada. The organizers were R. W. Williams and D. B. Matthews; the Chair was M. F. Miles. The presentations were (1) WebQTL: A resource for analysis of gene expression variation and the genetic dissection of alcohol related phenotypes, by E. J. Chesler, (2) The marriage of microarray and qtl analyses: what's to gain, by J. K. Belknap, (3) Use of WebQTL to identify QTLs associated with footshock stress and ethanol related behaviors, by D. B. Matthews, (4) A high throughput strategy for the detection of quantitative trait genes, by R. J. Hitzemann, and (5) The use of gene arrays in conjunction with transgenic and selected animals to understand anxiety in alcoholism, by. B. Tabakoff.
Monica Lisa Berlanga, Taylor Kathryn Simpson, and Adriana Angelica Alcantara. “Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release.” The Journal of Comparative Neurology, 492, 1, Pp. 34–49. Abstract
The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson's disease, Alzheimer's disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.
Timothy Donohue, Paula L. Hoffman, and Boris Tabakoff. “Effect of ethanol on DARPP-32 phosphorylation in transgenic mice that express human type VII adenylyl cyclase in brain.” Alcoholism, Clinical and Experimental Research, 29, 3, Pp. 310–316. Abstract
BACKGROUND: Dopamine and cyclic adenosine monophosphate-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) is a bidirectional signaling protein found in dopaminergically innervated brain areas. The characteristics and direction of DARPP-32 effects are regulated by phosphorylation of this protein. Phosphorylation of DARPP-32 on threonine-34 (T34) is regulated through the activation of dopamine (D1) receptors and stimulation of adenylyl cyclase (AC) and protein kinase A activity and by calcineurin. Phosphorylation of DARPP-32 on threonine-75 (T75) is regulated by cyclin-dependent kinase 5 and protein phosphatase 2A. DARPP-32 has been implicated in the motivational effects of ethanol. METHODS: The authors characterized transgenic mice that overexpress an ethanol-sensitive isoform of AC (AC7) in brain by measuring basal and ethanol-modulated DARPP-32 phosphorylation. Phosphorylated and total DARPP-32 were measured by immunoblotting in brain areas associated with the motivational and anxiolytic effects of ethanol (nucleus accumbens, striatum, and amygdala). RESULTS: AC7 transgenic mice had higher basal levels of T34 DARPP-32 than wild-type mice in striatum and amygdala, whereas basal levels of T75 DARPP-32 did not differ between wild-type and transgenic mice. Ethanol administration increased T34 DARPP-32 in nucleus accumbens and amygdala (but not in the striatum) of wild-type and transgenic mice (with a greater effect in amygdala of transgenic mice than wild-type mice). Ethanol administration increased T75 DARPP-32 in amygdala of only the wild-type mice and in nucleus accumbens and striatum of both the transgenic and wild-type mice. CONCLUSIONS: The effect of ethanol on the balance of DARPP-32 phosphorylation, especially in amygdala of wild-type versus transgenic mice, may contribute to differential motivational effects of ethanol in these animals.
Helen J. K. Sable, Zachary A. Rodd, Richard L. Bell, Jonathan A. Schultz, Larry Lumeng, and William J. McBride. “Effects of ethanol drinking on central nervous system functional activity of alcohol-preferring rats.” Alcohol, 35, 2, Pp. 129–135. Publisher's Version Abstract
The [14C]-2-deoxyglucose (2-DG) technique was used to assess the rates of local cerebral glucose utilization (LCGU) in key limbic, cerebral cortical, hippocampal, basal ganglionic, and subcortical regions of alcohol-preferring (P) rats following chronic 24-h free-choice ethanol drinking. Adult male P rats were submitted to (1) 8 continuous weeks of two-bottle access to 15% ethanol and water (E-C group); (2) 8 weeks of identical two-bottle access followed by 2 weeks of ethanol deprivation (E-D group); (3) cycles of 2 weeks of two-bottle ethanol access and 2 weeks of deprivation, repeated for four cycles (E-RD group); or (4) water only treatment [ethanol-naive group (E-N group)]. A single pulse of [14C]-2-DG (125 μCi/kg) was administered via a venous catheter, and timed arterial blood samples were collected over 45 min and later assayed for plasma glucose and [14C]-2-DG concentrations. Quantitative autoradiography was used to determine [14C] densities, and LCGU values were calculated. With the exception of a few small differences in the hippocampus, no significant differences were found in any of the central nervous system (CNS) regions examined among the four experimental groups of P rats. Animals in the E-D group had lower LCGU rates in the anterior hippocampal CA1 subregion than animals in the E-N, E-C, and E-RD groups. In the anterior hippocampal CA3 subregion and the anterior hippocampal dentate gyrus, the E-D group had significantly lower LCGU rates than the E-RD group. Overall, the results of this study indicate that 24-h ethanol-drinking experience has little effect on CNS functional neuronal activity in P rats.
Vladimir I. Chefer, Traci Czyzyk, Elizabeth A. Bolan, Jose Moron, John E. Pintar, and Toni S. Shippenberg. “Endogenous kappa-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 20, Pp. 5029–5037. Abstract
Genetic and pharmacological approaches were used to examine kappa-opioid receptor (KOR-1) regulation of dopamine (DA) dynamics in the nucleus accumbens and vulnerability to cocaine. Microdialysis revealed that basal DA release and DA extraction fraction (Ed), an indirect measure of DA uptake, are enhanced in KOR-1 knock-out mice. Analysis of DA uptake revealed a decreased Km but unchanged Vmax in knock-outs. Knock-out mice exhibited an augmented locomotor response to cocaine, which did not differ from that of wild-types administered a behavioral sensitizing cocaine treatment. The ability of cocaine to increase DA was enhanced in knock-outs, whereas c-fos induction was decreased. Although repeated cocaine administration to wild types produced behavioral sensitization, knock-outs exhibited no additional enhancement of behavior. Administration of the long-acting KOR antagonist nor-binaltorphimine to wild-type mice increased DA dynamics. However, the effects varied with the duration of KOR-1 blockade. Basal DA release was increased whereas Ed was unaltered after 1 h blockade. After 24 h, release and Ed were increased. The behavioral and neurochemical effects of cocaine were enhanced at both time points. These data demonstrate the existence of an endogenous KOR-1 system that tonically inhibits mesoaccumbal DA neurotransmission. Its loss induces neuroadaptations characteristic of "cocaine-sensitized" animals, indicating a critical role of KOR-1 in attenuating responsiveness to cocaine. The increased DA uptake after pharmacological inactivation or gene deletion highlights the plasticity of mesoaccumbal DA neurons and suggests that loss of KOR-1 and the resultant disinhibition of DA neurons trigger short- and long-term DA transporter adaptations that maintain normal DA levels, despite enhanced release.
V. F. Turek and A. E. Ryabinin. “Ethanol versus lipopolysaccharide-induced hypothermia: involvement of urocortin.” Neuroscience, 133, 4, Pp. 1021–1028. Abstract
The urocortin1 (Ucn1) neurons of the mid-brain-localized Edinger-Westphal nucleus (EW) are robustly responsive to ethanol (EtOH) administration, and send projections to the dorsal raphe nucleus (DRN), which contains corticotropin-releasing factor type 2 receptors (CRF2) that are responsive to Ucn1. In addition, the DRN has been shown to be involved in regulation of body temperature, a function greatly affected by EtOH administration. The goal of the present study was to identify the role that the urocortinergic projections from the EW to the DRN have in mediating EtOH-induced and lipopolysaccharide (LPS)-induced hypothermia. Male C57BL6/J mice were used. Groups of mice underwent cannulation of the DRN, and then received i.p. injections of EtOH (2g/kg) or LPS (600 microg/kg or 400 microg/kg), followed by intra-DRN injections of artificial cerebrospinal fluid (aCSF) or anti-sauvagine (aSVG) (55 pmol), a CRF2 antagonist. Separate groups of mice received single intra-DRN injections of Ucn1 (20 pmol), CRF (20 pmol) or aCSF. For all experiments, core temperatures were monitored rectally every 30 min for several hours post-injection. Both EtOH and LPS induced hypothermia, and aSVG significantly attenuated this effect after EtOH; however, there was no significant attenuation of hypothermia after either dose of LPS. Ucn1 injection also caused hypothermia, while CRF injection did not. These data demonstrate that EtOH-induced hypothermia, but not LPS-induced hypothermia, may involve Ucn1 from EW acting at CRF2 receptors in the DRN.
Justin S. Rhodes, Karyn Best, John K. Belknap, Deborah A. Finn, and John C. Crabbe. “Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice.” Physiology & Behavior, 84, 1, Pp. 53–63. Abstract
Because of intrinsic differences between humans and mice, no single mouse model can represent all features of a complex human trait such as alcoholism. It is therefore necessary to develop partial models. One important feature is drinking to the point where blood ethanol concentration (BEC) reaches levels that have measurable affects on physiology and/or behavior (\textgreater1.0 mg ethanol/ml blood). Most models currently in use examine relative oral self-administration from a bottle containing alcohol versus one containing water (two-bottle preference drinking), or oral operant self-administration. In these procedures, it is not clear when or if the animals drink to pharmacologically significant levels because the drinking is episodic and often occurs over a 24-h period. The aim of this study was to identify the optimal parameters and evaluate the reliability of a very simple procedure, taking advantage of a mouse genotype (C57BL/6J) that is known to drink large quantities of ethanol. We exchanged for the water bottle a solution containing ethanol in tap water for a limited period, early in the dark cycle, in the home cage. Mice regularly drank sufficient ethanol to achieve BEC\textgreater1.0 mg ethanol/ml blood. The concentration of ethanol offered (10%, 20% or 30%) did not affect consumption in g ethanol/kg body weight. The highest average BEC ( approximately 1.6 mg/ml) occurred when the water-to-ethanol switch occurred 3 h into the dark cycle, and when the ethanol was offered for 4 rather than 2 h. Ethanol consumption was consistent within individual mice, and reliably predicted BEC after the period of ethanol access. C57BL/6J mice from three sources provided equivalent data, while DBA/2J mice drank much less than C57BL/6J in this test. We discuss advantages of the model for high-throughput screening assays where the goal is to find other genotypes of mice that drink excessively, or to screen drugs for their efficacy in blocking excessive drinking.

Pages